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The smallest univoque number is not isolated

By VILMOS KOMORNIK (Strasbourg), PAOLA LORETI (Roma)
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Dedicated to the 80th birthday of Professor Lajos Tamássy

Abstract. Komornik and Loreti [9] showed that there exists a smallest
univoque number q′ ≈ 1.787. Later Allouche and Cosnard [1] proved that
this number is transcendental. The aim of this note is to construct a (decreasing)
sequence of algebraic univoque numbers converging to q′.

1. Introduction

Given a real number 1 ≤ q ≤ 2, there exists at least one sequence (ci)
of zeroes and ones satisfying the equality

1 =
c1

q
+

c2

q2
+

c3

q3
+ . . . (1)

One such sequence, denoted by (γi), can be obtained by the so-called greedy
algorithm of Rényi [13]: proceeding by induction, we choose ci = 1 when-
ever possible. Among all expansions for a given q, this is lexicographically
the largest.
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If q = 2, then this is the unique possible expansion: ci = 1 for all i.
Erdős, Horváth and Joó [5] discovered that there exist also smaller
numbers q having this curious uniqueness property; following Daróczy

and Kátai [3] we call them univoque numbers. Subsequently, they were
characterized algebraically in [6] (see also [10] for an extension of this
result):

Theorem 1. A number 1 ≤ q ≤ 2 is univoque if and only if there

exists an expansion (γi) of 1 satisfying the following two conditions (in the

lexicographic sense):

γi+1γi+2 · · · < γ1γ2 . . . whenever γi = 0 (2)

and

γi+1γi+2 . . . < γ1γ2 . . . whenever γi = 1. (3)

Here and in the sequel we use the notation c := 1− c.
Among several interesting properties of the set U of univoque numbers,

for which we refer to the papers [1], [2], [3], [4], [5], [8] and [9], we recall
from [9] that there exists a smallest univoque number q′ ≈ 1.787, and the
corresponding expansion is given by the truncated Thue–Morse sequence

(τi)∞i=1 = 1101 0011 . . .

The purpose of this note is to investigate the following two questions:

• One may wonder whether q′ is an isolated univoque number or not. In
the first case one could look for the second smallest univoque number,
and so on.

• Allouche and Cosnard proved in [1] that q′ is transcendental. It is
than natural to look for the smallest algebraic univoque number if it
exists.

Both problems are solved by the following
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Theorem 2. There exists a (decreasing) sequence of algebraic uni-

voque numbers converging to q′. In particular, q′ is not an isolated point

of U .

2. Proof of Theorem 2

For the purpose of the present paper, it is advantageous to adopt the
following definition of the Thue–Morse sequence (τi): if

i = εk2k + · · ·+ ε0

is the dyadic expansion of some nonnegative integer i, then we define

τi :=

{
1 if εk + · · ·+ ε0 is odd,

0 if εk + · · ·+ ε0 is even.
(4)

In particular, τ0 = 0. See [9] for its equivalence with another usual defini-
tion.

Our main tool is the following strenghtening of a property of the Thue–
Morse sequence τ1, τ2,. . . , established in [9].

Lemma 3. Let 1 ≤ i < 2N+1 for some nonnegative integer N .

(a) If τi = 0, then τi+1 . . . τi+2N < τ1 . . . τ2N in the lexicographic sense.

(b) If τi = 1, then τi+1 . . . τi+2N < τ1 . . . τ2N in the lexicographic sense.

Remark. In fact, part (a) remains valid even if τi = 1, except the
case where N = 0 and i = 1, while part (b) remains always valid even if
τi = 0. An analogous property was established recently by Glendinning

and Sidorov [7].

Proof. Consider first the case τi = 0. Then εk + · · ·+ ε0 is even and
therefore εk + · · · + ε0 ≥ 2 because i ≥ 1 by assumption. Hence we may
write i = 2n + 2m + j with 2n > 2m > j ≥ 0. We claim that

τi+1 . . . τi+2N < τj+1 . . . τj+2N . (5)
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We distinguish two cases. If n ≥ m + 2, then using (4) we have

τi+k = τj+k for 1 ≤ k < 2m − j

but

τi+2m−j = τ2n+2m+1 = 0 < 1 = τ2m = τj+2m−j .

Since

2m − j ≤ 2m ≤ 2N−1 < 2N ,

this proves (5).
If n = m + 1, then using (4) we obtain by a similar reasoning that

τi+k = τj+k for 1 ≤ k < 2m+1 − j

but

τi+2m+1−j = τ2m+2+2m = 0 < 1 = τ2m+1 = τj+2m+1−j .

Since

2m+1 − j ≤ 2m+1 = 2n ≤ 2N ,

(5) follows again.
Since τj = τi = 0, we may iterate (5) until we obtain j = 0, thereby

proving the desired inequality.

Now consider the case τi = 1 and write i = 2m + j with 2m > j ≥ 0.
We claim that

τi+1 . . . τi+2N < τj+1 . . . τj+2N . (6)

Indeed, using (4) we have

τi+k = τj+k for 1 ≤ k < 2m − j

but

τi+2m−j = τ2m+1 = 0 < 1 = τ2m = τj+2m−j .

Since

2m − j ≤ 2m ≤ 2N ,

this proves (6).
If j = 0, then we are done. If j > 0, then we complete the proof by

combining (5) and (6). ¤
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Now fix a nonnegative integer N and introduce the following sequence:

ci :=

{
τi if 1 ≤ i < 2N+1,

ci−2N if i ≥ 2N+1.
(7)

This sequence was used for different purposes in a recent work of Glendin-

ning and Sidorov [7]. Observe that the sequence (cn) is periodic with
period 2N beginning with c2N . Let us write down the first 16 elements of
the Thue–Morse sequence and of the sequences (cn) for N = 0, 1, 2:

(τi) : 1101 0011 0010 1101 . . .

N = 0 : 1111 1111 1111 1111 . . .

N = 1 : 1101 0101 0101 0101 . . .

N = 2 : 1101 0011 0011 0011 . . .

Let us note for further reference that

τi = τi−2N for 2N+1 ≤ i < 2N+1 + 2N . (8)

Indeed, this follows easily from (4).
It is clear that the equation

1 =
c1

q
+

c2

q2
+

c3

q3
+ . . . (9)

defines an algebraic number 1 < qN ≤ 2 satisfying qN → q′ as N →∞.

Proof of Theorem 2. Thanks to Theorem 1, it suffices to verify that
the sequence (cn) is admissible in the following sense:

ci+1 . . . ci+2N < c1 . . . c2N whenever ci = 0 (10)

and

ci+1 . . . ci+2N < c1 . . . c2N whenever ci = 1. (11)

For 1 ≤ i < 2N+1 both relations follow from the similar properties of
the Thue–Morse sequence established in the preceding lemma because the
first 2N+1 + 2N − 1 of the two sequences coincide by equation (8).
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For i ≥ 2N+1 the relations (10) and (11) now follow by induction
because the sequences ci+1 . . . ci+2N and ci+1−2N . . . ci coincide, and also
ci = ci−2N , so that ci = 0 implies ci−2N = 0 and ci =1 implies ci−2N =1.

¤
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[6] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions
1 =

P
q−ni and related problems, Bull. Soc. Math. France 118 (1990), 377–390.

[7] P. Glendinning and N. Sidorov, Unique representations of real numbers in
non-integer bases, Math. Res. Lett. 8, no. 4 (2001), 535–543.

[8] G. Kallós, The structure of the univoque set in the small case, Publ. Math. Deb-
recen 54 (1999), 1–2, 153–164.

[9] V. Komornik and P. Loreti, Unique developments in non-integer bases, Amer.
Math. Monthly 105 (1998), 636–639.

[10] V. Komornik and P. Loreti, Subexpansions, superexpansions and uniqueness
properties in non-integer bases, Periodica Math. Hungar. 44 (2) (2002), 197–218.

[11] M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer.
Math. Soc. 22 (1921), 84–100.

[12] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar.
11 (1960), 401–416.
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