Homogeneous Riemannian manifolds with only one homogeneous geodesic

By OLDŘICH KOWALSKI (Praha) and ZDENĚK VLÁŠEK (Praha)

Dedicated to Professor L. Tamássy
at the occasion of his 80th birthday

Abstract

In [6], the first author and J. Szenthe proved that each homogeneous Riemannian manifold (M, g) admits at least one homogeneous geodesic, i.e., a geodesic which is an orbit of a one-parameter group of isometries. (For Lie groups this result was proved earlier in [1].) In the present article we show that, for each dimension $n \geq 4$, there is an n-dimensional (solvable) Lie group with a left-invariant metric which admits exactly one homogeneous geodesic through each point, up to a parametrization. (For dimension $n=3$ such example was found in [5].) Hence the result from [6] cannot be improved, in general.

1. Introduction

Consider a Riemannian homogeneous space $(M, g)=G / H$, i.e., such that G is a connected group of isometries acting transitively on (M, g) and H is the isotropy group at a point $o \in M$. Let \mathbf{g} and \mathbf{h} denote the corresponding Lie algebras. It is well-known [2], [6] that G / H always admits an $\operatorname{ad}(H)$-invariant decomposition $\mathbf{g}=\mathbf{m}+\mathbf{h}$, where \mathbf{m} is a linear subspace

[^0]and which makes $(G / H, g)$ a reductive space. Using this decomposition, one can define on (M, g) the canonical connection $\widetilde{\nabla}$, which is a metric connection with parallel torsion \widetilde{T} and parallel curvature \widetilde{R}. Moreover, the last tensor fields are expressed through the formulas
$$
\widetilde{T}(X, Y)_{o}=-[X, Y]_{\mathbf{m}},(\widetilde{R}(X, Y) Z)_{o}=-\left[[X, Y]_{\mathbf{h}}, Z\right], \quad \text { for } X, Y, Z \in \mathbf{m}
$$
where the subscripts at the brackets denote the corresponding components, and the elements X, Y are also considered as tangent vectors at o via the natural isomorphism between the subspace \mathbf{m} and the tangent space $T_{o} M$. Because the scalar product g_{o} is defined on $T_{o} M$, this natural isomorphism defines an $\operatorname{ad}(H)$-invariant scalar product \langle,$\rangle on \mathbf{m}$.

We start with the following
Proposition 1.1 ([2], [3], [9]). Let ∇ denote the Levi-Civita connection of $(G / H, g)$ and $\widetilde{\nabla}$ the canonical connection corresponding to some $\operatorname{ad}(H)$-invariant decomposition $\mathbf{g}=\mathbf{m}+\mathbf{h}$. Denote by D the difference tensor field $\nabla-\widetilde{\nabla}$ between the both connections. Then the tensor field D is determined by the algebraic equation

$$
2 g\left(D_{Y} X, Z\right)=g(\widetilde{T}(X, Y), Z)+g(\widetilde{T}(X, Z), Y)+g(\widetilde{T}(Y, Z), X)
$$

for all vector fields X, Y, Z. Further, the Riemannian curvature tensor R is given by the algebraic formula

$$
R(X, Y)=\widetilde{R}(X, Y)+\left[D_{X}, D_{Y}\right]+D_{\widetilde{T}(X, Y)}
$$

Hence we see that the Riemannian curvature tensor R can be calculated in a purely algebraic way, using the Lie algebra structure of \mathbf{g}, the decomposition $\mathbf{g}=\mathbf{m}+\mathbf{h}$ and the scalar product \langle,$\rangle on \mathbf{m}$.

Further, a nonzero vector $X \in \mathbf{g}$ is called a geodesic vector if the curve $\gamma(t)=\exp (t X)(o)$ is a geodesic on $(G / H, g)$. The following can be found in [7] or [4]:

Lemma 1.2. A vector $X \in \mathbf{g}-(0)$ is a geodesic vector if and only if

$$
\left\langle[X, Y]_{\mathbf{m}}, X_{\mathbf{m}}\right\rangle=0 \quad \text { for all } Y \in \mathbf{m}
$$

where \langle,$\rangle is the \operatorname{ad}(H)$-invariant scalar product on \mathbf{m} induced by the Riemannian scalar product on $T_{o} M$ and the subscripts indicate the corresponding projection $\mathbf{g} \rightarrow \mathbf{m}$.

Finally, a homogeneous geodesic on a homogeneous Riemannian manifold (M, g) is a geodesic which is an orbit of a one-parameter group of isometries. In other words, it is a geodesic determined by a geodesic vector which belongs to the Lie algebra \mathbf{g} of the full isometry group $\mathfrak{I}(M, g)$.

2. The main example

Consider, for each $n \geq 3$, a Lie algebra \mathbf{g}_{n} of dimension $n+1$ which is given, with respect to a basis $\left\{X_{1}, \ldots, X_{n+1}\right\}$, by the multiplication table

$$
\begin{align*}
{\left[X_{i}, X_{j}\right] } & =0 \quad \text { for } i, j=1, \ldots, n, \\
{\left[X_{n+1}, X_{i}\right] } & =a_{i} X_{i}+X_{i+1} \quad \text { for } 1 \leq i \leq n-1, \tag{1}\\
{\left[X_{n+1}, X_{n}\right] } & =a_{n} X_{n},
\end{align*}
$$

where a_{1}, \ldots, a_{n} are arbitrary parameters. Define a scalar product \langle,$\rangle on$ \mathbf{g}_{n} for which the above basis is orthonormal. The family of Lie algebras $\left(\mathbf{g}_{n},\langle\rangle,\right)$ gives rise to an (n-parameter) family of solvable Lie groups G_{n} with a set of invariant Riemann metrics g. Here we can assume that G_{n} is always diffeomorphic to the $(n+1)$-dimensional Euclidean space.

Our first aim is to prove that, for a specific choice of the parameters a_{1}, \ldots, a_{n}, all principal Ricci curvatures of $\left(G_{n}, g\right)$ are distinct and hence the group G_{n} acting on itself by the left translations is the identity component of the full isometry group $\mathfrak{I}\left(G_{n}, g\right)$. This is a nontrivial part of our paper.

The following proposition is a special case of Proposition 1.1 in the situation where $\mathbf{h}=(0)$ and $\mathbf{m}=\mathbf{g}$.

Proposition 2.1 ([2], [3], [9]). Let ∇ denote the Levi-Civita connection of $\left(G_{n}, g\right)$ and $\widetilde{\nabla}$ the canonical connection on G_{n} (for which all left-invariant vector fields are parallel). Denote by D the difference tensor field $\nabla-\widetilde{\nabla}$ between the both connections. Then the tensor field D is determined by the algebraic equation

$$
\begin{equation*}
2 g\left(D_{Y} X, Z\right)=-g([X, Y], Z)-g([X, Z], Y)-g([Y, Z), X) \tag{2}
\end{equation*}
$$

for all vector fields X, Y, Z. Further, the Riemannian curvature tensor R is given by the algebraic formula

$$
\begin{equation*}
R(X, Y)=\left[D_{X}, D_{Y}\right]-D_{[X, Y]} \tag{3}
\end{equation*}
$$

Here we used the fact that the torsion and the curvature of the canonical connection $\widetilde{\nabla}$ are given by the formulas $\widetilde{T}(X, Y)=-[X, Y], \widetilde{R}=0$. It is obvious that all calculations for determining the curvature tensor R are now reduced to those in the Lie algebra \mathbf{g}_{n}. By a routine calculation we obtain the following two propositions:

Proposition 2.2. The tensor field D is given on \mathbf{g}_{n}, expressed through the vector fields X_{1}, \ldots, X_{n+1}, as follows:

$$
\begin{align*}
& D_{X_{i}} X_{j}=0 \quad \text { for } i, j \leq n,|i-j|>1 \\
& D_{X_{i}} X_{j}=\frac{1}{2} X_{n+1} \quad \text { for } i, j \leq n,|i-j|=1 \\
& D_{X_{i}} X_{i}=a_{i} X_{n+1} \quad \text { for } i=1, \ldots, n \tag{4}\\
& D_{X_{i}} X_{n+1}=-a_{i} X_{i}-\frac{1}{2}\left(X_{i-1}+X_{i+1}\right) \quad \text { for } 1<i<n \\
& D_{X_{1}} X_{n+1}=-a_{1} X_{1}-\frac{1}{2} X_{2} \\
& D_{X_{n}} X_{n+1}=-a_{n} X_{n}-\frac{1}{2} X_{n-1} \tag{5}\\
& D_{X_{n+1}} X_{i}=\frac{1}{2}\left(X_{i+1}-X_{i-1}\right), \quad \text { for } 1<i<n \\
& D_{X_{n+1}} X_{1}=\frac{1}{2} X_{2} \\
& D_{X_{n+1}} X_{n}=-\frac{1}{2} X_{n-1} \\
& D_{X_{n+1}} X_{n+1}=0 \tag{6}
\end{align*}
$$

Proposition 2.3. The curvature tensor field R is expressed on \mathbf{g}_{n} through the basic vector fields X_{1}, \ldots, X_{n+1} as follows:

$$
\begin{aligned}
R\left(X_{i}, X_{n+1}\right) X_{n+1}= & -\frac{1}{4} X_{i-2}-a_{i} X_{i-1}-\left(\frac{1}{2}+\left(a_{i}\right)^{2}\right) X_{i} \\
& -a_{i+1} X_{i+1}-\frac{1}{4} X_{i+2}
\end{aligned}
$$

$$
\begin{align*}
& R\left(X_{1}, X_{n+1}\right) X_{n+1}=- \\
& \quad\left(\frac{3}{4}+\left(a_{1}\right)^{2}\right) X_{1}-a_{2} X_{2}-\frac{1}{4} X_{3}, \\
& R\left(X_{2}, X_{n+1}\right) X_{n+1}=-a_{2} X_{1}-\left(\frac{1}{2}+\left(a_{2}\right)^{2}\right) X_{2}-a_{3} X_{3}-\frac{1}{4} X_{4} \\
& \left.\quad \quad \text { (where one puts } X_{4}=0 \text { for } n=3\right), \\
& R\left(X_{n-1}, X_{n+1}\right) X_{n+1}=-\frac{1}{4} X_{n-3}-a_{n-1} X_{n-2}-\left(\frac{1}{2}+\left(a_{n-1}\right)^{2}\right) X_{n-1} \\
& \tag{7}\\
& \left.\quad-a_{n} X_{n} \quad \quad \quad \text { where one puts } X_{0}=0 \text { for } n=3\right), \\
& R\left(X_{n}, X_{n+1}\right) X_{n+1}=-\frac{1}{4} X_{n-2}-a_{n} X_{n-1}+\left(\frac{1}{4}-\left(a_{n}\right)^{2}\right) X_{n} ; \tag{8}\\
& R\left(X_{i}, X_{j}\right) X_{k}=0 \quad \text { for } i, j, k \leq n,|i-k|>1,|j-k|>1, \\
& R\left(X_{i}, X_{j}\right) X_{n+1}=0 \quad \text { for } i, j \leq n,|i-j|>1 .
\end{align*}
$$

Next, we shall calculate the Ricci tensor S.
Proposition 2.4. We have

$$
\begin{align*}
& S\left(X_{i}, X_{n+1}\right)=0 \quad \text { for } i=1, \ldots, n \tag{9}\\
& S\left(X_{n+1}, X_{n+1}\right)=-\frac{n-1}{2}-\sum_{j=1}^{n}\left(a_{j}\right)^{2} . \tag{10}
\end{align*}
$$

Proof. Because $S\left(X_{n+1}, X_{n+1}\right)=\sum_{i=1}^{n}\left\langle R\left(X_{i}, X_{n+1}\right) X_{n+1}, X_{i}\right\rangle$, we get (10) directly from (7). Further, for $i \leq n, S\left(X_{i}, X_{n+1}\right)=\sum_{j=1}^{n} \times$ $\left\langle R\left(X_{j}, X_{i}\right) X_{n+1}, X_{j}\right\rangle$, and according to the second formula of (8), the only nontrivial terms can be $\left\langle R\left(X_{i-1}, X_{i}\right) X_{n+1}, X_{i-1}\right\rangle$ and $\left\langle R\left(X_{i+1}, X_{i}\right) X_{n+1}, X_{i+1}\right\rangle$. A direct check shows that they are both equal to zero.

Proposition 2.5. We have

$$
\begin{equation*}
S\left(X_{i}, X_{j}\right)=0 \quad \text { for } i, j \leq n \text { and }|i-j|>1 . \tag{11}
\end{equation*}
$$

Proof. The proof is routine for $|i-j|>2$. It remains to check that $S\left(X_{i}, X_{i+2}\right)=0$ for all $i \leq n-2$. But due to the first statement of (8) we have $S\left(X_{i}, X_{i+2}\right)=\left\langle R\left(X_{i+1}, X_{i}\right) X_{i+2}, X_{i+1}\right\rangle+\left\langle R\left(X_{i+3}, X_{i}\right) X_{i+2}, X_{i+3}\right\rangle+$ $\left\langle R\left(X_{n+1}, X_{i}\right) X_{i+2}, X_{n+1}\right\rangle$ where the last two terms coincide if $i=n-2$. The middle term can be written in the form $\left\langle R\left(X_{i+3}, X_{i+2}\right) X_{i}, X_{i+3}\right\rangle$,
which is zero according to (8), unless $i=n-2$. It remains the sum

$$
\begin{aligned}
& \left\langle R\left(X_{i+1}, X_{i}\right) X_{i+2}, X_{i+1}\right\rangle+\left\langle R\left(X_{n+1}, X_{i}\right) X_{i+2}, X_{n+1}\right\rangle= \\
& -\left\langle D_{X_{i}} D_{X_{i+1}} X_{i+2}, X_{i+1}\right\rangle-\left\langle D_{X_{i}} D_{X_{n+1}} X_{i+2}, X_{n+1}\right\rangle- \\
& \left\langle D_{\left[X_{n+1}, X_{i}\right]} X_{i+2}, X_{n+1}\right\rangle=\frac{1}{4}+\frac{1}{4}-\frac{1}{2}=0 .
\end{aligned}
$$

Proposition 2.6.

$$
\begin{equation*}
S\left(X_{i}, X_{i+1}\right)=\frac{1}{2}\left(a_{i}-a_{i+1}\right)-\frac{1}{2} \sum_{j=1}^{n} a_{j} \quad \text { for } i=1, \ldots, n-1 . \tag{12}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& S\left(X_{i}, X_{i+1}\right)=\sum_{j=1, j \neq i, i+1}^{n}\left\langle D_{X_{j}} D_{X_{i}} X_{i+1}, X_{j}\right\rangle-\left\langle D_{X_{i}} D_{X_{n+1}} X_{i+1}, X_{n+1}\right\rangle \\
& \quad-\left\langle D_{\left[X_{n+1}, X_{i}\right]} X_{i+1}, X_{n+1}\right\rangle=-\frac{1}{2}\left(\sum_{j=1}^{i-1} a_{j}+\sum_{j=i+2}^{n} a_{j}\right) \\
& \quad+\frac{1}{2} a_{i}-a_{i+1}-\frac{1}{2} a_{i} .
\end{aligned}
$$

Proposition 2.7. The diagonal elements of the Ricci tensor are given by the formulas

$$
\begin{align*}
& S\left(X_{1}, X_{1}\right)=-\frac{1}{2}+s a_{1} \\
& S\left(X_{i}, X_{i}\right)=s a_{i} \text { for } 2 \leq i \leq n-1, \\
& S\left(X_{n}, X_{n}\right)=\frac{1}{2}+s a_{n} \tag{13}\\
& S\left(X_{n+1}, X_{n+1}\right)=-\frac{n-1}{2}-\sum_{j=1}^{n}\left(a_{j}\right)^{2},
\end{align*}
$$

where $s=-\sum_{j=1}^{n} a_{j}$.
Proof. We first recall that $S\left(X_{j}, X_{j}\right)=\sum_{i=1}^{n+1}\left\langle R\left(X_{i}, X_{j}\right) X_{j}, X_{i}\right\rangle$ for all $j=1, \ldots, n$. A routine calculation using (3), (4) and also the notation $s=-\sum_{j=1}^{n} a_{j}$ leads to the first three formulas of (13). The last formula is identical with (10).

Let us denote

$$
\begin{equation*}
q=\frac{1}{n(n+1)}, k=\left[\frac{2 n+1}{3}\right]\left(\text { the integral part of } \frac{2 n+1}{3}\right) . \tag{14}
\end{equation*}
$$

We have $n \geq 3$, so k satisfies the inequalities $2 \leq k \leq n-1$.
Let us fix the parameters a_{1}, \ldots, a_{n} as follows:

$$
\begin{equation*}
a_{j}=\left(-2 j+\delta_{j k}-\delta_{j, k+1}\right) q s \quad \text { for } j=1, \ldots, n, \tag{15}
\end{equation*}
$$

where s is a parameter and $\delta_{i j}$ is the Kronecker's symbol. Then obviously

$$
\begin{equation*}
s=-\sum_{j=1}^{n} a_{j} . \tag{16}
\end{equation*}
$$

From (12), (13) and (15) we obtain

$$
\begin{align*}
& S\left(X_{i}, X_{i+1}\right)=\left(\left(2-\delta_{i, k-1}+2 \delta_{i k}-\delta_{i, k+1}\right) q+1\right) s / 2 \\
& \quad \text { for } i=1, \ldots, n-1, \\
& S\left(X_{1}, X_{1}\right)=-2 q s^{2}-1 / 2 \\
& S\left(X_{i}, X_{i}\right)=\left(-2 i+\delta_{i k}-\delta_{i, k+1}\right) q s^{2} \quad \text { for } i=2, \ldots, n-1, \tag{17}\\
& S\left(X_{n}, X_{n}\right)=\left(-2 n-\delta_{n, k+1}\right) q s^{2}+1 / 2, \\
& S\left(X_{n+1}, X_{n+1}\right)=-\left(\frac{2}{3}(2 n+1)+6 q\right) q s^{2}-\frac{n-1}{2} .
\end{align*}
$$

Now we shall prove the basic
Proposition 2.8. For the choice of the parameters a_{j} as in (15) and for all sufficiently large values of s, the eigenvalues $\rho_{i}(s)$ of the Ricci matrix $\left[S\left(X_{i}, X_{j}\right)\right]$ are all distinct.

Proof. For $s \rightarrow+\infty$, all diagonal elements of the matrix are of order s^{2} and all other elements are of a lower order. Therefore we define matrices $P(s)$ for all $s \neq 0$ and a constant matrix Q as follows:

$$
\begin{equation*}
P(s)=\left[S\left(X_{i}, X_{j}\right)\right] / q s^{2}, \quad Q=\lim _{s \rightarrow+\infty} P(s) . \tag{18}
\end{equation*}
$$

The matrix Q is a diagonal matrix. We use (17) to calculate its diagonal elements:

$$
\begin{align*}
& Q_{i i}=-2 i+\delta_{i k}-\delta_{i, k+1} \quad \text { for } i=1, \ldots, n, \tag{19}\\
& Q_{n+1, n+1}=-\frac{2}{3}(2 n+1)-6 q=-\left(\frac{4 n+2}{3}+\frac{6}{n(n+1)}\right) \notin \mathbb{Z}, \tag{20}
\end{align*}
$$

where for $n=3$ we evaluate $Q_{n+1, n+1}=-\frac{31}{6} \notin \mathbb{Z}$ and for $n \geq 4$ we estimate $0<\frac{6}{n(n+1)} \leq \frac{6}{20}<\frac{1}{3}$, so $Q_{n+1, n+1} \notin \mathbb{Z}$, too.

We see that all elements $Q_{i i}(i=1, \ldots, n+1)$ of the diagonal matrix Q are distinct. Consider now the symmetric matrix $\widetilde{P}(t)=P(1 / t)$. We see easily that the coefficients of the characteristic polynomial $\widetilde{C}(t, \lambda)$ of $\widetilde{P}(t)$ are polynomials with respect to t and hence they are continuous at $t=0$. The roots of the equation $\widetilde{C}(0, \lambda)=0$ are $Q_{i i}$, and hence all of them are simple roots, which implies $\left.\frac{\partial}{\partial \lambda} \widetilde{C}(0, \lambda)\right|_{\lambda=Q_{i i}} \neq 0$ for all i. Using the implicit function theorem, we see that the roots $\widetilde{\lambda}_{i}(t)$ of the equation $\widetilde{C}(t, \lambda)=0$ are continuous functions of t, and because $\widetilde{\lambda}_{i}(0)=Q_{i i}$, they are all distinct in a neighborhood of $t=0$. Hence all values $\lambda_{i}(s)=\widetilde{\lambda}_{i}(1 / s)$ are distinct for each sufficiently large s. But the same is valid for the eigenvalues $\rho_{i}(s)=q s^{2} \lambda_{i}(s)$ of the Ricci matrix $\left[S\left(X_{i}, X_{j}\right)\right]$.

Remark. The choice (15) cannot be simplified to the form $a_{j}=-2 j q s$ because, if $2 n+1$ is divisible by 3 , then the $Q_{i i}$ are not all distinct and the proof does not work.

We can summarize:
Proposition 2.9. Consider the space $\left(G_{n}, g\right)$ with the parameters a_{j} as in (15). Then, for any sufficiently large value of s, each isometry preserving the identity $e \in G_{n}$ can act on the basis $\left\{X_{1}, \ldots, X_{n+1}\right\}$ of $g_{n}=T_{e} G_{n}$ only as a composition of reflections and hence there is only finite number of such isometries. Hence G_{n} acting on itself by the left translations is the identity component of the full isometry group $\mathfrak{I}\left(G_{n}, g\right)$.

Corollary 2.10. For the space $\left(G_{n}, g\right)$ as above, if the parameter s is sufficiently large, then all geodesic vectors are contained in the Lie algebra \mathbf{g}_{n}.

Now, Lemma 1.2 can be applied in the simplified form and we obtain
Theorem 2.11. For the space $\left(G_{n}, g\right)$ as above, if the numbers a_{j} are given by (15) and if the parameter s is sufficiently large, then all geodesic vectors $X \in \mathbf{g}_{n}$ are multiples of the vector X_{n+1}. Consequently, there is (up to a parametrization) only one homogeneous geodesic through each point.

Proof. Let us denote $X=\sum_{i=1}^{n+1} x_{i} X_{i}$ and let us express the condition of Lemma 1.2 in an explicit form. We can write it as

$$
\begin{equation*}
\left\langle\left[\sum_{i=1}^{n+1} x_{i} X_{i}, X_{j}\right], \sum_{k=1}^{n+1} x_{k} X_{k}\right\rangle=0 \quad \text { for } j=1, \ldots, n+1 . \tag{21}
\end{equation*}
$$

According to (1), this is reduced to the formulas

$$
\begin{equation*}
x_{n+1}\left\langle\left[X_{n+1}, X_{j}\right], \sum_{k=1}^{n} x_{k} X_{k}\right\rangle=0 \quad \text { for } j=1, \ldots, n \tag{22}
\end{equation*}
$$

and

$$
\left\langle\left[\sum_{i=1}^{n} x_{i} X_{i}, X_{n+1}\right], \sum_{k=1}^{n} x_{k} X_{k}\right\rangle=0 .
$$

The first equations can be expressed in the form

$$
\begin{gather*}
x_{n+1}\left(a_{j} x_{j}+x_{j+1}\right)=0 \quad \text { for } j=1, \ldots, n-1, \\
\text { and } \quad x_{n+1} a_{n} x_{n}=0 . \tag{23}
\end{gather*}
$$

According to our choice, all parameters a_{j} are negative and hence nonzero. Assuming that x_{n+1} is nonzero, we obtain by induction that all other x_{j} are zero. Suppose now that $x_{n+1}=0$. Then using the second equation of (22) we get the following quadratic equation for the components x_{1}, \ldots, x_{n} :

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j}\left(x_{j}\right)^{2}+\sum_{k=1}^{n-1} x_{k} x_{k+1}=0 . \tag{24}
\end{equation*}
$$

Because all a_{j} are negative constant multiples of s, the equation (24) has only trivial solution for any sufficiently large value of s. This concludes the proof of the main result.

By a simple modification of the previous procedure, we can easily obtain the following

Theorem 2.12. Let (p, q) denote the prescribed signature of a quadratic form in n variables, $p+q=n, p>0, q>0$. Then there exists a space $\left(G_{n}, g\right)$ and parameters a_{j} (with sufficiently large absolute values) such that the family of all geodesic vectors $X \in \mathbf{g}_{n}$ is a disjoint union of $\operatorname{span}\left(X_{n+1}\right)-(0)$ and of a real hypercone (with deleted vertex) in the orthogonal complement of X_{n+1} whose signature is equal to (p, q).

References

[1] V. V. Kajzer, Conjugate points of left-invariant metrics on Lie groups, Soviet Math. 34 (1990), 32-44.
[2] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II, Interscience Publishers, New York, 1969.
[3] O. Kowalski, Generalized Symmetric Spaces, Vol. 805, Lecture Notes in Math., Springer-Verlag, Berlin - Heidelberg - New York, 1980.
[4] O. Kowalski and S. Ž. NiKčEvić, On geodesic graphs of Riemannian g.o. spaces, Arch. Math. 73 (1999), 223-234.
[5] O. Kowalski, S. Ž. Nikčević and Z. Vlášek, Homogeneous geodesics in homogeneous Riemannian manifolds - Examples, Preprint Reihe Mathematik 665, TU Berlin (2000), Also in: Geometry and Topology of Submanifolds (Beijing/Berlin 1999) (2000), World Sci. Publishing Co., River Edge, NJ, 104-112.
[6] O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geometriae Dedicata 81 (2000), 209-214, Erratum: Geometriae Dedicata 84 (2001), 331-332.
[7] O. Kowalski and L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B(7) 5 (1991), 189-246.
[8] R. A. Marinosci, Homogeneous geodesics in a three-dimensional Lie group, Comm. Math. Univ. Carolinae 43, 2 (2002), 261-270.
[9] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, Lecture Note Series London Math. Soc. 83, Cambridge Univ. Press, London, 1983.

```
OLDŘICH KOWALSKI
FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY
SOKOLOVSKÁ 83, 186 75 PRAHA
CZECH REPUBLIC
E-mail: kowalski@karlin.mff.cuni.cz
ZDENĚK VLÁŠEK
FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY
SOKOLOVSKÁ 83, 186 75 PRAHA
CZECH REPUBLIC
E-mail: vlasek@karlin.mff.cuni.cz
```

(Received April 22, 2002; revised August 30, 2002)

[^0]: Mathematics Subject Classification: 53C20, 53C22, 53C30.
 Key words and phrases: Riemannian manifold, Lie group, geodesics as orbits.
 This work was partially supported by the grant GA CR 201/02/0616 and by the research project MSM 113200007.

