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Abstract. In [6], the first author and J. Szenthe proved that each homo-
geneous Riemannian manifold (M, g) admits at least one homogeneous geodesic,
i.e., a geodesic which is an orbit of a one-parameter group of isometries. (For Lie
groups this result was proved earlier in [1].) In the present article we show that,
for each dimension n ≥ 4, there is an n-dimensional (solvable) Lie group with
a left-invariant metric which admits exactly one homogeneous geodesic through
each point, up to a parametrization. (For dimension n = 3 such example was
found in [5].) Hence the result from [6] cannot be improved, in general.

1. Introduction

Consider a Riemannian homogeneous space (M, g) = G/H, i.e., such
that G is a connected group of isometries acting transitively on (M, g) and
H is the isotropy group at a point o ∈ M . Let g and h denote the corre-
sponding Lie algebras. It is well-known [2], [6] that G/H always admits an
ad(H)-invariant decomposition g = m + h, where m is a linear subspace
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and which makes (G/H, g) a reductive space. Using this decomposition,
one can define on (M, g) the canonical connection ∇̃, which is a metric
connection with parallel torsion T̃ and parallel curvature R̃. Moreover,
the last tensor fields are expressed through the formulas

T̃ (X,Y )o = −[X,Y ]m, (R̃(X,Y )Z)o = −[[X, Y ]h, Z], for X, Y, Z ∈ m,

where the subscripts at the brackets denote the corresponding components,
and the elements X, Y are also considered as tangent vectors at o via the
natural isomorphism between the subspace m and the tangent space ToM .
Because the scalar product go is defined on ToM , this natural isomorphism
defines an ad(H)-invariant scalar product 〈 , 〉 on m.

We start with the following

Proposition 1.1 ([2], [3], [9]). Let ∇ denote the Levi–Civita connec-

tion of (G/H, g) and ∇̃ the canonical connection corresponding to some

ad(H)-invariant decomposition g = m + h. Denote by D the difference

tensor field ∇−∇̃ between the both connections. Then the tensor field D

is determined by the algebraic equation

2g(DY X,Z) = g(T̃ (X, Y ), Z) + g(T̃ (X,Z), Y ) + g(T̃ (Y, Z), X)

for all vector fields X, Y , Z. Further, the Riemannian curvature tensor R

is given by the algebraic formula

R(X, Y ) = R̃(X, Y ) + [DX , DY ] + DeT (X,Y )
.

Hence we see that the Riemannian curvature tensor R can be calcu-
lated in a purely algebraic way, using the Lie algebra structure of g, the
decomposition g = m + h and the scalar product 〈 , 〉 on m.

Further, a nonzero vector X ∈ g is called a geodesic vector if the curve
γ(t) = exp(tX)(o) is a geodesic on (G/H, g). The following can be found
in [7] or [4]:

Lemma 1.2. A vector X ∈ g − (0) is a geodesic vector if and only if

〈[X, Y ]m, Xm〉 = 0 for all Y ∈ m,

where 〈 , 〉 is the ad(H)-invariant scalar product on m induced by the

Riemannian scalar product on ToM and the subscripts indicate the corre-

sponding projection g → m.
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Finally, a homogeneous geodesic on a homogeneous Riemannian man-
ifold (M, g) is a geodesic which is an orbit of a one-parameter group of
isometries. In other words, it is a geodesic determined by a geodesic vec-
tor which belongs to the Lie algebra g of the full isometry group I(M, g).

2. The main example

Consider, for each n ≥ 3, a Lie algebra gn of dimension n+1 which is
given, with respect to a basis {X1, . . . , Xn+1}, by the multiplication table

[Xi, Xj ] = 0 for i, j = 1, . . . , n,

[Xn+1, Xi] = aiXi + Xi+1 for 1 ≤ i ≤ n− 1, (1)

[Xn+1, Xn] = anXn,

where a1, . . . , an are arbitrary parameters. Define a scalar product 〈 , 〉 on
gn for which the above basis is orthonormal. The family of Lie algebras
(gn, 〈 , 〉) gives rise to an (n-parameter) family of solvable Lie groups Gn

with a set of invariant Riemann metrics g. Here we can assume that Gn

is always diffeomorphic to the (n + 1)-dimensional Euclidean space.
Our first aim is to prove that, for a specific choice of the parameters

a1, . . . , an, all principal Ricci curvatures of (Gn, g) are distinct and hence
the group Gn acting on itself by the left translations is the identity com-
ponent of the full isometry group I(Gn, g). This is a nontrivial part of our
paper.

The following proposition is a special case of Proposition 1.1 in the
situation where h = (0) and m = g.

Proposition 2.1 ([2], [3], [9]). Let ∇ denote the Levi–Civita con-

nection of (Gn, g) and ∇̃ the canonical connection on Gn (for which all

left-invariant vector fields are parallel). Denote by D the difference tensor

field ∇ − ∇̃ between the both connections. Then the tensor field D is

determined by the algebraic equation

2g(DY X,Z) = −g([X, Y ], Z)− g([X, Z], Y )− g([Y, Z), X) (2)
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for all vector fields X, Y , Z. Further, the Riemannian curvature tensor R

is given by the algebraic formula

R(X,Y ) = [DX , DY ]−D[X,Y ]. (3)

Here we used the fact that the torsion and the curvature of the canon-
ical connection ∇̃ are given by the formulas T̃ (X, Y ) = −[X, Y ], R̃ = 0.
It is obvious that all calculations for determining the curvature tensor R

are now reduced to those in the Lie algebra gn. By a routine calculation
we obtain the following two propositions:

Proposition 2.2. The tensor field D is given on gn, expressed through

the vector fields X1, . . . , Xn+1, as follows:

DXiXj = 0 for i, j ≤ n, |i− j| > 1,

DXiXj =
1
2
Xn+1 for i, j ≤ n, |i− j| = 1,

DXiXi = aiXn+1 for i = 1, . . . , n; (4)

DXiXn+1 = −aiXi − 1
2
(Xi−1 + Xi+1) for 1 < i < n,

DX1Xn+1 = −a1X1 − 1
2
X2,

DXnXn+1 = −anXn − 1
2
Xn−1; (5)

DXn+1Xi =
1
2
(Xi+1 −Xi−1), for 1 < i < n,

DXn+1X1 =
1
2
X2,

DXn+1Xn = −1
2
Xn−1,

DXn+1Xn+1 = 0. (6)

Proposition 2.3. The curvature tensor field R is expressed on gn

through the basic vector fields X1, . . . , Xn+1 as follows:

R(Xi, Xn+1)Xn+1 = −1
4
Xi−2 − aiXi−1 −

(
1
2

+ (ai)2
)

Xi

− ai+1Xi+1 − 1
4
Xi+2,
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R(X1, Xn+1)Xn+1 = −
(

3
4

+ (a1)2
)

X1 − a2X2 − 1
4
X3,

R(X2, Xn+1)Xn+1 = −a2X1 −
(

1
2

+ (a2)2
)

X2 − a3X3 − 1
4
X4

(where one puts X4 = 0 for n = 3),

R(Xn−1, Xn+1)Xn+1 = −1
4
Xn−3 − an−1Xn−2 −

(
1
2

+ (an−1)2
)

Xn−1

− anXn (where one puts X0 = 0 for n = 3),

R(Xn, Xn+1)Xn+1 = −1
4
Xn−2 − anXn−1 +

(
1
4
− (an)2

)
Xn; (7)

R(Xi, Xj)Xk = 0 for i, j, k ≤ n, |i− k| > 1, |j − k| > 1,

R(Xi, Xj)Xn+1 = 0 for i, j ≤ n, |i− j| > 1. (8)

Next, we shall calculate the Ricci tensor S.

Proposition 2.4. We have

S(Xi, Xn+1) = 0 for i = 1, . . . , n, (9)

S(Xn+1, Xn+1) = −n− 1
2

−
n∑

j=1

(aj)2. (10)

Proof. Because S(Xn+1, Xn+1) =
∑n

i=1〈R(Xi, Xn+1)Xn+1, Xi〉, we
get (10) directly from (7). Further, for i ≤ n, S(Xi, Xn+1) =

∑n
j=1×

〈R(Xj , Xi)Xn+1, Xj〉, and according to the second formula of (8), the only
nontrivial terms can be 〈R(Xi−1, Xi)Xn+1, Xi−1〉 and
〈R(Xi+1, Xi)Xn+1, Xi+1〉. A direct check shows that they are both equal
to zero. ¤

Proposition 2.5. We have

S(Xi, Xj) = 0 for i, j ≤ n and |i− j| > 1. (11)

Proof. The proof is routine for |i− j| > 2. It remains to check that
S(Xi, Xi+2) = 0 for all i ≤ n− 2. But due to the first statement of (8) we
have S(Xi, Xi+2) = 〈R(Xi+1, Xi)Xi+2, Xi+1〉+ 〈R(Xi+3, Xi)Xi+2, Xi+3〉+
〈R(Xn+1, Xi)Xi+2, Xn+1〉 where the last two terms coincide if i = n − 2.
The middle term can be written in the form 〈R(Xi+3, Xi+2)Xi, Xi+3〉,
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which is zero according to (8), unless i = n− 2. It remains the sum
〈R(Xi+1, Xi)Xi+2, Xi+1〉+ 〈R(Xn+1, Xi)Xi+2, Xn+1〉 =
−〈DXiDXi+1Xi+2, Xi+1〉 − 〈DXiDXn+1Xi+2, Xn+1〉−
〈D[Xn+1,Xi]Xi+2, Xn+1〉 = 1

4 + 1
4 − 1

2 = 0. ¤
Proposition 2.6.

S(Xi, Xi+1) =
1
2
(ai − ai+1)− 1

2

n∑

j=1

aj for i = 1, . . . , n− 1. (12)

Proof.

S(Xi, Xi+1) =
n∑

j=1,j 6=i,i+1

〈DXjDXiXi+1, Xj〉 − 〈DXiDXn+1Xi+1, Xn+1〉

− 〈D[Xn+1,Xi]Xi+1, Xn+1〉 = −1
2

( i−1∑

j=1

aj +
n∑

j=i+2

aj

)

+
1
2
ai − ai+1 − 1

2
ai. ¤

Proposition 2.7. The diagonal elements of the Ricci tensor are given

by the formulas

S(X1, X1) = −1
2

+ sa1,

S(Xi, Xi) = sai for 2 ≤ i ≤ n− 1,

S(Xn, Xn) =
1
2

+ san,

S(Xn+1, Xn+1) = −n− 1
2

−
n∑

j=1

(aj)2,

(13)

where s = −∑n
j=1 aj .

Proof. We first recall that S(Xj , Xj) =
∑n+1

i=1 〈R(Xi, Xj)Xj , Xi〉 for
all j=1, . . . , n. A routine calculation using (3), (4) and also the notation
s = −∑n

j=1 aj leads to the first three formulas of (13). The last formula
is identical with (10). ¤

Let us denote

q =
1

n(n + 1)
, k =

[
2n + 1

3

] (
the integral part of

2n + 1
3

)
. (14)
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We have n ≥ 3, so k satisfies the inequalities 2 ≤ k ≤ n− 1.

Let us fix the parameters a1, . . . , an as follows:

aj = (−2j + δjk − δj,k+1) qs for j = 1, . . . , n, (15)

where s is a parameter and δij is the Kronecker’s symbol. Then obviously

s = −
n∑

j=1

aj . (16)

From (12), (13) and (15) we obtain

S(Xi, Xi+1) = ((2− δi,k−1 + 2δik − δi,k+1)q + 1)s/2

for i = 1, . . . , n− 1,

S(X1, X1) = −2qs2 − 1/2,

S(Xi, Xi) = (−2i + δik − δi,k+1) qs2 for i = 2, . . . , n− 1,

S(Xn, Xn) = (−2n− δn,k+1) qs2 + 1/2,

S(Xn+1, Xn+1) = −
(

2
3
(2n + 1) + 6q

)
qs2 − n− 1

2
.

(17)

Now we shall prove the basic

Proposition 2.8. For the choice of the parameters aj as in (15) and

for all sufficiently large values of s, the eigenvalues ρi(s) of the Ricci matrix

[S(Xi, Xj)] are all distinct.

Proof. For s → +∞, all diagonal elements of the matrix are of order
s2 and all other elements are of a lower order. Therefore we define matrices
P (s) for all s 6= 0 and a constant matrix Q as follows:

P (s) = [S(Xi, Xj)] / qs2, Q = lim
s→+∞P (s). (18)

The matrix Q is a diagonal matrix. We use (17) to calculate its diagonal
elements:

Qii = −2i + δik − δi,k+1 for i = 1, . . . , n, (19)

Qn+1,n+1 = −2
3
(2n + 1)− 6q = −

(
4n + 2

3
+

6
n(n + 1)

)
/∈ Z, (20)
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where for n = 3 we evaluate Qn+1,n+1 = −31
6 /∈ Z and for n ≥ 4 we

estimate 0 < 6
n(n+1) ≤ 6

20 < 1
3 , so Qn+1,n+1 /∈ Z, too.

We see that all elements Qii (i = 1, . . . , n + 1) of the diagonal matrix
Q are distinct. Consider now the symmetric matrix P̃ (t) = P (1/t). We
see easily that the coefficients of the characteristic polynomial C̃(t, λ) of
P̃ (t) are polynomials with respect to t and hence they are continuous at
t = 0. The roots of the equation C̃(0, λ) = 0 are Qii, and hence all of
them are simple roots, which implies ∂

∂λ C̃(0, λ)
∣∣
λ=Qii

6= 0 for all i. Using

the implicit function theorem, we see that the roots λ̃i(t) of the equation
C̃(t, λ) = 0 are continuous functions of t, and because λ̃i(0) = Qii, they are
all distinct in a neighborhood of t = 0. Hence all values λi(s) = λ̃i(1/s)
are distinct for each sufficiently large s. But the same is valid for the
eigenvalues ρi(s) = qs2λi(s) of the Ricci matrix [S(Xi, Xj)]. ¤

Remark. The choice (15) cannot be simplified to the form aj = −2jqs

because, if 2n + 1 is divisible by 3, then the Qii are not all distinct and
the proof does not work.

We can summarize:

Proposition 2.9. Consider the space (Gn, g) with the parameters

aj as in (15). Then, for any sufficiently large value of s, each isometry

preserving the identity e ∈ Gn can act on the basis {X1, . . . , Xn+1} of

gn = TeGn only as a composition of reflections and hence there is only

finite number of such isometries. Hence Gn acting on itself by the left

translations is the identity component of the full isometry group I(Gn, g).

Corollary 2.10. For the space (Gn, g) as above, if the parameter

s is sufficiently large, then all geodesic vectors are contained in the Lie

algebra gn.

Now, Lemma 1.2 can be applied in the simplified form and we obtain

Theorem 2.11. For the space (Gn, g) as above, if the numbers aj are

given by (15) and if the parameter s is sufficiently large, then all geodesic

vectors X ∈ gn are multiples of the vector Xn+1. Consequently, there is

(up to a parametrization) only one homogeneous geodesic through each

point.
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Proof. Let us denote X =
∑n+1

i=1 xiXi and let us express the condi-
tion of Lemma 1.2 in an explicit form. We can write it as

〈[
n+1∑

i=1

xiXi, Xj

]
,
n+1∑

k=1

xkXk

〉
= 0 for j = 1, . . . , n + 1. (21)

According to (1), this is reduced to the formulas

xn+1

〈
[
Xn+1, Xj

]
,

n∑

k=1

xkXk

〉
= 0 for j = 1, . . . , n, (22)

and 〈[
n∑

i=1

xiXi, Xn+1

]
,

n∑

k=1

xkXk

〉
= 0.

The first equations can be expressed in the form

xn+1(ajxj + xj+1) = 0 for j = 1, . . . , n− 1,

and xn+1anxn = 0.
(23)

According to our choice, all parameters aj are negative and hence nonzero.
Assuming that xn+1 is nonzero, we obtain by induction that all other xj

are zero. Suppose now that xn+1 = 0. Then using the second equation of
(22) we get the following quadratic equation for the components x1, . . . , xn:

n∑

j=1

aj(xj)2 +
n−1∑

k=1

xkxk+1 = 0. (24)

Because all aj are negative constant multiples of s, the equation (24) has
only trivial solution for any sufficiently large value of s. This concludes
the proof of the main result. ¤

By a simple modification of the previous procedure, we can easily
obtain the following

Theorem 2.12. Let (p, q) denote the prescribed signature of a qua-

dratic form in n variables, p + q = n, p > 0, q > 0. Then there exists a

space (Gn, g) and parameters aj (with sufficiently large absolute values)

such that the family of all geodesic vectors X ∈ gn is a disjoint union

of span(Xn+1) − (0) and of a real hypercone (with deleted vertex) in the

orthogonal complement of Xn+1 whose signature is equal to (p, q).
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