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The Weyl tensors

By DEMETER KRUPKA (Brno)

Dedicated to Professor L. Tamássy on his 80th birthday

Abstract. The projections of tensor spaces of types (1, 3), (2, 2), and (1, 4)
over a real, n-dimensional vector space onto their complementary subspaces of
Weyl (i.e. traceless), and Kronecker tensors are considered. The corresponding
trace decomposition formulas providing a basis for an algebraic classification of
these tensor, are discussed.

1. Introduction

In this paper, R denotes the field of real numbers, and E is a real,
n-dimensional vector space. The space of tensors of type (r, s) over E is
denoted by T r

s E. In a (fixed) basis ei of E, we usually denote a tensor
U ∈ T r

s E by its components, i.e., we write U = U j1j2...jr

i1i2...is
.

Let r and s be any positive integers. We define a Weyl tensor to be
any traceless tensor W ∈ T r

s E. We define a Kronecker tensor as a tensor
V ∈ T r

s E, V = V i1i2...ir
j1j2...js

, of the form

V i1i2...ir
j1j2...js

= δi1
j1

V
(1)i2i3...ir
(1)j2j3...js

+ δi1
j2

V
(1)i2i3...ir
(2)j1j3...js

+ · · ·+ δi1
js

V
(1)i2i3...ir
(s)j1j3...js−1

+ δi2
j1

V
(2)i1i3...ir
(1)j2j3...js

+ δi2
j2

V
(2)i1i3...ir
(2)j1j3...js

+ · · ·+ δi2
js

V
(2)i1i3...ir
(s)j1j3...js−1
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+ . . .

+ δir
j1

V
(r)i2i3...ir−1

(1)j2j3...js
+ δir

j2
V

(r)i2i3...ir−1

(2)j1j3...js
+ · · ·+ δir

js
V

(r)i2i3...ir−1r

(s)j1j3...js−1

for some tensors V
(p)
(q) ∈ T r−1

s−1 E, V
(p)
(q) = V

(p)i1i2...ir−1

(q)j1j2...js−1
; the Kronecker tensors

are also called δ-generated. According to the trace decomposition theorem,
every tensor U ∈ T r

s E can be uniquely decomposed into the Weyl (i.e.,
traceless), and Kronecker components. Examples show, however, that for
lower dimensions, the tensors V

(p)
(q) may not be unique. For the general

trace decomposition theory we refer to Krupka [8], [9], and Mikes [10].
The natural trace operation is defined on the basis of duality of vector

spaces, i.e., only in mixed tensor spaces, and does not require any metric
tensor structure on the underlying vector space. In contradistinction to the
metric tensor case (see e.g. Weyl [14], Hamermesh [5], Chapter 10, and
Welsh [13]), the trace operation is invariant with respect to the general
linear group. In this setting, the trace decomposition problem appears
as a problem of the theory of systems of linear equations, or of natural
projectors in mixed tensor spaces [7], rather than a problem of the group
representation theory.

The aim of this note is to review recent results on the trace decompo-
sition of tensors of type (1, 3), (2, 2), and (1, 4) (see [6], [8], [9]). Tensors
of these types appear in differential geometry of Riemann, and Finsler
spaces (curvature tensors and their covariant derivatives), and their trace
decompositions represent a basis for an (algebraic) classification of the
underlying geometric structures. In particular, it turns out that the Weyl
components in these cases coincide with the classical Weyl tensors, char-
acterizing various geometric properties of smooth manifolds endowed with
linear connections (see e.g., Bokan [1], Chern, Chen, Lam [2], Eisen-

hart [3], Gromoll, Klingenberg, Meyer [4], Tamássy, Binh [11],
Thomas [12], Weyl [15]).

2. The Weyl tensors of type (1, 3)

Consider the tensor space T 1
3 E. In general, a tensor U ∈ T 1

3 E has three
traces, the (1, 1)-, (1, 2)-, and (1, 3)-traces. the Ricci tensor of U is defined
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to be the (1, 2)-trace U s
ksm. In the following theorem, we give the basic

trace decomposition formula for tensors of type (1, 3), which defines the
Weyl component of these tensors. The proof, based on an explicit solution
of the trace decomposition equations, can be found in [8]. E denotes a real
vector space of dimension n ≥ 3.

Theorem 1. Let dimE ≥ 3, and let U ∈ T 1
3 E, U = U i

k`m. There

exists a unique Weyl tensor W ∈ T 1
3 E, W = W i

k`m, and unique tensors

P, Q, R ∈ T 0
2 E, P = P`m, Q = Qkm, R = Rk` such that

U i
k`m = W i

k`m + δi
kP`m + δi

`Qkm + δi
mRk`.

These tensors are given by

Pk` =
1

(n2 − 1)(n2 − 4)
(n(n2 − 3)U t

tk` − (n2 − 2)U t
kt`

+ nU t
k`t − 2U t

t`k + nU t
`tk − (n2 − 2)U t

`kt),

Qk` =
1

(n2 − 1)(n2 − 4)
(−(n2 − 2)U t

tk` + n(n2 − 3)U t
kt`

− (n2 − 2)U t
k`t + nU t

t`k − 2U t
`tk + nU t

`kt),

Rk` =
1

(n2 − 1)(n2 − 4)
(nU t

tk` − (n2 − 2)U t
kt` + n(n2 − 3)U t

k`t

− (n2 − 2)U t
t`k + nU t

`tk − 2U t
`kt),

and

W i
k`m = U i

k`m − δi
kP`m − δi

`Qkm − δi
mRk`.

In a series of corollaries, we now compute the Weyl components of
tensors U = U i

k`m, satisfying certain symmetry conditions. The proofs are
easy applications of Theorem 1.

Corollary 1. Let n ≥ 3, and let U ∈ T 1
3 E, U = U i

k`m. Assume that

U i
k`m + U i

km` = 0. (1)

Then there exists a unique Weyl tensor W ∈ T 1
3 E, W = W i

k`m, and unique

tensors P,Q ∈ T 0
2 E, P = P`m, Q = Qkm, such that

U i
k`m = W i

k`m + δi
kP`m + δi

`Qkm − δi
mQk`. (2)
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These tensors are given by

Pk` =
1

(n + 1)(n− 2)
((n− 1)U t

tk` + U t
`tk − U t

kt`),

Qk` =
1

(n2 − 2)(n− 2)
(−(n− 1)U t

tk` + (n2 − n− 1)U t
kt` − U t

`tk),

and

W i
k`m = U i

k`m − 1
(n + 1)(n− 2)

δi
k((n− 1)U t

t`m + U t
mt` − U t

`tm)

− 1
(n2 − 1)(n− 2)

δi
`(−(n− 1)U t

tkm + (n2 − n− 1)U t
ktm − U t

mtk)

+
1

(n2 − 1)(n− 2)
δi
m(−(n− 1)U t

tk` + (n2 − n− 1)U t
kt` − U t

`tk).

Proof. The proof is straightforward. We substitute from (1) to (2),
and then we use Theorem 1 and the identities n3−3n+2 = (n+2)(n−1)2,
n3 +n2−3n−2 = (n+2)(n2−n−1), and n2 +n−2 = (n+2)(n−1). ¤

Remark 1. Corollary 1 describes, in particular, the trace decomposi-
tion of the curvature tensors of linear connections on smooth manifolds;
these tensors satisfy property (1). Note that the δ-components in (2) de-
pends on both the (1, 1)-trace, and (1, 2)-trace of U .

Corollary 2. Let n ≥ 3, and assume that U = U i
k`m satisfies

U i
k`m + U i

km` = 0, U i
k`m + U i

mk` + U i
`mk = 0. (3)

Then there exists a unique Weyl tensor W ∈ T 1
3 E, W = W i

k`m, and unique

tensors P,Q ∈ T 0
2 E, P = P`m, Q = Qkm, such that

U i
k`m = W i

k`m + δi
kP`m + δi

`Qkm − δi
mQk`.

These tensors are given by

Pk` =
1

n + 1
(U t

kt` − U t
`tk),

Qk` =
1

2(n− 1)
(U t

kt` + U t
`tk) +

1
2(n + 1)

(U t
kt` − U t

`tk),
(4)
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and

W i
k`m = U i

k`m − 1
n + 1

δi
k(U

t
`tm − U t

mt`)

− 1
n2 − 1

δi
`(nU t

ktm + U t
mtk) +

1
n2 − 1

δi
m(nU t

kt` + U t
`tk).

(5)

Proof. Using identities (3), we find U t
tk` = −U t

k`t−U t
`tk = U t

kt`−U t
`tk.

Formulas (4), (5) now follow from Theorem 1. ¤

Remark 2. The tensor W = W i
k`m (5) is the Weyl projective curvature

tensor. It follows from Corollary 2 that under the symmetry assumptions
(3), the tensor U = U i

jk` is completely determined by its (1, 2)-trace U t
kt`,

i.e., by the Ricci tensor, and by the Weyl projective curvature tensor.
Note, however, that the Weyl and the Ricci tensors are not sufficient to
determine the trace decomposition (2) in Corollary 1.

Remark 3. Identities (3) are satisfied by the curvature tensor of a
connection without torsion (see e.g. Gromoll, Klingenberg, Meyer

[4]), and by the first Chern connection in Finsler geometry (see Chern,

Chen, Lam [2], Chapter 8).

Corollary 3. Let n ≥ 3, and assume that U = U i
k`m satisfies

U i
k`m + U i

km` = 0, U t
`tk = U t

kt`.

Then there exists a unique Weyl tensor W ∈ T 1
3 E, W = W i

k`m, and unique

tensors P,Q ∈ T 0
2 E, P = P`m, Q = Qkm, such that

U i
k`m = W i

k`m + δi
kP`m + δi

`Qkm − δi
mQk`.

These tensors are given by

Pk` =
n− 1

(n + 1)(n− 2)
U t

tk`, Qk` = − 1
(n + 1)(n− 2)

U t
tk` +

1
n− 1

U t
kt`,

and

W i
k`m = U i

k`m − n− 1
(n + 1)(n− 2)

δi
kU

t
t`m

+ δi
`

(
1

(n + 1)(n− 2)
U t

tkm − 1
n− 1

U t
ktm

)
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− δi
m

(
1

(n + 1)(n− 2)
U t

tk` −
1

n− 1
U t

kt`

)
.

Proof. We use Theorem 1, and the identity n2−n−2=(n− 2)(n+ 1).
¤

Corollary 4. Let n ≥ 3, and assume that U = U i
k`m satisfies

U i
k`m + U i

km` = 0, U i
k`m + U i

mk` + U i
`mk = 0, U t

tk` = 0. (6)

Then there exists a unique Weyl tensor W ∈ T 1
3 E, W = W i

k`m, and a

unique tensor Q ∈ T 0
2 E, Q = Qkm, such that

U i
k`m = W i

k`m + δi
`Qkm − δi

mQk`.

These tensors are given by

Qk` =
1

n− 1
U t

`tk, W i
k`m = U i

k`m − 1
n− 1

(δi
`U

t
mtk − δi

mU t
`tk).

Proof. This follows from Corollary 2. ¤

Remark 4. Conditions (6) are equivalent with

U i
k`m + U i

km` = 0, U i
k`m + U i

mk` + U i
`mk = 0, U t

kt` = U t
`tk.

The third of these conditions means that the Ricci tensor is symmetric.

We now discuss a symmetry condition which appears in Finsler geom-
etry.

Corollary 5. Let dimE ≥ 3, and let U ∈ T 1
3 E, U = U i

k`m. Assume

that

U i
k`m − U i

`km = 0.

Then there exists a unique Weyl tensor W ∈ T 1
3 E, W = W i

k`m, and unique

tensors P,R ∈ T 0
2 E, P = P`m, R = Rk`, such that

U i
k`m = W i

k`m + δi
kP`m + δi

`Pkm + δi
mRk`.

These tensors are given by

Pk` =
1

(n2 − 1)(n + 4)
((n2 + n− 1)U t

kt` + U t
`tk − (n + 1)U t

k`t),
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Rk` =
1

(n− 1)(n + 2)
(−U t

kt` − U t
`tk + (n + 1)U t

k`t),

and

W i
k`m = U i

k`m − 1
(n2 − 1)(n + 4)

× (δi
k((n

2 + n− 1)U t
ktm + U t

mtk − (n + 1)U t
kmt)

− δi
`((n

2 + n− 1)U t
ktm + U t

mtk − (n + 1)U t
kmt))

+
1

(n− 1)(n + 2)
δi
m(U t

kt` + U t
`tk − (n + 1)U t

k`t).

Proof. We use Theorem 1, and the identities n3 − n2 − 3n + 2 =
(n − 2)(n2 + n − 1), n2 − n − 2 = (n − 2)(n + 1), and n3 − 3n − 2 =
(n + 1)2(n− 2). ¤

3. The Weyl tensors of type (2, 2)

Consider the tensor space T 2
2 E. A tensor U ∈ T 2

2 E, U = U ij
k`, has

four traces, the (1, 1)-, (1, 2)-, (2, 1)-, and (2, 2)-traces. In the following
Theorem 2 we recall the trace decomposition formula for tensors of type
(2, 2); this formula defines the Weyl component of a tensor U ∈ T 2

2 E.
The proof of Theorem 2 can be found in [9]. As before, E denotes a real,
n-dimensional vector space such that n ≥ 3.

Theorem 2. Let dimE ≥ 3, and let U ∈ T 2
2 E, U = U ij

k`. There

exists a unique Weyl tensor W ∈ T 2
2 E, W = W ij

k`, unique traceless tensors

P, Q, R, S ∈ T 1
1 E, P = P i

k, Q = Qi
k, R = Ri

k, S = Si
k, and unique numbers

G,H ∈ R such that

U ij
k` = W ij

k` + δi
kP

j
` + δi

`Q
j
k + δj

kR
i
` + δj

`S
i
k + δi

kδ
j
`G + δi

`δ
j
kH.

These tensors are given by

P i
j =

1
n(n2 − 4)

((n2 − 2)U si
sj − nU si

js − nU is
sj + 2U is

js − nδi
jU

st
st + 2δi

jU
st
ts ),

Qi
j =

1
n(n2 − 4)

(−nU si
sj + (n2 − 2)U si

js + 2U is
sj − nU is

js + 2δi
jU

st
st − nδi

jU
st
ts ),
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Ri
j =

1
n(n2 − 4)

(−nU si
sj + 2U si

js + (n2 − 2)U is
sj − nU is

js + 2δi
jU

st
st − nδi

jU
st
ts ),

Si
j =

1
n(n2 − 4)

(2U si
sj − nU si

js − nU is
sj + (n2 − 2)U is

js + 2δi
jU

st
ts − nδi

jU
st
st ),

G =
1

n(n2 − 1)
(nU st

st − U st
ts ),

H =
1

n(n2 − 1)
(−U st

st + nU st
ts ),

and

W ij
k` = U ij

k` − δi
kP

j
` − δi

`Q
j
k − δj

kR
i
` − δj

`S
i
k − δi

kδ
j
`G− δi

`δ
j
kH.

Before going on to special cases, we fix some notation. We denote
by E a real, n-dimensional vector space, endowed with a tensor g of type
(0, 2). g is supposed to be symmetric and regular, but is not necessarily
positive definite. As an application of Theorem 2, we discuss the trace
decomposition of tensors of type (0, 4) on E. Since g allows us to raise and
to lower indices, the trace operation can be applied to the corresponding
tensors of type (2, 2). In a basis ei of E, we write g = gije

i ⊗ ej , where ei

is the dual basis of this one. Then gij = gji and det(gij) 6= 0. As usual, we
denote by gij the components of the inverse matrix to gij ; then gijg

jk = δk
i ,

gij = gji.
We consider tensors V ∈ T 0

4 E, V = Vmjk`, satisfying

Vijk` = −Vij`k, Vijk` + Vi`jk + Vik`j = 0, Vijk` = −Vjik`. (1)

Then V also satisfies
Vijk` = Vk`ij .

We define a tensor U ∈ T 1
3 E, U = U i

jk`, by

U i
jk` = gisVjsk`.

U obviously satisfies

U i
jk` + U i

j`k = 0, U i
jk` + U i

`jk + U i
k`j = 0.
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The Ricci tensor of U ,

Mj` = U s
js` = gstVjst`, (2)

is symmetric, Mj` = gstVjst` = gstV`tsj = M`j . Therefore, the (1, 1)-trace
of U satisfies

U s
sk` = −U s

`sk − U s
k`s = −U s

`sk + U s
ks` = 0.

The scalar
M = gijMij = gijgk`Vik`j = gijU s

isj (3)

is the scalar curvature of V .
The following is a modification of Corollary 4, Section 2 (see Remark 4,

Section 2).

Corollary 1. Every tensor V ∈ T 0
4 E, V = Vmjk`, satisfying properties

(1) admits a unique decomposition

Vrjk` = Wrjk` + gkrQj` − g`rQjk,

such that U i
jk` = griWrjk` is a Weyl tensor. The tensors Qk` and Wrjk`

are determined by

Qk` =
1

n− 1
Mk`, Wijk` = Vijk` − 1

n− 1
(gjkMi` − gj`Mik).

Proof. It follows from Corollary 4, Section 2, that U i
jk` = W i

jk` +
δi
kQj` − δi

`Qjk, where

Qk` =
1

n− 1
U s

`sk =
1

n− 1
Mk`,

W i
jk` = gisVjsk` − 1

n− 1
δi
kMj` +

1
n− 1

δi
`Mjk.

Then

Wijk` = gjsW
s
ik` = Vijk` − 1

n− 1
gjkMi` +

1
n− 1

gj`Mik. ¤

Remark 1. If U = gisVjsk` is the curvature tensor of a Levi–Civita
connection, then W = W i

jk` is the well-known Weyl projective curvature
tensor of U .
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Corollary 2. Every tensor V = T 0
4 E, V = Vmjk`, satisfying properties

(1), admits a unique decomposition

Vrsk` = girgjsW
ij
k` + gkrgisP

i
` − g`rgisP

i
k

− girgksP
i
` + girg`sP

i
k − (g`rgks − gkrg`s)G,

such that the tensors W ij
k`, P i

` are Weyl tensors. The tensors G, P i
` , V ij

k`

are given by

G = − 1
n(n− 1)

M, P i
j = − 1

n− 2
giqMqj +

1
n(n− 2)

δi
jM,

and

W ij
k` = gipgjqVpqk` − δi

kP
j
` + δi

`P
j
k + δj

kP
i
` − δj

`P
i
k + (δi

`δ
j
k − δi

kδ
j
` )G.

Proof. We introduce a tensor T ∈ T 2
2 E, T = T ij

k`, by

T ij
k` = gipU j

pk` = gipgjqVpqk`. (4)

The trace decomposition of T is of the form

T ij
k` = W ij

k` + δi
kP

j
` + δi

`Q
j
k + δj

kR
i
` + δj

`S
i
k + δi

kδ
j
`G + δi

`δ
j
kH, (5)

where the tensors W ij
k`, P j

` , Qj
k, Ri

`, Si
k, G, and H are uniquely determined

by Theorem 2. But by (4), (2), and (3),

T sj
s` = −gjqMq`, T sj

ks = gjqMqk, T is
s` = gipMp`,

T is
ks = −gipMpk, T st

st = −M, T st
ts = M.

In particular, T sj
s` = −T sj

`s = −T js
s` = T js

`s , T st
st = −T st

ts , and we easily get

P i
j = Si

j = −Qi
j = −Ri

j = − 1
n− 2

giqMqj +
1

n(n− 2)
δi
jM,

G = −H = − 1
n(n− 1)

M.

(6)

Consequently,

W ij
k` = T ij

k` − δi
kP

j
` − δi

`Q
j
k − δj

kR
i
` − δj

`S
i
k − δi

kδ
j
`G− δi

`δ
j
kH

= gipgjqVpqk` − δi
kP

j
` + δi

`P
j
k + δj

kP
i
` − δj

`P
i
k + (δi

`δ
j
k − δi

kδ
j
` )G.

(7)



The Weyl tensors 457

Formulas (6), (7) completely determine the trace decomposition (5). We
have

T ij
k` = W ij

k` + δi
kP

j
` − δi

`P
j
k − δj

kP
i
` + δj

`P
i
k − (δi

`δ
j
k − δi

kδ
j
` )G.

To conclude the proof, it is now sufficient to compute the induced decom-
position of the tensor Vrsk` = girgjsT

ij
k`. ¤

Remark 2. We have more possibilities of raising the subscripts of V =
Vmjk` in (4). However, the components of tensors which arise in this way
are expressible as linear combinations of (4).

Remark 3. Denote in Corollary 2,

Cijk` = girgjsW
rs
k` .

Since

gisP
s
j = − 1

n− 2
gisg

sqMqj +
1

n(n− 2)
gisδ

s
jM

= − 1
n− 2

Mij +
1

n(n− 2)
gijM,

we get by a routine calculation

Cijk` = Wrsk` +
1

n− 2
(gkrWs` − g`rWsk − gksWr` + g`sWrk)

+
1

(n− 1)(n− 2)
g`rgksW − 1

(n− 1)(n− 2)
gkrg`sW.

This is the well-known expression for the Weyl conformal curvature tensor
of a metric tensor g = gij .

4. The Weyl tensors of type (1, 4)

In this section, we consider the tensor space T 1
4 E. In Theorem 3 we

give the trace decomposition formula for tensors U ∈ T 1
4 E, U = U i

jk`m,
which defines the Weyl component of U . The formula has been derived by
Kovár with the help of Maple (see [6]). For the sake of uniqueness of the
trace decomposition in this case, we have to assume that dimE = n ≥ 4.
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Since the trace decomposition formula in this case is very long, we first
introduce some abbreviations. We set

A = (n2 − 9)(n2 − 4)(n2 − 1),

B = n6 − 11n4 + 22n2 − 6,

C = n4 − 9n2 + 10, D = n4 − 6n2 + 3,

E = n2 + 1, F = n2 − 4, G = 2n2 − 3.

Theorem 3. Let dimE ≥ 4, and let U ∈ T 1
4 E, U = U i

jk`m. There

exists a unique Weyl tensor W ∈ T 1
4 E, W = W i

jk`m and unique tensors

P, Q, R, S ∈ T 0
3 E, P = Pk`m, Q = Qk`m, R = Rk`m, S = Sk`m, such that

U i
jk`m = W i

jk`m + δi
jPk`m + δi

kQj`m + δi
`Rjkm + δi

mSjk`.

These tensors are given by

Pk`m =
1
A

(B

n
U s

sk`m +
3E

n
(U s

s`mk + U s
smk`)− 2F (U s

s`km + U s
sm`k + U s

skm`)
)

+
1
A

(
−CU s

ks`m +
D

n
(U s

`skm + U s
ms`k)− E(U s

`smk + U s
msk`) +

2G

n
U s

ksm`

)

+
1
A

(
−CU s

`ksm +
D

n
(U s

k`sm + U s
mks`)− E(U s

m`sk + U s
kms`) +

2G

n
U s

`msk

)

+
1
A

(
−CU s

mk`s +
D

n
(U s

`kms + U s
km`s)− E(U s

k`ms + U s
`mks) +

2G

n
U s

m`ks

)
,

Qk`m=
1
A

(
−CU s

sk`m+
D

n
(U s

s`km+U s
sm`k)−E(U s

s`mk−U s
smk`)+

2G

n
U s

skm`

)

+
1
A

(B

n
U s

ks`m +
3E

n
(U s

`smk + U s
msk`)− 2F (U s

`skm + U s
ms`k + U s

ksm`)
)

+
1
A

(
−CU s

k`sm +
D

n
(U s

`ksm + U s
kms`)− E(U s

`msk + U s
mks`) +

2G

n
U s

m`sk

)

+
1
A

(
−CU s

km`s +
D

n
(U s

k`ms + U s
mk`s)− E(U s

`kms + U s
m`ks) +

2G

n
U s

`mks

)
,

Rk`m=
1
A

(
−CU s

s`km+
D

n
(U s

sk`m+U s
s`mk)−E(U s

sm`k+U s
skm`)+

2G

n
U s

smk`

)

+
1
A

(
−CU s

ks`m +
D

n
(U s

`skm + U s
ksm`)− E(U s

`smk + U s
msk`) +

2G

n
U s

ms`k

)

+
1
A

(B

n
U s

k`sm +
3E

n
(U s

`msk + U s
mks`)− 2F (U s

`ksm + U s
m`sk + U s

kms`)
)
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+
1
A

(
−CU s

k`ms −E(U s
`mks + U s

mk`s)+
D

n
(U s

m`ks + U s
km`s) +

2G

n
U s

`kms

)
,

Sk`m=
1
A

(
−CU s

s`mk+
D

n
(U s

s`km+U s
skm`)−E(U s

sk`m+U s
smk`) +

2G

n
U s

sm`k

)

+
1
A

(
−CU s

ksm` +
D

n
(U s

ks`m + U s
`smk)− E(U s

`skm + U s
ms`k) +

2G

n
U s

msk`

)

+
1
A

(
−CU s

k`sm +
D

n
(U s

m`sk + U s
kms`)−E(U s

`msk + U s
mks`)+

2G

n
U s

`ksm

)

+
1
A

(B

n
U s

k`ms +
3E

n
(U s

`mks + U s
mk`s)− 2F (U s

`kms + U s
m`ks + U s

km`s)
)
,

and

W i
jk`m = U i

jk`m − δi
jPk`m − δi

kQj`m − δi
`Rjkm − δi

mSjk`.

Proof. To prove Theorem 3, we solve the trace decomposition equa-
tions

U i
jk`m = W i

jk`m + δi
jPk`m + δi

kQj`m + δi
`Rjkm + δi

mSjk`,

W s
sk`m = 0, W s

js`m = 0, W i
jksm = 0, W i

jk`s = 0.
(1)

¤

Remark 1. If n ≤ 3, then the trace decomposition equations (1) have
more solutions. For n = 3, all solutions are described in [6].

Remark 2. Theorem 3 provides a basis for an algebraic (as well as
geometric) classification of the tensors, arising as the covariant derivative
of curvature tensors.
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