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Variational metric structures
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Abstract. Relations between Lagrangian structures, metric structures, and
semispray connections on a manifold are investigated. Generalized Finsler struc-
tures (called quasifinslerian) are studied, coming from integrable time, position
and velocity dependent metrics. For every quasifinslerian metric one has a nat-
urally associated semispray connection, called canonical connection, and a global
Lagrangian, called kinetic energy. One obtains the most general form of metri-
cal connections and related equations for geodesics, which at the same time are
variational. As expected, canonical connections generalize the Levi–Civita con-
nection and the connections appearing in Finsler geometry. Relations between
quasifinslerian and Lagrange spaces, as well as between metrizability of semispray
connections and the existence of variational integrators for second-order ordinary
differential equations are also discussed.

1. Introduction

Metric structures on a manifold, such as (pseudo)-Riemannian or Fin-
sler structures, are known to be closely connected with the calculus of
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variations. Indeed, geodesic curves in Riemannian or Finsler geometry are
extremals of a variational functional defined by a Lagrangian

L =
1
2
gij ẋ

iẋj , (1.1)

where, in the case of a Finsler metric, the gij ’s are functions on the tan-
gent space TM of a manifold M , satisfying the following integrability and
homogeneity conditions, respectively:

∂gij

∂ẋk
=

∂gik

∂ẋj
,

∂gij

∂ẋk
ẋk = 0. (1.2)

This fact motivated studies on metric properties of Lagrangian structures,
as well as studies on variationality properties of connections appearing in
Riemannian and Finsler geometry. In these directions important results
were achieved by M. Anastasiei [1], I. Anderson and G. Thomp-

son [3], M. Crampin, W. Sarlet, E. Mart́ınez, G. B. Byrnes

and G. E. Prince [5], J. Grifone [8], J. Grifone and Z. Muzsnay

[9], J. Klein [12], [13], D. Krupka and A. Sattarov [16], O. Krup-

ková [17], [19], R. Miron [24], [25], R. Miron and G. Atanasiu [27],
A. Rapcsák [30], J. Szilasi and Z. Muzsnay [35], L. Tamássy [36]–[39],
and others (see also P. L. Antonelli and R. Miron [2], J. Grifone

and Z. Muzsnay [10], O. Krupková [20]).
In this paper we are interested in metric structures connected with

systems of second order ordinary differential equations

d2ci

dt2
= Γi

(
t, c(t),

dc

dt

)
, i = 1, 2, . . . , m, (1.3)

for smooth curves c : R → M (where M is a smooth manifold of dimension
m), defined on an open neighborhood of zero in R. Geometrically, such
systems of ODE’s have the meaning of equations for geodesics of certain
non-linear connections, called semispray connections, defined to be sec-
tions Γ : R×TM → R×T 2M , where T 2M ⊂ TTM denotes the manifold
of 2-jets of curves defined on a neighborhood of zero into M . In this sense
semispray connections can be viewed as a generalization of connections
appearing in Riemannian or Finsler geometry, as well as of sprays on tan-
gent bundles. They are closely related with Lagrangian structures, since
any regular Lagrangian on R × TM gives rise to a semispray connection
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Γ : R × TM → R × T 2M . Hence, it is interesting to investigate relations
between Lagrangian structures, metric structures and connections from a
general point of view. The aim of this paper is to review some recent
results in this direction with an emphasis on unifying aspects applying to
Riemannian and Finsler geometry, calculus of variations, and applications
in physics. The exposition closely follows that of refs. [16]–[19].

We consider a general concept of a metric on a manifold M , as a regu-
lar symmetric fibered morphism g : R×TM → T 0

2 M over idM , where T 0
2 M

denotes the bundle of all tensors of type (0, 2) over M . Obviously, such a
metric depends on time, positions and velocities. A usual (Riemannian or
pseudo-Riemannian) metric, as well as Finsler metrics represent particu-
lar cases. Requiring ‘homogeneity’ one obtains a class of metrics which is
studied in a generalized Finsler geometry. Another interesting class, gen-
eralizing Finsler spaces, appears when ‘integrability’ is required. We call a
manifold M endowed with an integrable metric g a quasifinslerian manifold
(semi-finslerian in [19]). In this case, as discovered in [19], every metric g

has a unique associated semispray connection, called canonical connection.
This connection is variational in the sense that there exists a canonical
global Lagrangian λ such that the (covariant) equations for geodesics of
the canonical connection coincide with the Euler–Lagrange equations of λ.
Thus, every quasifinslerian manifold is a Lagrange space in the sense of
Miron. On the other hand, different Lagrange spaces may give rise to the
same quasifinslerian structure. We provide a characterization of equivalent
Lagrange spaces and their associated semispray connections with respect
to the canonical connection.

Another remarkable feature concerning relation between quasifinsle-
rian structures and Lagrange spaces concerns global aspects. Namely, in
the calculus of variations one often has to consider not a ‘true’ Lagrange
space, given by a global Lagrangian, but rather a class of local Lagrangians
giving rise to a ‘global dynamics’. However, also in this case there is a global
quasifinslerian structure, meaning that such a class of local Lagrangians
defines a global metric and the corresponding global canonical connection
[19]. From the point of view of physics this means that to every Lagrangian
system (in this general sense) there corresponds a unique global canoni-
cal quasifinslerian structure, having the physical meaning of a free particle
(or a kinetic energy) for the arising quasifinslerian manifold. At the same
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time the semispray connection of the Lagrangian system is uniquely de-
composed into the canonical connection, and a soldering form, having the
meaning of a force (giving a potential energy term in the Lagrangian).

Existence of a canonical connection naturally leads to a classification
of semispray connections on a quasifinslerian manifold [19]. This, however,
is closely related with the question of metrizability of connections as well
as with the problem of variational integrators for second-order differential
equations (see e.g. [3], [5], [6], [10], [19], [31], and many others). Applying
the new point of view it turns out that metrizability means almost (but
not exactly) the same as variationality: metrizable semispray connections
are variational, and variational semispray connections express as a sum of
a metrizable (canonical) connection and a potential soldering form.

2. Notations and preliminaries

Throughout the paper, manifolds and mappings are smooth, and sum-
mation over repeated indices is understood. We denote by T the tangent
functor, Jr the r-jet prolongation functor, id the identity mapping, ∗ the
pull-back, d the exterior derivative, iξ the contraction and ∂ξ Lie derivative
by a vector field ξ.

Let π : Y → X be a fibered manifold, dimX = 1, dimY = m + 1,
and π1 : J1Y → X and π1,0 : J1Y → Y natural projections. A mapping
γ : X → Y defined on an open subset of X is called a section of π if
π ◦ γ = id. The first prolongation of γ is a section J1γ of π1. A vector
field ξ on J1Y is said to be π1-vertical (resp. π1,0-vertical) if Tπ1.ξ = 0
(resp. Tπ1,0.ξ = 0). A q-form η on J1Y is called π1-horizontal (resp. π1,0-
horizontal), if iξη = for every π1-vertical (resp. π1,0-vertical) vector field
ξ on J1Y . η is called contact, if J1γ∗ η = 0 for every section γ of π. A
contact π1,0-horizontal q-form η is called 1-contact, if for every π1-vertical
vector field ξ on J1Y , the form iξη is π1-horizontal; η is called k-contact,
2 ≤ k ≤ q, if iξη is (k−1)-contact. For every q-form on Y there is a unique
decomposition

π∗1,0η = η0 + η1 + · · ·+ ηq, (2.1)

where η0 is a π1-horizontal form, and ηi, 1 ≤ i ≤ q, are i-contact forms on
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J1Y . We set hη = η0, piη = ηi, and call it the horizontal and i-contact
part of η, respectively. In particular, for a 1-form ρ and a 2-form α we
have

π∗1,0ρ = hρ + p1ρ, π∗1,0α = p1α + p2α. (2.2)

The ideal of contact forms on J1Y is generated by local contact forms ωi

and dωi, 1 ≤ i ≤ m, where (in fibered coordinates denoted by (t, xi, ẋi))

ωi = dxi − ẋidt. (2.3)

For more details on jet manifolds, calculus of horizontal and contact
forms, semispray connections and Lagrangian structures, used throughout
the paper, we refer e.g. to D. Krupka [14], [15], O. Krupková [20],
L. Mangiarotti and M. Modugno [21], D. J. Saunders [31], [32] and
A. Vondra [41].

3. Second order ordinary differential equations
on manifolds

First of all, let us recall a geometric model for a system of second
order ordinary differential equations of type (1.3). To do this, it is better
to work with graphs of curves into M , rather than the curves themselves.
This means that we shall consider a fibered manifold π : R × M → R,
where M is an m-dimensional smooth manifold, and π is the first canonical
projection. A curve c : R → M , defined in a neighborhood of 0 ∈ R, will
then be represented by its graph γ : R 3 t → γ(t) = (t, c(t)) ∈ R × M ,
which is a section of the fibered manifold π. For the first and second jet
prolongation of π, i.e. the fibered manifolds π1 : J1(R × M) → R and
π2 : J2(R × M) → R, respectively, it holds J1(R × M) ≈ R × TM and
J2(R × M) ≈ R × T 2M , where T 2M ⊂ TTM denotes the manifold of
2-velocities, i.e. 2-jets of curves into M .

On R×M we use charts adapted to the product structure, i.e. coordi-
nates of the form (t, xi), 1 ≤ i ≤ m, where t is a global coordinate on R

and (xi) are coordinates on M . In this case the transformation formulas
simply read

t̄ = t, x̄i = x̄i(x1, . . . , xm), 1 ≤ i ≤ m, (3.1)
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i.e., the “time” and “space” coordinates transform independently. Associ-
ated coordinates on R× TM and R× T 2M are denoted by (t, xi, ẋi) and
(t, xi, ẋi, ẍi), respectively, and the transformation rules are given by

˙̄xi =
∂x̄i

∂xk
ẋk, ¨̄xi =

∂2x̄i

∂xj∂xk
ẋj ẋk +

∂x̄i

∂xk
ẍk. (3.2)

In what follows, solely charts of this kind are considered.
Any section γ of the fibered manifold π (graph of a curve into M) can

be prolonged to a section J1γ of the fibered manifold R × TM , and J2γ

of R × T 2M . If γ(t) = (t, c(t)) then J1γ(t) = (t, c(t), ċ(t)) and J2γ(t) =
(t, c(t), ċ(t), c̈(t)).

A semispray connection on π is a (local) section Γ of the fibered man-
ifold π2,1 : R × T 2M → R × TM . Semispray connections are a kind of
the so-called jet connections, or Ehresmann connections, representing a
generalization of the classical concept of a linear connection on a manifold
(therefore, they are also called “nonlinear connections”). In coordinates
the definition π2,1 ◦ Γ = idR×TM of a semispray connection Γ reads

t ◦ Γ = t, xi ◦ Γ = xi, ẋi ◦ Γ = ẋi, ẍi ◦ Γ = Γi. (3.3)

The functions Γi(t, xk, ẋk) are called components of Γ. Note that under
coordinate transformations they transform like the coordinates ẍi.

A (local) section γ of π is called a geodesic (or a path) of a semispray
connection Γ if it satisfies the equation

Γ ◦ J1γ = J2γ. (3.4)

In coordinates this turns out to be a system of m = dimM second order
ordinary differential equations

d2ci

dt2
= Γi

(
t, ck(t),

dck

dt

)
, 1 ≤ i ≤ m, (3.5)

for (the components of) curves R 3 t → c(t) ∈ M .
There is a number of geometric objects which can be identified with

a semispray connection Γ. Namely, it is a distribution HΓ on R × TM ,
spanned by the (global) vector field

DΓ =
∂

∂t
+ ẋi ∂

∂xi
+ Γi ∂

∂ẋi
, (3.6)
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or (equivalently) annihilated by 2m (local) one-forms

ωi = dxi − ẋidt, ω̇i
Γ = dẋi − Γidt. (3.7)

Note that T (R × TM) = HΓ ⊕ V π1 (meaning that HΓ is a horizontal
distribution, i.e. complementary to the bundle V π1 of π1-vertical vectors).
Moreover, integral sections of the distribution HΓ coincide with geodesics
of Γ. Next, it is the horizontal form hΓ of Γ, which is a projectable (onto
identity) vector-valued one-form on R× TM , defined by

hΓ = DΓ ⊗ dt, (3.8)

or the “complementary” vector-valued one form, the vertical form of Γ,

vΓ = I − hΓ =
∂

∂xi
⊗ ωi +

∂

∂ẋi
⊗ ω̇i

Γ, (3.9)

where I denotes the identity vector-valued one-form. We can see that
HΓ = Im hΓ = ker vΓ.

The covariant differential of a vector valued p-form η with respect to
Γ is a vector-valued (p + 1)-form defined by

dΓη = [hΓ, η], (3.10)

where [ , ] is the Frölicher–Nijenhuis bracket (see [33, p. 81]).
There is an important relation between semispray connections and

π1,0-vertical-valued π1-horizontal one-forms on R × TM , which are called
soldering forms: namely, soldering forms have the meaning of ‘deforma-
tions’ or ‘differences’ of connections. More precisely, if Γ is a semispray con-
nection and s is a soldering form then the section Γ′ given by hΓ′ = hΓ + s

is another semispray connection. In coordinates,

s = si ∂

∂ẋi
⊗ dt, si = Γ′i − Γi. (3.11)

A semispray connection Γ : R × TM → R × T 2M is called time-
independent or autonomous if there exists a section Γ̃ of the fibered man-
ifold T 2M → TM such that the following diagram is commutative:

R× T 2M
p2−−−−→ T 2MxΓ Γ̃

x
R× TM

p2−−−−→ TM

(3.12)
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(p2 denotes the second canonical projection). This means that the hor-
izontal distribution HΓ is projectable onto TM (i.e. T p2 .DΓ is a vector
field on TM), or, equivalently, the components Γi of Γ do not depend on t.

4. Dynamical forms

A 2-form E on R × T 2M is called a dynamical form if it is 1-contact
and π2,0-horizontal. A section γ of π is called a path of E if

E ◦ J2γ = 0. (4.1)

In coordinates one has E = Ei(t, xk, ẋk, ẍk) dxi ∧ dt and γ(t) = (t, ck(t)),
1 ≤ k ≤ m, hence equation (4.1) represents a system of m second order
ordinary differential equations,

Ei

(
t, ck(t),

dck

dt
,
d2ck

dt2

)
= 0, 1 ≤ i ≤ m. (4.2)

Comparing these equations with equations for the geodesics of a semispray
connection (3.5), it turns out that equations for paths of dynamical forms
correspond to general systems of m SODE’s, while equations for gedesics
of semispray connections cover only those equations which are explicitly
solved with respect to the second derivatives.

Throughout this paper we restrict ourselves to dynamical forms with
components affine in the second derivatives, i.e., of the form

Ei = Ai(t, xk, ẋk)− gij(t, xk, ẋk)ẍj . (4.3)

(Note that the property of the Ei’s to be affine in the second derivatives
is well defined over overlapping adapted charts.) We denote the module
of dynamical forms on R × T 2M , with components affine in the second
derivatives, over the ring of functions on R× TM by Daf(R× T 2M).

A semispray connection Γ : R × TM → R × T 2M is called associated
with a dynamical form E ∈ Daf(R× T 2M) if

Γ∗E = 0. (4.4)

Apparently, a dynamical form E can generally possess more associated
semispray connections. E is called regular if equation (4.4) has a unique
solution Γ.
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Proposition 4.1. E ∈ Daf(R×T 2M) is regular if and only if at each

point of R× TM

det(gij) 6= 0. (4.5)

Proof. Writing equation (4.4) in coordinates, we get at each point
x ∈ R×TM the following system of m linear non-homogeneous equations
for the components Γj of Γ:

Ai − gijΓj = 0. (4.6)

These equations have a unique solution (Γ1, . . . , Γm) if and only if the
matrix g = (gij) is regular at x. In this case,

Γi = gikAk, (4.7)

where (gik) is the inverse matrix to g. ¤

Local uniqueness of the solution of (4.4) in the regular case immedi-
ately gives us a global solution:

Proposition 4.2. If E is a global (i.e. defined on R × T 2M) regular

dynamical form then the connection Γ given by (4.4) is a global section of

the fibered manifold R× T 2M → R× TM .

In view of the above, equations for paths of a regular dynamical form
E can be regarded as a ‘covariant form’ of equations for geodesics of a
semispray connection Γ.

5. Lagrangian systems

Let us consider a fibered manifold π : R × M → R and its r-jet
prolongation πr : Jr(R×M) → R, r ≥ 1. Note that Jr(R×M) ≈ R×T rM ,
where T rM is the manifold of r-jets of curves from a neighborhood of
0 ∈ R into M . A local Lagrangian of order r is defined to be a horizontal
1-form λ on an open set W ⊂ R × T rM . Since λ = Ldt, where t is
a global coordinate on R, a Lagrangian can equivalently be given by a
function L on W . The (unique) 1-form θλ such that hθλ = λ, and p1dθλ

is a dynamical form, is called the Cartan form of λ. The forms dθλ and
Eλ = p1dθλ are called the Cartan 2-form and the Euler–Lagrange form
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of the Lagrangian λ, respectively. A Lagrangian λ is called global if W =
R× T rM . For r = 1 one has L = L(t, xi, ẋi)dt,

θλ = Ldt +
∂L

∂ẋi
(dxi − ẋidt) = Ldt +

∂L

∂ẋi
ωi, (5.1)

and Eλ = Ei(L)ωi ∧ dt = Ei(L)dxi ∧ dt, where

Ei(L) =
∂L

∂xi
− d

dt

∂L

∂ẋi
(5.2)

are the Euler–Lagrange expressions of λ.
Two Lagrangians λ1 and λ2 are called equivalent if their Euler–Lag-

range forms coincide (up to a possible projection). A Lagrangian is called
trivial if Eλ = 0. Apparently, two Lagrangians are equivalent if and only
if they differ by a trivial Lagrangian.

Let E be a dynamical form on R×T 2M . E is called locally variational,
if for every point x ∈ R× T 2M there exists a neighborhood U and a local
Lagrangian λ = Ldt such that E|U = Eλ. This means that on U , the
components Ei of E coincide with the Euler–Lagrange expressions of L.
Hence, for locally variational dynamical forms equations for paths (4.1)
(resp. (4.2)) are Euler–Lagrange equations. E is called globally variational
if E = Eλ where λ is a global Lagrangian. It is known that local variation-
ality does not imply global variationality, and that obstructions for global
variationality are determined by the topology of M .

We have an important theorem expressing a close connection between
variational and closed 2-forms:

Theorem 5.1 ([18]). Let E be a dynamical form on R × T 2M . The

following conditions are equivalent:

(1) E is locally variational.

(2) In every adapted chart, the components Ei of E satisfy the following

conditions:

∂Ei

∂ẍk
− ∂Ek

∂ẍi
= 0,

∂Ei

∂ẋk
+

∂Ek

∂ẋi
− 2

d

dt

∂Ek

∂ẍi
= 0,

∂Ei

∂xk
− ∂Ek

∂xi
+

d

dt

∂Ek

∂ẋi
− d2

dt2
∂Ek

∂ẍi
= 0.

(5.3)
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(3) There exists a unique closed 2-form α on R×TM such that E = p1α.

For a proof we refer to [18] (see also [20]). Formulas (5.3) are called
Helmholtz conditions (first obtained in [11], [23]). It is easy to see that
they imply ∂2Ei/∂ẍj∂ẍk = 0, i.e. E ∈ Daf(R × T 2M). Using expression
(4.3) for the Ei’s we arrive at an equivalent form of these conditions, as
follows:

gik = gki,
∂gij

∂ẋk
=

∂gik

∂ẋj
, (5.4)

∂Ai

∂ẋk
+

∂Ak

∂ẋi
+ 2

d̄gik

dt
= 0,

∂Ai

∂xk
− ∂Ak

∂xi
=

1
2

d̄

dt

(
∂Ai

∂ẋk
− ∂Ak

∂ẋi

)
, (5.5)

where d̄/dt = ∂/∂t + ẋi∂/∂xi is the ‘reduced’ total derivative operator.
The formula for α reads

α = Eiω
i ∧ dt +

1
4

(
∂Ei

∂ẋk
− ∂Ek

∂ẋi

)
ωi ∧ ωk +

∂Ei

∂ẍk
ωi ∧ ω̇k

= Aiω
i ∧ dt +

1
4

(
∂Ai

∂ẋk
− ∂Ak

∂ẋi

)
ωi ∧ ωk − gikω

i ∧ dẋk.

(5.6)

A closed two-form α such that p1α is a dynamical form is called a Lepagean
two-form.

The above theorem has several significant consequences. First, for any
Lagrangian λ (of any order) for E, the Cartan 2-form dθλ is projectable
onto an open set W ⊂ R×TM , and α|W = dθλ. Next, an appropriate ver-
sion of the Poincaré lemma leads to an explicit construction of Lagrangians
for a locally variational form E. Indeed, if (locally) α = dρ then λ = hρ is
a local Lagrangian for E. With help of the contact homotopy operator A

(see [15]) one obtains ρ = Aα and λ = hAα = Ap1α. In coordinates this
appears to be the celebrated Tonti–Vainberg–Volterra formula

L = xi

∫ 1

0
(Ei ◦ χ)du, (5.7)

(cf. [40]), where (for an appropriate open set U ⊂ R× T 2M)

χ : [0, 1]× U 3 (u, (t, xi, ẋi, ẍi)) → (t, uxi, uẋi, uẍi) ∈ U. (5.8)

Formula (5.7) gives a second order Lagrangian affine in the second deriva-
tives (since the Ei’s are affine in the second derivatives). It can be shown,
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however, that this Lagrangian is locally equivalent to a first order one.
This means that second order locally variational forms correspond to first
order Lagrangian systems.

Theorem 5.1 also gives that a Lagrangian is trivial if and only if L =
df/dt for a function f (indeed, Eλ = 0 means that α = dρ = 0, i.e. ρ = df ;
conversely L = df/dt implies θλ = df , i.e. Eλ = p1dθλ = 0).

Note that the above theorem provides a bijective correspondence be-
tween locally variational forms and Lepagean two-forms. In view of this
result we may state the following definition.

Definition 5.2 ([18]). By a first-order Lagrangian system on a fibered
manifold π : R×M → R we mean a locally variational form E on R×T 2M ,
or equivalently, a Lepagean two-form on R× TM .

By this definition, a first-order Lagrangian system is understood to
be the class of all equivalent Lagrangians (not as a single global first-
order Lagrangian, as usual). The equivalence class contains generally local
Lagrangians of all finite orders ≥ 1 (a global Lagrangian need not exist).

Consider the vector field ξt = ∂/∂t on R, which is the (global) gener-
ator of the 1-parameter group of transformations Ta : R 3 t → t + a ∈ R

(called translations). It can be naturally lifted to R×M and to its prolon-
gations. A Lagrangian system is called time-independent, or autonomous
if ξt is a symmetry of the Euler–Lagrange form E, i.e., ∂ξtE = 0. In
coordinates,

∂Ei

∂t
= 0, or equivalently,

∂Ai

∂t
= 0,

∂gij

∂t
= 0 (5.9)

for all i, j. This implies that there exists a family of equivalent local
time-independent first-order Lagrangians for E (however, time-dependent
Lagrangians do exist, as well).

6. Variational metric structures

Denote by τ0
2 : T 0

2 M → M the bundle of all tensors of type (0, 2)
over M . A morphism g : R × TM → T 0

2 M between the fibered manifolds
R × TM → M and T 0

2 M → M over the identity of M is called regular
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(resp. symmetric) if for every x ∈ M , all the tensors gx ∈ (τ0
2 )−1(x) are

regular (resp. symmetric). Every regular and symmetric morphism g will
be called an M -pertinent metric on R × TM . Thus, g can be thought
of as a ‘time, space and velocity dependent metric on M ’. We denote by
M(R× TM) the set of M -pertinent metrics on R× TM .

g ∈M(R×TM) is called projectable onto TM (resp. M), if there is a
fibered morphism g̃ : TM → T 0

2 M over idM (resp. a metric ĝ on M), such
that the following diagram commutes:

R× TM
g−−−−→ T 0

2 My
yid

TM
g̃−−−−→ T 0

2 M

resp.

R× TM
g−−−−→ T 0

2 My
yid

M
ĝ−−−−→ T 0

2 M

Hence, g̃ is a ‘space and velocity dependent metric on M ’, while ĝ is a
‘usual metric’. A projectable (onto TM or M) M -pertinent metric g on
R× TM is also called time-independent.

Theorem 6.1 ([9]). Let Γ : R × TM → R × T 2M be a semispray

connection. There arises a mapping DΓ : M(R × TM) → M(R × TM)
defined by the formula

(DΓg)ij = DΓgij +
1
2

(
gik

∂Γk

∂ẋj
+ gjk

∂Γk

∂ẋi

)
. (6.1)

Proof. It is sufficient to check the transformation properties of DΓg

under a change of adapted coordinates. This is, however, a routine calcu-
lation (for details see [19]). ¤

The operator DΓ can be in a straightforward way extended to mor-
phisms t : R × TM → T r

s M over idM , where T r
s M → M is the bundle

of r-times contravariant and s-times covariant tensors over M . It will be
called Γ-derivative. Indeed, DΓ is defined to be the Lie derivative of a
morphism t with respect to the vector field DΓ, spanning the horizontal
distribution HΓ of the semispray connection Γ. Hence,

DΓt(z) =
( d

du
(φΓ

u
∗
t)(z)

)
u=0

, (6.2)

where {φΓ
u} denotes the local one-parameter group related with DΓ.
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Definition 6.2. Let g be an M -pertinent metric on R×TM . A semis-
pray connection Γ : R× TM → R× T 2M is called g-compatible if

DΓg = 0. (6.3)

Denote by S(R×TM) and D(R×TM) the module of soldering forms
and dynamical forms on R×TM , respectively. If M is a manifold endowed
with a metric g ∈M(R× TM) then there is a canonical isomorphism

Fg : S(R× TM) 3 s → Fg(s) = Φ ∈ D(R× TM) (6.4)

of modules. It is defined in each adapted chart on R×M by the formula

Φi = gijs
j . (6.5)

With the help of this isomorphism we can identify soldering forms with
first-order dynamical forms.

To a given M -pertinent metric g on R×TM and a semispray connec-
tion Γ : R×TM → R×T 2M one has a unique associated regular dynamical
form E on R× T 2M such that

Ei = gij(Γj − ẍj). (6.6)

There is an important class of metrics generated by Lagrangian systems
(cf. Definition 5.2).

Proposition 6.3. Let E be a locally variational form on R × T 2M .

If E is regular then

gij = −∂Ei

∂ẍj
, 1 ≤ i, j ≤ m, (6.7)

where Ei are components of E, is an M -pertinent metric on R× TM .

Proof. The matrix (gij) is regular since E is regular, and symmetric,
since E satisfies the Helmholtz conditions (cf. (5.4)). It remains to check
the transformation properties of the functions gij . Consider two overlaping
charts (xi) and (x̄i) on M . Then in the associated charts it holds E =
Eidxi ∧ dt = Ēidx̄i ∧ dt, hence

Ēi =
dxk

dx̄i
Ek, (6.8)
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and

ḡij = −∂Ēi

∂ ¨̄xj
= −dxk

dx̄i

∂Ek

∂ ¨̄xj
= −dxk

dx̄i

dxl

dx̄j

∂Ek

∂ẍl
=

dxk

dx̄i

dxl

dx̄j
gkl, (6.9)

proving that formula (6.7) defines a (global) M -pertinent metric on
R× TM . ¤

As it is clear from formula (6.7), the metric g does not depend on the
choice of a particular Lagrangian for E. However, g can be expressed by
means of Lagrangians: For example, if L is (any) first-order Lagrangian
for E, it holds

gij =
∂2L

∂ẋi∂ẋj
, (6.10)

and if L is a second-order Lagrangian for E then we have

gij =
∂2L

∂ẋi∂ẋj
−

(
∂2L

∂xi∂ẍj
+

∂2L

∂ẍi∂xj

)

− 1
2

d

dt

(
∂2L

∂ẋi∂ẍj
+

∂2L

∂ẍi∂ẋj

)
.

(6.11)

If the Lagrangian system represented by E is autonomous then the
metric g is projectable onto TM (hence time-independent).

In view of the above proposition we can state the following

Definition 6.4 ([19]). We say that an M -pertinent metric g on R×TM

is variational if there exists a regular locally variational form E on R×T 2M

such that (in every adapted chart)

gij = −∂Ei

∂ẍj
, 1 ≤ i, j ≤ m. (6.12)

Any dynamical form E satisfying (6.12) is called a generating form for the
metric g.

Obviously, a generating form is non-unique: the definition of a varia-
tional metric only assures that the class of all generating dynamical forms
contains at least one locally variational form.

Necessary and sufficient conditions for a metric g to be variational are
given by the following theorem.
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Theorem 6.5 ([9]). An M -pertinent metric g on R×TM is variational

if and only if
∂gij

∂ẋk
=

∂gik

∂ẋj
, 1 ≤ i, j, k ≤ m. (6.13)

Proof. If g is a variational metric then relations (6.13) follow from
Helmholtz conditions (5.4).

We shall prove the converse (cf. [19]). Consider an open ball W ⊂ Rm

with the center at the origin, and denote by (xi) the canonical coordinates
on W . Let g be a metric on R× TW satisfying (6.13). Define a mapping
χ̄ : [0, 1]× (R× TW ) → R× TW setting

χ̄(v, (t, xi, ẋi)) = (t, xi, vẋi), (6.14)

and put

T = ẋiẋj

∫ 1

0

(∫ 1

0
(gij ◦ χ̄) dv

)
◦ χ̄ v dv. (6.15)

We shall show that Tdt is a Lagrangian on the fibered manifold π : R ×
W → R satisfying

gij =
∂2T

∂ẋi∂ẋj
= −∂Ei(T )

∂ẍj
, (6.16)

where Ei(T ), 1 ≤ i ≤ m, are the Euler–Lagrange expressions of Tdt.
Denote

Fij =
∫ 1

0
(gij ◦ χ̄) dv, (6.17)

and notice that Fij = Fji and ∂Fij/∂ẋk = ∂Fik/∂ẋj . Then, with help of
Lemma A.1 (see Appendix),

∂T

∂ẋi
= 2ẋj

∫ 1

0
(Fji ◦ χ̄) v dv + ẋkẋj

∫ 1

0

(
∂Fkj

∂ẋi
◦ χ̄

)
v2dv = ẋjFji,

∂2T

∂ẋi∂ẋj
= Fij + ẋk ∂Fik

∂ẋj
=

∫ 1

0
(gij ◦ χ̄) dv (6.18)

+ ẋk

∫ 1

0

(
∂gij

∂ẋk
◦ χ̄

)
v dv = gij .

Now, if g is an M -pertinent metric on R × TM satisfying (6.13), one has
an open covering U of R×TM with the Lagrangian Tdt (6.15) defined on
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each of the open sets of U . However, from the transformation properties
of the components gij of g and of the coordinates ẋi, 1 ≤ i ≤ m, it follows
immediately that the local Lagrangians Tdt can be glued together into a
global Lagrangian λg on R×TM , i.e. such that for each U ∈ U , λg|U = Tdt.
Hence, the Euler–Lagrange form Eg of the Lagrangian λg is a generating
form for the metric g, meaning that g is variational. ¤

Definition 6.6 ([19]). If g is a variational metric then the global La-
grangian λg defined in the proof of Theorem 6.5 is called the kinetic energy
of the metric g. The Euler–Lagrange form Eg of λg is called the canonical
dynamical form of the metric g. A manifold M endowed with a variational
metric g is called quasifinslerian manifold.

Theorem 6.7 ([19]). Let (M, g) be a quasifinslerian manifold. There

exists a unique semispray connection Γg : R× TM → R× T 2M such that

the geodesics of Γg coincide with the extremals of the kinetic energy λg,

i.e., with the solutions of the Euler–Lagrange equations

∂T

∂xi
− d

dt

∂T

∂ẋi
= 0, 1 ≤ i ≤ m. (6.19)

This connection is determined by the relation

Γ∗gEg = 0, (6.20)

where Eg is the canonical dynamical form of g. The components Γj , 1 ≤
j ≤ m, of Γg are given by the following formulas:

Γj = gjiΓi, (6.21)

where (gij) is the inverse matrix to (gij), and the functions Γi, 1 ≤ i ≤ m,

are given by

−Γi = Γijk ẋj ẋk + ẋj

∫ 1

0

(
∂gij

∂t
◦ χ̄

)
dv, (6.22)

where

Γijk =
1
2

∫ 1

0

(
∂gij

∂xk
+

∂gik

∂xj
− 2

∂gjk

∂xi

)
◦ χ̄ dv

+
∫ 1

0

(
∂gjk

∂xi
◦ χ̄

)
v dv .

(6.23)
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Proof. Let Eg be the canonical dynamical two-form of the variational
metric g, and consider a section Γ : R × TM → R × T 2M . Since Eg is
regular, we get that the equation Γ∗Eg = 0 has a unique global solution,
Γg, and the components of Γg are of the form Γj = gjkAk, where the Ak’s
are defined (using the components of Eg) by Ek = Ak − gkiẍ

i. We shall
show that the functions Ai = Γi are given by the formulas (6.22), (6.23)
above. Since Eg comes from the Lagrangian (6.15), we have

Γi =
∂T

∂xi
− ∂2T

∂t ∂ẋi
− ∂2T

∂xk∂ẋi
ẋk. (6.24)

In keeping notation (6.17), computing the derivatives of T on the right-
hand side, we obtain

∂T

∂xi
= ẋj ẋk

∫ 1

0

(∫ 1

0

(∂gjk

∂xi
◦ χ̄

)
dv

)
◦ χ̄ v dv

= ẋj ẋk
(∫ 1

0

(∂gjk

∂xi
◦ χ̄

)
dv −

∫ 1

0

(∂gjk

∂xi
◦ χ̄

)
v dv

)
,

∂2T

∂t∂ẋi
= ẋj ∂Fji

∂t
= ẋj

∫ 1

0

(∂gji

∂t
◦ χ̄

)
dv,

∂2T

∂xk∂ẋi
ẋk = ẋj ẋk ∂Fji

∂xk
= ẋj ẋk

∫ 1

0

(∂gji

∂xk
◦ χ̄

)
dv

=
1
2
ẋj ẋk

∫ 1

0

(∂gij

∂xk
+

∂gik

∂xj

)
◦ χ̄ dv.

(6.25)

Substituting into (6.24) we get the result.
It remains to show that Γg is the unique semispray connection with

the desired property. However, this is obvious: semispray connections
with the same geodesics have the same horizontal distributions, hence they
coincide. ¤

Definition 6.8 ([19]). The semispray connection Γg (6.20) is called the
canonical connection of g.

We have seen that on every quasifinslerian manifold (M, g) there exists
a unique canonical semispray connection Γg, a unique canonical (global)
Lagrangian λg (the kinetic energy), and, consequently, a unique canonical
dynamical 2-form Eg (the Euler–Lagrange form of λg). Conversely, every
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manifold M endowed with a regular locally variational dynamical form on
R× T 2M (in particular, with a global regular Lagrangian on R× TM) is
a quasifinslerian manifold.

It is clear, however, that the correspondence between the regular first
order Lagrangian systems on a fibered manifold π : R ×M → R and the
quasifinslerian structures on M is not one-to-one. We say that two La-
grangians are metrically equivalent if the quasifinslerian metrics defined
by these Lagrangians coincide. From (6.10) we can immediately see that
metrically equivalent Lagrangians are characterized by the following propo-
sition:

Proposition 6.9. Two first-order Lagrangians L1, L2 are metrically

equivalent if and only if

L2 = L1 + ai(t, xk)ẋi + b(t, xk), (6.26)

where ai(t, xk), b(t, xk) are arbitrary functions, i.e., if the difference L2−L1

is an affine function in the “velocities” ẋi.

Corollary 6.10. Let (M, g) be a quasifinslerian manifold. The class

of all g-equivalent Lagrangians is locally of the form

L = T − V (6.27)

where T is the kinetic energy of the metric g, and V is any (local) function

on R× TM , affine in the ẋi’s.

Naturally, V is called potential energy. Contrary to the kinetic energy
Lagrangian, potential energy generally is not global (it is defined on an
open subset of R× TM).

7. Examples of quasifinslerian structures

7.1. Riemannian metric. Every ‘usual’ metric g on a manifold M is
trivially a variational metric (any signature is admissible). The formulas
for the kinetic energy λg = Tdt and the canonical connection Γg of g take
the standard form

T =
1
2
gij ẋ

iẋj , Γi = −Γi
jk ẋj ẋk, (7.1)
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respectively, where

Γi
jk =

1
2
gil

(
∂glj

∂xk
+

∂glk

∂xj
− ∂gjk

∂xl

)
(7.2)

are the Christoffel symbols of the Levi–Civita connection ∇ of g. The
geodesics of Γ coincide with the graphs of geodesics of ∇.

7.2. Time-dependent Riemannian metric. If g is a time-dependent
metric on M we get from (6.15) and (6.22) the kinetic energy

T =
1
2
gij ẋ

iẋj (7.3)

and the canonical connection

Γi = gip ∂gpj

∂t
ẋj − Γi

jk ẋj ẋk, Γi
jk =

1
2
gip

(
∂gpj

∂xk
+

∂gpk

∂xj
− ∂gjk

∂xp

)
, (7.4)

where the ‘Christoffel symbols’ Γi
jk do not depend on ẋ’s, but are depen-

dent on t. Note that the components Γi of the canonical connection are
polynomials of degree 2 in the velocities.

7.3. Finsler metric. An M -pertinent metric on R×
◦
TM , where

◦
TM =

TM \{0}, is called Finsler metric if it is projectable into TM , and satisfies
the ‘integrability condition’ (6.13) and the ‘homogeneity condition’

∂gij

∂ẋk
ẋk = 0. (7.5)

(See e.g. [4], [22], or [34] for foundations of Finsler geometry.) Thus, every
Finsler metric is variational by definition. The kinetic energy λg = Tdt of
a Finsler metric g reads

T =
1
2
gij ẋ

iẋj , (7.6)
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since using (A.2), (A.3) (see Appendix) and the homogeneity condition we
get from (6.15)

T = ẋiẋj

∫ 1

0

(∫ 1

0
(gij ◦ χ̄) dv

)
◦ χ̄ v dv

= ẋiẋj

∫ 1

0

(
gij −

∫ 1

0

(∂gij

∂ẋk
ẋk

)
◦ χ̄ dv

)
◦ χ̄ v dv

= ẋiẋj

∫ 1

0
(gij ◦ χ̄)v dv

=
1
2
ẋiẋj

(
gij −

∫ 1

0

(∂gij

∂ẋk
ẋk

)
◦ χ̄ v dv

)
=

1
2
gij ẋ

iẋj .

(7.7)

Taking into account Proposition 6.9 we get that for a Finsler metric g all
g-equivalent time-independent first-order Lagrangians are of the form

L =
1
2
gij ẋ

iẋj + ai(xk)ẋi + b(xk). (7.8)

Apparently, the kinetic energy of a Finsler metric is a function positively
homogeneous of degree 2 in the ẋk’s. Conversely, any smooth function T

on
◦
TM such that

∂T

∂ẋk
ẋk = 2T (7.9)

is a kinetic energy of a Finsler metric. Indeed, gij = ∂2T/∂ẋi∂ẋj satisfies
the homogeneity condition (7.5). Note that the correspondence between
Finsler metrics and positively homogeneous functions of degree 2 in the
ẋk’s is one-to-one, since if a class of g-equivalent Lagrangians contains a
function satisfying (7.9), then this function is unique.

Formulas (6.22), (6.23) for the canonical connection Γg of a Finsler
metric g simplify to

Γi = −Γi
jk ẋj ẋk = −gilΓljkẋ

j ẋk, (7.10)

where

Γljk =
1
2

∫ 1

0

(
∂glj

∂xk
+

∂glk

∂xj
− 2

∂gjk

∂xl

)
◦ χ̄ dv +

∫ 1

0

(
∂gjk

∂xl
◦ χ̄

)
v dv

=
1
2

(
∂glj

∂xk
+

∂glk

∂xj
− 2

∂gjk

∂xl

)
+

1
2

∂gjk

∂xl
+ · · ·
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where · · · refer to terms vanishing due to homogeneity, i.e.,

Γi
jk =

1
2
gil

(
∂glj

∂xk
+

∂glk

∂xj
− ∂gjk

∂xl

)
. (7.11)

Thus Γi = 2Gi, where Gi are the geodesic coefficients on the Finsler man-
ifold (M, g) (cf. [34]). Finsler geodesics now appear as the solutions of the
equations

ẍi + Γi
jkẋ

j ẋk = 0. (7.12)

The above functions Γi
jk generally depend on the ẋk’s, hence the compo-

nents Γi of the canonical connection need not be quadratic in the ẋk’s
(if the Γi’s are quadratic functions in the ẋk’s then g is called a Berwald
metric). However, homogeneity of g gives us

∂Γi

∂ẋk
ẋk = 2Γi. (7.13)

7.4. Time-dependent Finsler metric. If g is a variational metric on

R×
◦
TM satisfying the homogeneity condition (7.5) then g defines a time-

dependent Finsler structure on M . Similarly as above we obtain that the
corresponding kinetic energy and canonical connection are of the form

T =
1
2
gij ẋ

iẋj (7.14)

and

Γi = gip ∂gpj

∂t
ẋj − Γi

jk ẋj ẋk, Γi
jk =

1
2
gil

(
∂glj

∂xk
+

∂glk

∂xj
− ∂gjk

∂xl

)
, (7.15)

respectively. Of course, the Γi
jk’s may depend on t and the ẋl’s.

7.5. Quasifinslerian metrics generated by functions. Any smooth
function L on R×TM (defined possibly on an open subset W ⊂ R×TM)
satisfying the condition

det
(

∂2L

∂ẋi∂ẋj

)
6= 0 (7.16)

defines on W a quasifinslerian metric g by

(gij) =
(

∂2L

∂ẋi∂ẋj

)
. (7.17)
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The relation between the kinetic energy T of g and L is

L = T − V, (7.18)

where V is an affine function in the ẋi’s. The relation between the canon-
ical dynamical form Eg and the Euler–Lagrange form of L then reads

E = Eg + Φ, (7.19)

where Φ is a locally variational form on W . Explicitly, Φ takes a form of
‘covariant Lorentz-type force’

Φ = Φidxi ∧ dt, where Φi = αij ẋ
j + βi, (7.20)

with the αij ’s and βi’s not depending upon the xk’s

αij +αji = 0,
∂αij

∂xk
+

∂αki

∂xj
+

∂αjk

∂xi
= 0,

∂βi

∂xj
+

∂βj

∂xi
+

∂αij

∂t
= 0. (7.21)

Accordingly, the semispray connection Γ related with L differs from the
canonical connection Γg of g by the soldering form

s = hΓ − hΓg = gijΦj
∂

∂ẋi
⊗ dt. (7.22)

If ∂L/∂t = 0 then the arising quasifinslerian structure is time inde-
pendent. A pair (M, L) of this kind is sometimes called a Lagrange space.
A Lagrange space (M, L), such that

L = T + aiẋ
i + b (7.23)

where T is a (regular) function on
◦
TM positively homogeneous of degree 2

in the ẋk’s and ai, b do not depend upon ẋk’s, is a Finsler space.

Any smooth function F on
◦
TM , positively homogeneous in the ẋk’s

such that F 2 is regular, is a generating function for a Finsler space (F is
called fundamental function). Indeed, putting

T =
1
2
F 2 (7.24)

we get a regular, nonnegative, positively homogeneous function of degree

2 on
◦
TM . With help of the corresponding Finsler metric g, F takes the

form
F =

√
gij ẋiẋj . (7.25)

Similar arguments hold for the time-dependent case.
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7.6. Variational metrics generated by dynamical forms. Let E ∈
Daf(R× T 2M) be a regular dynamical form, E = Eidxi ∧ dt,

Ei = Ai − gij ẍ
j . (7.26)

By Theorem 6.5, if the matrix (gij) is symmetric and gij = −∂Ei/∂ẍj

satisfy the integrability conditions (6.13) then E gives rise to a variational
metric, g, on R× TM . Dynamical forms with this property will be called
metrical. Thus, with a metrical dynamical form E on R × T 2M , (M, g)
becomes a quasifinslerian manifold, with the kinetic energy λg = Tdt, the
canonical dynamical form Eg, and the canonical connection Γg. Putting
Φ = E−Eg we get a first-order dynamical form, called a force related with
the quasifinslerian metric g and the dynamical form E. Recall that the
(unique) semispray connection Γ associated with E, i.e., Γ∗E = 0, then
differs from the canonical connection Γg by a soldering form s, defined by
s = hΓ − hΓg . However, by the isomorphism (6.4), forces on a quasifins-
lerian manifold can be identified with soldering forms. This means that a
metrical dynamical form E on R× T 2M generates a quasifinslerian man-
ifold (M, g) endowed with a force (= a first order dynamical form Φ or
equivalently a soldering form s, related by s = Fg

−1(Φ)).
Equations for paths of E (respectively, equations for geodesics of Γ)

then read
∂T

∂xi
− d

dt

∂T

∂ẋi
= Φi, resp. Γi

g = si, (7.27)

where si = gijΦj . Accordingly, one gets a physical interpretation for the
dynamical form E as a mechanical system with the kinetic energy λg = Tdt,
moving in a force field Φ. Naturally, E = Eg has the meaning of a free
particle for the quasifinslerian manifold (M, g).

Keeping the above notations, we get immediately from Theorem 5.1
the following result, characterizing locally variational forms on R × T 2M

by means of their related quasifinslerian structure:

Proposition 7.1. The following conditions are equivalent:

(1) E ∈ Daf(R× T 2M) is locally variational.

(2) The dynamical form Φ = E − Eg is locally variational.

(3) The Φi’s are affine functions in the ẋk’s, Φi = βi + αij ẋ
j , and the
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two-form

α = βidxi ∧ dt + αijdxi ∧ dxj (7.28)

is closed.

(4) There is a unique closed 2-form α on R×M such that p1α = E −Eg.

Hence, a locally variational form E differs from the corresponding
canonical dynamical form Eg by a first order dynamical form (force) Φ,
which is potential (i.e., locally variational), satisfying Helmholtz condi-
tions. This means, however, that Φ is a (covariant) Lorentz-type force.
The soldering form s = hΓ−hΓg (the components of which are si = gijΦj)
then is a ‘contravariant Lorentz-type force’. Denoting a Lagrangian for Φ
by V , we have (first order) Lagrangians for E expressed by L = T − V ,
where V is affine in the ẋk’s.

As an example, consider M = R3 with the canonical global chart (xi),
and a dynamical form E = Eidxi ∧ dt, where

−Ei = fδij ẍ
j +

df

dt
δij ẋ

j (7.29)

(f is an arbitrary nowhere zero function on R, and (δij) is the unit matrix).
Note that the equations of the paths of E are the Newton equations for
a free particle with nonconstant mass m(t) = f(t), i.e. dpi/dt = 0 with
pi = f(t)ẋi. E defines a time-dependent quasifinslerian metric on R3 by

gij = −∂Ei

∂ẍj
= f(t)δij . (7.30)

For the kinetic energy, the canonical dynamical form and the canonical
connection we get T = 1

2fδij ẋ
iẋj , Eg = E, and

ẍi ◦ Γg = − 1
f

df

dt
ẋi, (7.31)

respectively. Hence, Φ = 0 and E is a free particle for the quasifinsle-
rian manifold (R3, fδij). Considering a dynamical form Φ on (R3, fδij)
we get the mechanical system Ē = Eg + Φ, representing a particle with
nonconstant mass m = f moving in the force field Φ.
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8. Semispray connections on quasifinslerian manifolds

Let (M, g) be a quasifinslerian manifold, Eg the canonical dynamical
form and Γg the canonical connection. Consider a semispray connection
Γ : R× TM → R× T 2M . We have as associated objects a soldering form
s = hΓ − hΓg , a dynamical form E ∈ Daf(R× T 2M) defined by

∂Ei

∂ẍj
= −gij , and Γ∗E = 0, (8.1)

and a dynamical form Φ on R× TM defined by Φ = E − Eg.
Similarly as above, it holds s = Fg

−1(Φ), and we call s (resp. Φ) the
force associated with the connection Γ and the metric g. The equations
for the geodesics of Γ (resp. the equations for the paths of E) then take
the form of (contravariant resp. covariant) Euler–Lagrange equations for
non-conservative mechanical systems on (M, g) (7.27).

Theorem 8.1 ([19]). A semispray connection Γ on a quasifinslerian

manifold (M, g) is g-compatible if and only if hΓ−hΓg = s, where Fg(s) ∈
Daf(R× TM), and the components of Φ are of the form

Φi = βi(t, xk) + αij(t, xk)ẋj , αij = −αji. (8.2)

Proof. Putting Γi = gijΓj , and using (6.13), the g-compatibility
condition DΓg = 0 takes the form

∂gij

∂t
+

∂gij

∂xk
ẋk +

1
2

(
∂Γi

∂ẋj
+

∂Γj

∂ẋi

)
= 0, (8.3)

which is one of the Helmholtz conditions (5.5). (Note that this means
that the dynamical form E associated to Γ by (8.1) satisfies all but the
last set of the Helmholtz conditions.) Substituting Φ = E − Eg into (8.3)
and using that Eg is locally variational we get that components Φi of the
Φ = Fg(s) satisfy

∂Φi

∂ẋj
+

∂Φj

∂ẋi
= 0. (8.4)

Denote

aijk =
∂2Φi

∂ẋj∂ẋk
. (8.5)

Then differentiating (8.4) with respect to ẋk we get

aijk + ajik = 0. (8.6)
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Cycling the indices in (8.6), summing up the arising three relations with
appropriate signs and using aijk = aikj we obtain

aijk = 0. (8.7)

Hence, the Φi’s are affine in the velocities, and in view of (8.4) they are of
the form (8.2).

Conversely, if Φi are affine in velocities with skewsymmetric coefficients
αij then E = Eg + Φ satisfies (8.3), meaning that DΓg = 0. ¤

Theorem 8.1 has an interesting application in physics: it provides a
characterization of all admissible (possibly time-dependent) g-compatible
forces on quasifinslearian manifolds.

Corollary 8.2. On a quasifinslerian manifold (M, g) the only admis-

sible covariant g-compatible forces are of the form (8.2), i.e. affine in veloc-

ities, with skewsymmetric coefficients at ẋ. In particular, on a Riemannian

manifold both covariant and contravariant admissible g-compatible forces

are of the form (8.2).

Let us discuss in more detail the g-compatibility in the time-independ-
ent case (i.e. for metrics and connections on tangent bundles). Assume that
Γ is a time-independent semispray connection, and g is a time-independent
metric on TM . In this case, formula (6.1) for the Γ-derivative of g reads

(DΓg)ij =
∂gij

∂xk
ẋk +

∂gij

∂ẋk
Γk +

1
2

(
gik

∂Γk

∂ẋj
+ gjk

∂Γk

∂ẋi

)
. (8.8)

Now, recall that by a connection on TM one usually means a fibered
morphism TM → CM over idM , where CM → M is the bundle of linear
connections over M [16]. Locally a connection γ on TM is represented
by its components γi

jk, which obey the same transformation rules as the
components of a linear connection on M , the functions γi

jk however may
depend on all the variables xl and ẋl. The covariant derivative of g is
locally expressed by the formula

(∇g)ijk =
∂gij

∂xk
− ∂gij

∂ẋs
γs

rkẋ
r − gisγ

s
jk − gjsγ

s
ik. (8.9)

Geodesic curves of γ are then given by the equations

ẍi + γi
jkẋ

j ẋk = 0. (8.10)
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We can see that to any connection γ on TM there corresponds a
unique time-independent semispray connection Γ. It is determined by the
requirement that geodesics of Γ and γ coincide. In coordinates,

Γi = −γi
jkẋ

j ẋk. (8.11)

Of course, the same semispray connection can arise from different connec-
tions on TM . We say that connections γ and γ̄ on TM are equivalent if
their associated semispray connections coincide. In view of (8.11)

γ̄ ∼ γ ⇐⇒ γ̄i
(jk) = γi

(jk) + ϕi
(jk) where ϕi

jkẋ
j ẋk = 0. (8.12)

Above and in what follows (rs) denotes symmetrization in the indicated
indices.

Writing (8.8) in terms of γ we obtain

(DΓg)ij =
(

∂gij

∂xs
− ∂gij

∂ẋk
γk

rsẋ
r − 1

2

(
gik

∂γk
rs

∂ẋj
+ gjk

∂γk
rs

∂ẋi

)
ẋr

− gikγ
k
(js) − gjkγ

k
(is)

)
ẋs

= (∇g)ijsẋ
s − 1

2

(
gik

∂γ̄k
rs

∂ẋj
+ gjk

∂γ̄k
rs

∂ẋi

)
ẋrẋs,

(8.13)

where ∇ denotes the covariant derivative related to a torsion free connec-
tion γ̄ equivalent with γ.

Note that, as expected, the right-hand side of (8.13) does not depend
upon a choice of a connection in the equivalence class of γ.

Formula (8.13) gives us a relation between the g-compatible semispray
connections Γ and the torsion free connections on TM associated with Γ:

(DΓg)ij = 0 ⇐⇒ (∇g)ijsẋ
s =

1
2

(
gik

∂γk
rs

∂ẋj
+ gjk

∂γk
rs

∂ẋi

)
ẋrẋs. (8.14)

In particular, we have the following result:

Proposition 8.3. Let γ be a torsion free connection on TM , Γ the

associated semispray connection. If γ is metrizable with a quasifinslerian

metric g such that Γ is the canonical connection of g, then γ satisfies the

homogeneity condition

1
2

(
gik

∂γk
rs

∂ẋj
+ gjk

∂γk
rs

∂ẋi

)
ẋrẋs = 0. (8.15)
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We can see immediately, that, for example, the Cartan connection of
a Finsler metric possesses the homogeneity property (8.15).

Next, for Riemannian metrics we can conclude the following:

Proposition 8.4. Let (M, g) be a Riemannian manifold. Then the

mapping (8.11), assigning to a linear connection ∇ on M a time-independ-

ent semispray connection Γ such that Γi are quadratic in the ẋi’s, is one-

to-one on the quotient set of linear connections modulo torsion. For a

semispray connection Γ and the related torsion free linear connection ∇
we have

DΓg = 0 ⇐⇒ ∇g = 0. (8.16)

Proof. The first assertion is obvious, since

Γi = γi
jk(x)ẋiẋk ⇐⇒ γi

(jk) =
1
2

∂2Γi

∂ẋj∂ẋk
. (8.17)

Next, writing (8.13) for a torsion free linear connection ∇ on M we get

(DΓg)ij = (∇g)ijkẋ
k, and (∇g)ijk =

∂(DΓg)ij

∂ẋk
. (8.18)

¤

Corollary 8.5. Let (M, g) be a Riemannian manifold. A time-inde-

pendent semispray connection Γ such that the Γi’s are quadratic in the

velocities is g-compatible if and only if the associated torsion free linear

connection is the Levi–Civita connection of g.

Of course, the above assertion also follows immediately from Theo-
rem 8.1, which more generally answers the question about all g-compatible
semispray connections on a Riemannian manifold (M, g).

Let (M, g) be a quasifinslerian manifold, Γ a (possibly time-dependent)
semispray connection on R×TM . We say that Γ is variational with respect
to the metric g, if the dynamical form E defined by Γ and g (cf. (8.1)) is
locally variational.

Summarizing our results obtained so far we have the following classi-
fication of variational semispray connections on quasifinslerian manifolds.

Theorem 8.6. Let (M, g) be a quasifinslerian manifold, let Γ be a

semispray connection on (M, g). The connection Γ is variational with
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respect to the metric g if and only if hΓ = hΓg +s, where Γg is the canonical

connection of g, and the dynamical form Fg(s) is locally variational.

Recall that ‘Fg(s) is locally variational’ means that it is affine in the ve-
locities, and the 2-form (7.28) is closed (i.e. the coefficients satisfy (7.21)),
or, equivalently that there is a unique closed 2-form α on R×M such that
Fg(s) = p1α (cf. Section 7.5 and 7.6).

A special case of Theorem 8.6, classifying variational forces in classical
and relativistic particle mechanics has been first obtained by E. Engels

and W. Sarlet [7], and J. Novotný [29].

We say that a semispray connection Γ is metrizable if there exists a
variational metric g on R×TM such that Γ = Γg, the canonical connection
of g.

Taking into account our above results, we easily conclude

Proposition 8.7. For a semispray connection Γ on R×TM we have:

(1) Γ is metrizable ⇒ Γ is variational ⇒ Γ is compatible with a quasifins-

lerian metric.

(2) If Γ is associated with a linear connection∇ on M then Γ is metrizable

with a metric g on M ⇔ Γ is variational with variational multipliers

defined on M ⇔ Γ is compatible with a metric g on M ⇔ ∇g = 0.

Various results of this kind were obtained by I. Anderson and
G. Thompson [3], J. Grifone and Z. Muzsnay [9], D. Krupka and
A. Sattarov [16], O. Krupková [18], [19], J. Klein [12], [13] and
W. Sarlet [31]. Other related significant results on metrizability of con-
nections are due to R. Miron [24], [25], A. Rapcsák [30], J. Szilasi and
Z. Muzsnay [35], L. Tamássy [36]–[39], and others.

Finally, let us mention a geometric interpretation of Helmholtz con-
ditions (cf. (5.4), (5.5)), arising from the study of quasifinslerian metric
structures.

Let E be a regular dynamical form on R×T 2M , and Γ the associated
semispray connection (cf. (8.1)).

• The first set of (5.4) means that the dynamical form E is metrical.
• (5.4) means that E is metrical and the associated metric is quasifins-

lerian.
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• the first set of (5.5) means that there exists an M -pertinent metric
g on R× TM such that Γ is g-compatible.

• (5.4) + the first set of (5.5) mean that Γ is compatible with a
quasifinslerian metric g.

• All the Helmholtz conditions mean that Γ is compatible with a
quasifinslerian metric g, and the arising force Φ is a Lorentz-type force
(7.20)–(7.21).

Appendix

Lemma A.1. Let I ⊂ R be a neighborhood of the zero, B an open

ball in Rm × Rm with the center at the origin, and F a smooth function

on I × B. Define the mapping χ̄ : [0, 1]× I × B → I × B by

χ̄(v, (t, xi, ẋi)) = (t, xi, vẋi). (A1)

Then the following identities hold:

F =
∫ 1

0
(F ◦ χ̄)dv + ẋi

∫ 1

0

(
∂F

∂ẋi
◦ χ̄

)
v dv, (A.2)

F = 2
∫ 1

0
(F ◦ χ̄)v dv + ẋi

∫ 1

0

(
∂F

∂ẋi
◦ χ̄

)
v2 dv, (A.3)

∫ 1

0

(∫ 1

0
(F ◦ χ̄)dv

)
◦χ̄ v dv =

∫ 1

0
(F ◦ χ̄)dv −

∫ 1

0
(F ◦ χ̄)v dv. (A.4)

Proof. The first two formulas follow from the following identities:

F =
∫ 1

0
d(v(F ◦ χ̄)) =

∫ 1

0
(F ◦ χ̄)dv +

∫ 1

0
vd(F ◦ χ̄),

F =
∫ 1

0
d(v2(F ◦ χ̄)) = 2

∫ 1

0
(F ◦ χ̄)v dv +

∫ 1

0
v2d(F ◦ χ̄).

(A.5)

The third one is obtained as follows: Substituting (A.2) into the second
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integral on the right-hand side of (A.4) we get for this integral the expres-
sion

∫ 1

0
(F ◦ χ̄)v dv =

∫ 1

0

(∫ 1

0
(F ◦ χ̄)dv

)
◦ χ̄ v dv

+ ẋi

∫ 1

0

(∫ 1

0

(∂F

∂ẋi
◦ χ̄

)
v dv

)
◦ χ̄ v2 dv.

(A.6)

Denote

G =
∫ 1

0
(F ◦ χ̄)dv. (A.7)

Then applying (A.3) to G yields
∫ 1

0
(F ◦ χ̄)dv = 2

∫ 1

0

(∫ 1

0
(F ◦ χ̄)dv

)
◦ χ̄ v dv

+ ẋi

∫ 1

0

( ∂

∂ẋi

∫ 1

0
(F ◦ χ̄)dv

)
◦ χ̄ v2 dv

= 2
∫ 1

0

(∫ 1

0
(F ◦ χ̄)dv

)
◦ χ̄ v dv

+ ẋi

∫ 1

0

(∫ 1

0

(∂F

∂ẋi
◦ χ̄

)
v dv

)
◦ χ̄ v2 dv.

(A.8)

Now, (A.8) and (A.6) give (A.4). ¤
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