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Almost Kählerian structures determined
by Riemannian structures

By KOJI MATSUMOTO (Yamagata), ION MIHAI (Bucharest)
and RADU MIRON (Iaşi)

Dedicated to Professor Lajos Tamássy on the occasion of his 80th birthday

Abstract. We prove that for a given Riemannian metric g on an 2n-di-
mensional differentiable manifold M̃ which admits an n-dimensional foliation F ,
there exists an almost Hermitian structure (G,F) on M̃ determined by the pairing
(g,F). In particular, we investigate the case when it is almost Kählerian or
Kählerian.

0. Introduction

In [3], the first and third authors proved that for every Riemann-
ian structure G on the total space of the tangent bundle TM of an n-
dimensional real differentiable manifold there exists an almost Hermitian
structure (

◦
G,

◦
F) determined only by G.

One of the reasons which justifies the existence of the structure (
◦
G,

◦
F)

determined by the given Riemannian metricG is that there exists a vertical
distribution V on TM (which is 2n-dimensional), which is an integrable
distribution (foliation).
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The following problem arises: Given a Riemannian metric g on a 2n-
dimensional differentiable manifold M̃ which admits an n-dimensional fo-
liation F , does there exist an almost Hermitian structure (G,F) on M̃

determined by the pairing (g,F)?
If (G,F) exists, determine one such pairing. When it is almost Kähler-

ian or Kählerian?
In the following, we will prove that the answer is affirmative and we

will point-out an almost Hermitian structure (G,F) determined by the
Riemannian metric g and the foliation F .

The method which we use is suggested by that of the paper written
by K. Matsumoto and R. Miron [3]. In fact, one remarks that the
tensor g1 induced by g on the foliation F is a symmetric, positive definite
d-tensor field on M̃ (d means distinguished). The distribution N of type
(0, 2) orthogonal to the foliation F defines a non-linear connection on M̃ ,
determined only by g. Then the lift G (of Sasakian type) of g1 is a Rie-
mannian metric on M̃ determined only by g. But N determines an almost
complex structure F, which depends only on g. Then the pairing (G,F)
is an almost Hermitian structure, constructed only with the help of the
pairing (g,F). The cases when (G,F) is almost Kählerian or Kählerian are
easy to establish. Obviously, they impose new conditions to the geometric
objects (g,F).

The problem under discussion was stated by Koji Matsumoto at the
Conference organized by Prof. L. Verstraelen at the Catholic University
of Leuven (in 1999), in honor of Prof. Radu Rosca.

1. Foliations on Riemannian manifolds

Let M̃ be a 2n-dimensional real differentiable manifold and F an n-
dimensional foliation on M̃ . Then we choose local coordinates (x1, . . . , xn;
y1, . . . , yn) such that xi = xi

0 (= constant) give the leaves of F , yi are
variables on the leaves and the coordinate transformations of this type are





x̃i = x̃i(x1, . . . , xn), det
(

∂x̃i

∂xj

)
6= 0,

ỹi =
∂x̃i

∂xj
(x)yj ,

(1.1)
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where i, j, k ∈ {1, 2, . . . , n}.
The distribution DF tangent to the leaves of F is locally spanned by

the vector fields { ∂
∂y1 , . . . , ∂

∂yn }.
Obviously DF has geometric character. Indeed, from (1.1) we obtain

the transformation of the natural frames ( ∂
∂xi ,

∂
∂yi ) of the form





∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
+

∂ỹj

∂xi

∂

∂ỹj
,

∂

∂yi
=

∂ỹj

∂yi

∂

∂ỹj
,

(1.2)

where ∂eyj

∂yi = ∂exj

∂xi ,
∂eyj

∂xi = ∂2exj

∂xi∂xk yk.

Let g be a Riemannian metric on the manifold M̃ . In each point
u = u(x, y), g has the local components





g

(
∂

∂xi
,

∂

∂xj

)
=

(1)
g ij (x, y), g

(
∂

∂xi
,

∂

∂yj

)
=

(2)
g ij (x, y),

g

(
∂

∂yi
,

∂

∂xj

)
=

(3)
g ij (x, y), g

(
∂

∂yi
,

∂

∂yj

)
= gij(x, y).

(1.3)

It is clear that in any point u ∈ M̃ , we have

(1)
g ij=

(1)
g ji,

(2)
g ij=

(3)
g ji, gij = gji. (1.4)

With respect to (1.1),
(1)
g ij ,

(2)
g ij ,

(3)
g ij and gij are transformed as follows





(1)
g ij =

∂x̃r

∂xi

∂x̃s

∂xj

(1)

g̃ rs +
∂x̃r

∂xi

∂ỹs

∂xj

(2)

g̃ rs +
∂ỹr

∂xi

∂x̃s

∂xj

(3)

g̃ rs +
∂ỹr

∂xi

∂ỹs

∂xj
g̃rs,

(2)
g ij=

∂x̃r

∂xi

∂ỹs

∂yj

(2)

g̃ rs +
∂ỹr

∂xi

∂ỹs

∂yj
g̃rs,

(3)
g ij=

∂ỹr

∂yi

∂x̃s

∂xj

(3)

g̃ rs +
∂ỹr

∂yi

∂ỹs

∂xj
g̃rs,

gij =
∂x̃r

∂xi

∂x̃s

∂xj
g̃rs.

(1.5)

The last equation shows the tensorial character of gij (the components
of g on F). It is called a d-tensor field. From the last equation (1.3), it
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follows that gij(x, y) are the components of a d-tensor field g1 induced
by g on the foliation F . g1 is a symmetric, positive definite d-tensor field
of type (0, 2). Then

rank ‖gij‖ = n (1.6)

on the manifold M̃ . We may consider its contravariant tensor gij by the
equation

girg
rj = δj

i . (1.7)

Let

M = {(x1, . . . , xn, y1, . . . , yn) ∈ M̃ | y1 = · · · = yn = 0}.

It is easily seen that M is an n-dimensional submanifold of M̃ . Then
(M̃, π, M) is a differentiable fibre bundle, where the map π : M̃ → M is
defined by

π(x1, . . . , xn, y1, . . . , yn) = (x1, . . . , xn), ∀(x, y) ∈ M̃.

The foliation F is given by the integrable distribution DF , which is
the kernel of the differential of π. We will denote DF by V and we will
call it the vertical distribution on the manifold M̃ .

In the Lagrangian geometry [5], [8], the pairing (M, gij(x, y)) = GLn

is said to be a generalized Lagrange space.
A necessary condition for the existence of a function L(x, y) (called

Lagrangian) such that

gij(x, y) =
1
2

∂2L

∂yi∂yj
(1.8)

is that the d-tensor Cijk = 1
2

∂gij

∂yk is totally symmetric.
If the above property holds, the space GLn is called reducible to a

Lagrange space. If the space GLn is reducible to a Lagrange space, denoted
Ln = (M, L(x, y)), and the d-tensor gij(x, y) has homogeneous components
of degree 0 with respect to yi, then the function

L(x, y) = F 2(x, y) = gij(x, y)yiyj

is a solution of the equation (1.8) and F (x, y) =
√

gij(x, y)yiyj is the
fundamental function of a Finsler space Fn = (M, F (x, y)).
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In this case, we say that GLn is reducible to a Finsler space.
In the following, we will use fundamental geometric objects, for in-

stance, non-linear connections, distinguished connections on GLn, in order
to solve the proposed problem [3].

2. Non-linear connections on the manifold M̃

Definition. A non-linear connection on the differentiable manifold M̃

is a regular distribution N on M̃ complementary to the vertical distribu-
tion V , i.e.,

TuM̃ = N(u)⊕ V (u), ∀u ∈ M̃.

It follows that the local dimension of the distribution N is n. Since
V (u) is spanned by ( ∂

∂y1 , . . . , ∂
∂yn )u, then N is locally spanned by vector

fields of the form
δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
, (i = 1, n ), (2.1)

such that, under a transformation (1.1) on M̃ , they satisfy

δ

δxi
=

∂x̃j

∂xi

δ

δx̃j
. (2.2)

The system of functions N j
i (x, y) is called the system of the coefficients

of the non-linear connection N . By (2.1) and (2.2) one derives:
A transformation of local coordinates (1.1) determines the following

transformation of the coefficients N j
i

Ñ i
j =

∂x̃i

∂xs

∂xr

∂x̃j
N s

r +
∂x̃i

∂xr

∂yr

∂x̃j
. (2.3)

The converse statement holds too.
As is known, the d-curvature tensors Ri

jk and d-torsion tensors tijk of
the non-linear connection N are given by





Ri
jk =

δN i
j

δxk
− δN i

k

δxj
,

tijk =
∂N i

j

∂yk
− ∂N i

k

∂yj
.

(2.4)
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The Berwald connection [7] determined by the non-linear connection
N has the coefficients

Bi
jk =

∂N i
j

∂yk
. (2.5)

One has

tijk = Bi
jk −Bi

kj . (2.6)

Using (2.3), it follows that under a transformation of coordinates (1.1)
on the manifold M̃ , the coefficients Bi

jk(x, y) are transformed in the same
way as the coefficients of a linear connection on the manifold M , i.e.

B̃i
jk =

∂x̃i

∂xs

∂xr

∂x̃j

∂xp

∂x̃k
Bs

rp +
∂x̃i

∂xr

∂2xr

∂x̃j∂x̃k
.

Thus, we have the following

Theorem 2.1. There exist non-linear connections on the manifold M̃

determined only by the Riemannian metric g and the foliation F . One of

them (denoted by N and called canonical) has the coefficients

N i
j(x, y) =

(2)

G jm (x, y)gmi(x, y). (2.7)

Proof. Under a transformation (1.1), from (1.5) one gets

(2)

g̃ ji=
∂xr

∂x̃j

∂xs

∂x̃i

(2)
g rs +

∂xs

∂x̃j

∂yr

∂x̃j
gsr.

Multiplying by

g̃im =
∂x̃i

∂xp

∂x̃m

∂xq
gpq,

we obtain for the coefficients N i
j the transformation law (2.7) ¤

The adapted basis of the distribution N is given by (2.1), where N j
i

are given by (2.7).
Then, one has the following geometric interpretation for N .

Proposition 2.1. The non-linear connection N is characterized by

the condition that the distributions N and V are orthogonal with respect

to the Riemannian metric g.
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Proof. Indeed, if δ
δxi (i = 1, n ) is the adapted basis of the distribu-

tion N , then N ⊥ V if and only if

g

(
δ

δxi
,

∂

∂yj

)
= 0, ∀i, j = 1, . . . , n.

Then one derives (2.7). ¤

Applying a known result [7], one obtains:

Theorem 2.2. The canonical non-linear connection N is integrable

if and only if the equations

δ(
(2)
g jm gmi)
δxk

− δ(
(2)
g km gmi)

δxj
= 0 (2.8)

are satisfied.

Proof. Indeed, Ri
jk = 0, by (2.4), with N i

j given by (2.3), get the
necessary and sufficient condition for the integrability. ¤

Let (dxi, δyi), (i =1,n ) be the dual basis of the adapted basis ( δ
δxi ,

∂
∂yi ),

(i = 1, n ). Then, in any point u ∈ M̃ , one has

δyi = dyi + N i
j(x, y)dxj . (2.9)

The following result is easy to prove.

Proposition 2.2. 1◦ With respect to the adapted basis, the Rie-

mannian metric g is given by the symmetric and positive definite covariant

d-tensor fields hij(x, y) and gij(x, y) from

g

(
δ

δxi
,

δ

δxj

)
= hij(x, y), g

(
∂

∂yi
,

∂

∂yj

)
= gij(x, y). (2.10)

2◦ The tensor g has the expression

g = hij(x, y)dxi ⊗ dxj + gijδy
i ⊗ δyj . (2.11)

3◦ hij is given by

hij =
(1)
g ij −N s

j

(2)
g is −N s

i

(3)
g sj +grsN

r
i N s

j . (2.12)
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It is obvious that the Levi–Civita connection of the metric g with
respect to the adapted basis ( δ

δxi ,
∂

∂yi ) of the distributions N and V may
be determined as in [3].

We will use the above results for proving the existence of an almost
Hermitian structure determined by the Riemannian metric g and the foli-
ation F .

3. Almost Hermitian structures determined by the metric g

and the foliation F

Consider the canonical non-linear connection N , with the coefficients
(2.3) and the local adapted basis ( δ

δxi ,
∂

∂yi ) to the distributions N and V .
The dual cobasis is (dxi, δyi).

It is easy to see, by (1.1), (1.2) and (2.2), that (dxi, δyi) are trans-
formed by the rule

dx̃i =
∂x̃i

∂xj
dxj , δỹi =

∂x̃i

∂xj
δyj . (3.1)

Taking account that gij(x, y) is a d-tensor field, we construct the tensor
field on M̃

G(x, y) = gij(x, y)dxi ⊗ dxj + gij(x, y)δyi ⊗ δyj . (3.2)

Since N is the canonical non-linear connection, gij(x) give the restric-
tion of the Riemannian metric g to the leaves of the foliation F and (3.1)
holds, we have the following:

Theorem 3.1. G defined by (3.2) is a Riemannian structure on the

manifold M̃ determined only by the Riemannian metric g and the folia-

tion F .

Next, we consider the F(M̃)-linear map

F : χ(M̃) → χ(M̃),

defined by

F
(

δ

δxi

)
=

∂

∂yi
, F

(
∂

∂yi

)
= − δ

δxi
, (i = 1, . . . , n). (3.3)
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Remark. In [3], F is defined by

F
(

δ

δxi

)
= − ∂

∂yi
, F

(
∂

∂yi

)
=

δ

δxi
, (i = 1, . . . , n).

It is easily seen that F is invariant under coordinates transformations
on M̃ and one has

Theorem 3.2. The following properties holds:

1◦ F is an almost complex structure globally defined on M̃

F ◦ F = −I. (3.4)

2◦ F is a tensor filed on M̃ having the local expression

F =
∂

∂yi
⊗ dxi − δ

δxi
⊗ δyi. (3.3)’

3◦ The structure F depends only on the Riemannian metric g and the

foliation F .

Proof. 1◦ Using (1.2) and (2.2), it follows that F defined by (3.3)
does not depend on the choice of the local coordinates (xi, yi). (3.4) holds
because for any X = Xi δ

δxi + Ẋi ∂
∂yi , we have F ◦ F(X) = −X.

2◦ Obviously (3.3) and (3.3)’ are equivalent.
3◦ δ

δxi and δyi depend only on g and F . ¤

Theorem 3.3. F is a complex structure if and only if the curvature

d-tensors Ri
jk and the torsion d-tensors tijk of the canonical non-linear

connection N vanish identically.

Proof. With respect to the adapted basis ( δ
δxi ,

∂
∂yi ), the Nijenhuis

tensor NF of the almost complex structure F

NF(X, Y ) = −[X, Y ] + [FX,FY ]− F[X,FY ]− F[FX, Y ]

vanishes identically if and only if

NF
(

δ

δxi
,

δ

δxj

)
= 0, NF

(
δ

δxi
,

∂

∂yj

)
= 0, NF

(
∂

∂yi
,

∂

∂yj

)
= 0.

The above system holds if and only if Ri
jk = 0 and tijk = 0 [7]. ¤
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Finally, the proposed problem is solved by the help of the following
theorem.

Theorem 3.4. 1◦ The pairing (G,F) is an almost Hermitian structure

on M̃ , determined only by the Riemannian metric g and the foliation F .

2◦ The associated 2-form θ to the pairing (G,F) has the local expres-

sion

θ = gijdxi ∧ δyj . (3.5)

3◦ θ is an almost symplectic structure on M̃ determined only by g

and F .

Proof. 1◦ The equation G(FX,FY ) = G(X, Y ) ∀X,Y ∈ χ(M̃) is
satisfied on the adapted basis ( δ

δxi ,
∂

∂yi ).
2◦ θ(X, Y ) = G(FX,Y ) leads to

θ

(
δ

δxi
,

δ

δxj

)
= 0, θ

(
δ

δxi
,

∂

∂yj

)
= gij ,

θ

(
∂

∂yi
,

δ

δxj

)
= −gij , θ

(
∂

∂yi
,

∂

∂yj

)
= 0.

3◦ θ given by (3.5) is a 2-form on M̃ , with det‖θ‖ = 2n. ¤

Theorem 3.5. The almost symplectic structure θ defined by (3.5) is

integrable (or, equivalently, symplectic) if and only if the following equa-

tions hold: 



griR
r
jk + grjR

r
ki + grkR

r
ij = 0,

∇kgij −∇jgik − girt
r
jk = 0,

◦
∇k gij−

◦
∇j gik = 0,

(3.6)

where

∇kgij =
δgij

δxk
− gsjB

s
ki − gisB

s
kj , (3.7)

∇k is the covariant h-derivative of gij with respect to the transpose of
the Berwald connection Bi

jk and

◦
∇k gij =

∂gij

∂yk
.
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The proof runs similarly as in Section 4 of [3]. The conditions (3.5) repre-
sent the necessary and sufficient condition dθ = 0 for the integrability of
the structure θ.

Corollary 3.1. The structure (G,F) on M̃ is almost Kählerian if and

only if the equations (3.6) hold.

Corollary 3.2. The structure (G,F) on M̃ is Kählerian if and only if

the Riemannian metric g and the foliation F have the following properties:

1◦ F is a complex structure on M̃ (i.e. Ri
jk = tijk = 0.)

2◦ The following equations hold




∇kgij −∇jgik = 0,

◦
∇k gij−

◦
∇j gik = 0.

(3.8)

Remark. ∇k is the covariant h-derivative of the d-field gij with respect
to Berwald connection.

In particular, if the generalized Lagrange space GLn = (M̃, gij(x, y))
is reducible to a Riemannian space [5], that is, gij(x, y) depends only on
the variables (xi), then from gij(x, y) = gij(x) it follows that we may

determine a non-linear connection
◦
N , which is different from the canonical

non-linear connection N . The coefficients of
◦
N are

◦
N

i

j= γi
jk(x)yk, (3.9)

where γi
jk are the Christoffel symbols of the d-tensor field gij(x).

The curvature of this non-linear connection is given by

◦
R

i

jk (x, y) = yhri
hjk(x), (3.10)

where ri
jk(x) is the curvature tensor of gij(x).

The Berwald connection of
◦
N is

Bi
jk = γi

jk(x),

and the torsion tijk = 0.
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The Riemannian structure G is defined by

G = gij(x)dxi ⊗ dxj + gijδy
i ⊗ δyj ,

where δyi = dyi + γi
jk(x)ykdxj .

The almost complex structure F is given by (3.3)’.
The pairing (G,F) is an almost Hermitian structure determined only

by the foliation F and the d-tensor g1 induced by g on the foliation F , g1

having the components gij(x). Then the pairing (M, gij(x)) is a Riemann-
ian space.

The 2-form θ associated to the pairing (G,F) is integrable, because,
by using the Bianchi identity and the fact that

∇kgij = 0,
◦
∇k gij = 0,

it follows that the equations (3.6) are satisfied.
Consequently, we may state the following.

Theorem 3.6. 1◦ The structure (G,F) determined on the manifold

M̃ by a Riemannian d-structure gij(x) and a foliation F is an almost

Kählerian structure.

2◦ The structure (G,F) determined by gij(x) and the foliation F is

Kählerian if and only if the Riemannian space (M, gij(x)) is locally flat.

Proof. 1◦ We already saw that the equations (3.6) hold. Then we

apply the Corollary 3.1. 2◦ The tensor
◦
R

i

jk= yhri
hjk(x) vanishes if and

only if the curvature tensor ri
hjk(x) of the metric gij(x) on M vanishes.

Since tijk = γi
jk(x)− γi

kj(x) = 0 and the equations (3.8) hold, then the
Corollary 3.2 achieves the proof. ¤
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