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Some remarks on the Lorenz five component model
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Abstract. Some old aspects from the theory of the Lorenz five component
model are discussed and some of its new properties are pointed out.

1. Introduction

The study of balanced dynamics is a central subject in geophysical
fluid dynamics. It can be realized using three different approaches. The
most recent one is due to Lorenz [6] and is called the five component
model. Its dynamics is usually described by the following set of differential
equations: 




ẋ1 = −x2x3 + bx2x5

ẋ2 = x1x3 − bx1x5

ẋ3 = −x1x2

ẋ4 = −x5

ε

ẋ5 =
x4

ε
+ bx1x2,

(1.1)

where b, ε ∈ R.
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The goal of our paper is to present some new properties of this dy-
namics from the Poisson geometry point of view.

2. Stability problem – Periodic solutions

Let us start with the following result dues to Bokhove [2]. More
exactly we have:

Proposition 2.1 ([2]). The dynamics (1.1) has the following Hamil-

ton–Poisson realization:

(R5, Πε,b,H),
where

Πε,b =




0 0 −x2 0 bx2

0 0 x1 0 −bx1

x2 −x1 0 0 0

0 0 0 0 −1
ε

−bx2 bx1 0
1
ε

0




and

H(x1, x2, x3, x4, x5) =
1
2
(x2

1 + 2x2
2 + x2

3 + x2
4 + x2

5).

Proposition 2.2. There exists only one functionally independent

Casimir of our configuration (R5, Πε,b).

Proof. For the proof we shall use the technique of Bermejo and
Fairen [1].

Let

(Πε,b)2m =




0 x1 0 −bx1

−x1 0 0 0

0 0 0 −1
ε

bx1 0
1
ε

0




.

Then

det(Πε,b)2m =
x2

1

ε
6= 0

iff
x1 6= 0.
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It follows that

(Πε,b)−1
2m =




0 − 1
x1

0 0
1
x1

0 −bε 0

0 bε 0 ε

0 0 −ε 0




.

Hence

(Πε,b)n−2m = [0, −x2, 0, bx2];

Γ = [(Πε,b)n−2m · (Πε,b)−1
2m]t

=
[
−x2

x1
, 0, 0, 0

]t

.

Therefore
dx1 = −x2

x1
dx2

or equivalent

C(x1, x2, x3, x4, x5, x6) =
1
2
(x2

1 + x2
2)

is the Casimir of our configuration (R5, Πε,b). ¤

It is not hard to see that the equilibrium states of our system are:

eM
1 = (M, 0, 0, 0, 0), M ∈ R;

eM
2 = (0,M, 0, 0, 0), M ∈ R;

eM
3 = (0, 0,M, 0, 0), M ∈ R.

We shall now discuss their nonlinear stability. Recall that an equilib-
rium state xe is nonlinear stable if the trajectories close to xe stay close to
xe for each t ∈ R. In other words, at least one neighborhood of xe must
be flow invariant.

Proposition 2.3. The equilibrium state eM
1 , M ∈ R, M 6= 0 is non-

linear stable.

Proof. We shall make the proof using the energy-Casimir method,
see [5], [7] or [9].
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Let Hϕ be the energy-Casimir function given by

Hϕ(x1, x2, x3, x4, x5) =
1
2
(x2

1 + x2
2 + x2

3 + x2
4 + x2

5) + ϕ

(
1
2
(x2

1 + x2
2)

)
,

where ϕ ∈ C∞(R,R).
Then we have

δHϕ = x1δx1 + 2x2δx2 + x3δx3 + x4δx4 + x5δx5

+ ϕ′(x1δx1 + x2δx2),

where
ϕ′ =

∂ϕ

∂
(

1
2(x2

1 + x2
2)

) .

Hence
δHϕ(M, 0, 0, 0, 0) = 0

if and only if

ϕ′
(

1
2
M2

)
= −1. (2.1)

The second variation of Hϕ is given by

δ2Hϕ = (δx1)2 + 2(δx2)2 + (δx3)2 + (δx4)2 + (δx5)2

+ ϕ′′(x1δx1 + x2δx2)2 + ϕ′[(δx1)2 + (δx2)2].

At the equilibrium of interest we have via (2.1)

δ2Hϕ(M, 0, 0, 0, 0) = (δx2)2 + (δx3)2 + (δx4)2 + (δx5)2

+ ϕ′′
(

1
2
M2

)
M2(δx1)2.

If we can choose ϕ such that

ϕ′′
(

1
2
M2

)
> 0 (2.2)

then the second variation of Hϕ at the equilibrium of interest is positive
definite and so we can conclude that the equilibrium state (M, 0, 0, 0, 0),
M∈R, M 6= 0 is nonlinear stable.

For instance such a ϕ is given by

ϕ(x) =
(

x− 1
2
M2

)2

− x. ¤
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Using now the linear part of our system (1.1) at the equilibrium of
interest eM

2 [resp. eM
3 ] we have immediately:

Proposition 2.4. The equilibrium states eM
2 , eM

3 , M ∈ R, M 6= 0,

have the following behaviour:

i) eM
2 = (0,M, 0, 0, 0), M ∈ R, M 6= 0 is unstable.

ii) eM
3 = (0, 0,M, 0, 0), M ∈ R, M 6= 0 is spectrally stable.

If we take now the function H ∈ C∞(R5,R) given by

H(x1, x2, x3, x4, x5) =
1
2
(x2

1 + 2x2
2 + x2

3 + x2
4 + x2

5)

as a Lyapunov function, then via Lyapunov theorem we have

Proposition 2.5. The equilibrium state e0 = (0, 0, 0, 0, 0) is nonlinear

stable.

Remark 2.1. It is an open problem to decide the nonlinear stability or
instability of the equilibrium states eM

3 = (0, 0,M, 0, 0), M ∈ R, M 6= 0.

We shall discuss now the existence of the periodic solutions for the
dynamics (1.1).

Let Kϕ be a first integral of the dynamics (1.1) given by

Kϕ(x1, x2, x3, x4, x5) =
1
2
(x2

1 + 2x2
2 + x2

3 + x2
4 + x2

5)

+ ϕ

(
1
2
(x2

1 + x2
2)

)
− 1

2
M2 − ϕ

(
1
2
M2

)

where ϕ ∈ C∞(R,R) satisfies to the conditions (2.1), (2.2). Then we have

i) Kϕ ∈ C∞(R5,R);

ii) Kϕ(M, 0, 0, 0, 0) = 0;

iii) dKϕ(M, 0, 0, 0, 0) = 0;

iv) d2Kϕ(M, 0, 0, 0, 0) is positive definite.

Then via the Moser theorem [8] we have

Proposition 2.6. For each ε > 0 sufficiently small any integral surface

Kϕ(x1, x2, x3, x4, x5) = ε2

contains at least one periodic solution for the dynamics (1.1) whose periods

are close to those of the corresponding linear system.
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Let H be the Hamiltonian (or the energy of the dynamics (1.1)), i.e.

H(x1, x2, x3, x4, x5) =
1
2
(x2

1 + 2x2
2 + x2

3 + x2
4 + x2

5).

Then we have

i) H ∈ C∞(R5,R);

ii) H(0, 0, 0, 0, 0) = 0;

iii) DH(0, 0, 0, 0, 0) = 0;

iv) D2H(0, 0, 0, 0, 0) is positive definite.

Then via the Moser [8] we have

Proposition 2.7. For each ε > 0 sufficiently small any integral surface

H(x1, x2, x3, x4, x5) = ε2

contains at least one periodic solution for the dynamics (1.1) whose periods

are close to those of the corresponding linear system.

3. The reduced phase space and the reduced dynamics

It is clear that the function C ∈ C∞(R5,R) given by

C(x1, x2, x3, x4, x5) =
1
2
(x2

1 + x2
2)

is constant of motion (1.1). Let us make the change of variables:




x1 =
√

2C cosϕ

x2 =
√

2C sinϕ.

Then the dynamics (1.1) takes the following form:




dϕ

dt
= x3 − bx5

dx3

dt
= −C sin 2ϕ

dx4

dt
= −x5

ε
dx5

dt
=

x4

ε
+ bC sin 2ϕ

(3.1)
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and it is usually called the reduced dynamics.

Proposition 3.1 ([3]). The reduced dynamics (3.1) has the following

Hamilton–Poisson realization:

(MC ,Πred,Hred),
where

MC = {(x1, x2, x3, x4, x5) ∈ R5 | x2
1 + x2

2 = 2C};

Πred =




0 1 0 −b

−1 0 0 0

0 0 0 −1
ε

b 0
1
ε

0




;

Hred(ϕ, x3, x4, x5) = −C

2
cos 2ϕ +

1
2
(x2

3 + x2
4 + x2

5);

C ∈ R, C > 0.

Since
det(Πred) = − 1

ε2
6= 0,

we have immediately:

Proposition 3.2. The reduced dynamics (3.1) has the following Ham-

iltonian realization:

(MC , ωC ,Hred),
where

ωC = −dϕ ∧ dx3 − εbdx3 ∧ dx4 + εdx4 ∧ dx5.

Remark 3.1. It is clear from the above considerations that (MC , ωC),
C ∈ R, C > 0, is in fact the symplectic foliation of the Poisson manifold
(R5, Π).

It is easy to see that the equilibrium states of our system (3.1) are

ek =
(

kπ

2
, 0, 0, 0

)
, k ∈ Z.
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Proposition 3.3. The equilibrium states

e2l = (lπ, 0, 0, 0), l ∈ Z
are nonlinear stable.

Proof. Let L ∈ C∞(MC ,R) be a smooth function given by

L(ϕ, x3, x4, x5) = −C

2
cos 2ϕ +

C

2
+

1
2
(x2

3 + x2
4 + x2

5).

Then we have

i) L(lπ, 0, 0, 0) = 0;

ii) L(ϕ, x3, x4, x5) > 0, (∀) (ϕ, x3, x4, x5) ∈ MC ,
(ϕ, x3, x4, x5) 6= (lπ, 0, 0, 0);

iii) L̇ = 0, along the trajectories of the system (3.1).

Hence L is a Lyapunov function and then via the Lyapunov theorem the
equilibrium states

e2l = (lπ, 0, 0, 0), l ∈ Z
are nonlinear stable. ¤

Proposition 3.4. The equilibrium states

e2l+1 =
(
lπ +

π

2
, 0, 0, 0

)
, l ∈ Z

are unstable.

Proof. Indeed, let A be the matrix of the linear part of our dynam-
ics (3.1),

A =




0 1 0 −b

−2C cos 2ϕ 0 0 0

0 0 0 −1
ε

2bC cos 2ϕ 0
1
ε

0




.

Then we have

A(e2l+1) =




0 1 0 −b

2C 0 0 0

0 0 0 −1
ε

2bC 0
1
ε

0




;
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pA(e2l+1)(x) = x4 + x2

(
1
ε2
− 2C + 2b2C

)
− 2C

1
ε2

.

It is easy to see now that the characteristic equation

pA(e2l+1)(x) = 0

has a positive root and so the equilibrium states

e2l+1 =
(
lπ +

π

2
, 0, 0, 0

)
, l ∈ Z

are unstable. ¤

Let L be a real valued function given by

L(ϕ, x3, x4, x5) = −C

2
cos 2ϕ +

C

2
+

1
2
(x2

3 + x2
4 + x2

5).

Then we have

i) L ∈ C∞(MC ,R);

ii) L(πl, 0, 0, 0) = 0;

iii) dL(πl, 0, 0, 0) = 0;

iv) d2L(πl, 0, 0, 0) is positive definite.

Then via Weinstein theorem [10] we have:

Proposition 3.5. For each sufficiently small ε any integral surface

L(ϕ, x3, x4, x5) = ε2

contains at least two periodic solutions of the dynamics (3.1) whose periods

are close to those of the linearized system.

4. Geometric prequantization of the reduced dynamics (3.1)

We have seen in the previous section that the dynamics (3.1) has the
following Hamiltonian realization:

(MC , ωC ,Hred)
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where

MC = {(x1, x2, x3, x4, x5) ∈ R5 | x2
1 + x2

2 = 2C};

ωC = −dϕ ∧ dx3 − εbdx3 ∧ dx4 + εdx4 ∧ dx5;

Hred(ϕ, x3, x4, x5) = −C

2
cos 2ϕ +

1
2
(x2

3 + x2
4 + x2

5);

C ∈ R, C > 0.

It is easy to see that
ωC = dθC ,

where
θC = −ϕdx3 − εbx3dx4 + εx4dx5

and so (MC , ωC) is a quantizable manifold. Moreover, the Hilbert reprezen-
tation space is given by

H = L2(MC ,C),

and the prequantum operator δf has the following expression for each
f ∈ C∞(MC ,R):

δf = −i~
[
Xf − i

~
θC(Xf )

]
+ f,

where ~ is the Planck constant divided by 2π.
Therefore we have

Proposition 4.1. The pair (H, δ) gives rise to a prequantization of

the reduced dynamics (3.1).

Using now the same arguments as in [4] with obvious modifications we
can prove:

Proposition 4.2. Let O(L2(MC ,C)) be the space of self adjoint op-

erators on the Hilbert space L2(MC ,C). Then the map

f ∈ C∞(MC ,R) 7→ δf ∈ O(L2(MC ,C))

gives rise to an irreducible representation of C∞(MC ,R) on O(L2(MC ,C)).
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