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The mathematics of Zoltan T. Balogh

By DENNIS BURKE (Oxford) and GARY GRUENHAGE (Auburn)

1. Introduction

Zoli’s research was in set-theoretic topology. (The authors of this
article were friends as well as professional colleagues of Zoltdn Balogh.
So we would like to call him Zoli, as we did throughout his life.) Deep
infinitary combinatorics lie at the heart of many of the problems in this
field, and thus their solutions frequently make use of the tools of modern
set theory, e.g., special axioms such as the continuum hypothesis (CH)
or Martin’s Axiom (MA), or building models of set theory by Cohen’s
method of forcing. Statements shown to be true using special axioms
or models are thereby proven consistent with the usual axioms of ZFC
(the Zermelo—Fraenkel axioms plus the axiom of choice). Sometimes the
negation of a consistent statement is also shown to be consistent, and hence
the statement is independent of ZFC. The statement of Souslin’s problem,
for example, is a well-known independent statement. A problem in set-
theoretic topology is not considered “solved” until either its statement
is proven independent, or a positive or negative answer in ZFC is found.
Some of Zoli’s very best results were finding ZFC solutions to problems for
which previously only a consistent answer was known.

Zoli’s research spans 25 years or so, and includes many significant con-
tributions in diverse areas within set-theoretic topology. To help organize
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our discussion, we have divided much of Zoli’s work into five “themes”
which ran through many of his papers. It is not surprising that a math-
ematician as strong and broad as Zoli would also have much work that
cannot be conveniently classified, so there is also a relatively large “mis-
cellaneous” category.

What makes Zoli’s research especially stand out are a series of solutions
to several long-standing problems in the field, which he obtained at an
amazing pace starting in the mid-1980’s, continuing essentially until his
death. We have singled out for special discussion what in our opinion are
six of his most remarkable results, which for easy identification we call his
“greatest hits”.

Our discussion of Zoli’s research will be roughly chronological within
themes. The References section consists of a complete list of Zoli’s publi-
cations.

2. Early work: relative compactness
and hereditarily nice spaces

The 1960’s were a kind of golden age for so-called “generalized” metriz-
able spaces. A. V. Arhangel’skii defined p-spaces, K. Nagami defined -
spaces, K. Morita M-spaces, and so on. Investigations of these classes,
sometimes with an eye toward generalizing what were by then “classical”
results in the area, were still going strong in the mid 1970’s, when Zoli
came on the scene. R. Hodel had generalized some metrization results to
higher cardinals by defining “metrizability degree” and put them in the
language of cardinal function theory!, a hot topic at that time. Another
topic of interest was: what can be said of the whole space if one knows
that every subspace is “nice” in the sense of belonging to a certain class
of generalized metric spaces?

1Typical cardinal functions that appear in our discussion are the weight w(X), the
character x(X), and the Lindel6f degree L(X), which are, respectively, the least cardinal
of a base, the least cardinal such that each point has a local base not greater than that
cardinality, and the least cardinal such that every open cover of X has a subcover of
that cardinality or less.
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Zoli’s first contributions of his career were in this area. Recall that
a space X is a paracompact p-space if there is a perfect (i.e., closed with
compact fibers) map f from X to a metrizable space Y. Let 7 be the
topology on X and 7’ the weaker topology on X obtained by pulling back
the metrizable topology on Y by the function f. Then if a filter on X has a
cluster point in the topology 7/, it is easy to see, using the perfectness of the
map f, that the filter also has a cluster point in 7. Zoli’s nice idea [Ba76],
[Ba78a], [Ba79a] was to study exactly this relationship between topologies,
calling 7 relatively compact to 7' if they satisfy the above filter convergence
condition. There was also a countably compact analogue [Ba79c|, defined
in terms of filters having a countable base. Zoli noticed that in many
cases, especially when the space had a point-separating open cover of some
sort, or when every subspace was “nice” in the sense of being relatively
compact to the topology 7, various cardinal functions on 7/ were a bound
for those of 7. General results of this form for relative compactness, and
the similar notion of relative countable compactness, had many corollaries
which superseded classical results and answered questions of Arhangel’skii,
Hodel, and others. The following example gives the flavor:

Theorem 2.1 ([Ba76]). Suppose (X, 7) is compact relative to a weaker
topology 7' with metrizability degree < k. If (X, 7) has a point < k, T1-
separating open cover, then the metrizability degree of (X, T) is < K.

Taking k = w and 7 = 7 gets J. Nagata’s classical result that a
paracompact p-space with a point-countable T}-separating open cover is
metrizable. A similar theorem with metrizability degree replaced by weight
has cardinal function results of Hodel as corollaries, and answers a question
of Arhangel’skii on spaces whose every subspace is a paracompact p-space.

The proofs of the these early results of Zoli already showed the style
which he became well-known for later, involving heavy use of complicated
combinatorics of sets and collections of sets, the arguments slowly but
steadily making their way towards the final conclusion. The power of his
mind was evident from the beginning!
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3. Q-set spaces

Zoli had a long-standing interest in Q-sets, i.e., uncountable subsets
X of the real line (or separable metric spaces) in which every subset of
X is a relative Gg-set. Such sets, which do not exist in all models of set
theory, had been shown to be relevant to the famous normal Moore space
problem. The appropriate generalization of ()-set to arbitrary spaces is
that of a Q-set space X, which means that every subset of X is a Gg-
set in X, yet X is not o-discrete (i.e., not a countable union of discrete
subspaces). It was not known for a long time if this more general kind of
Q-set existed in ZFC.

The first paper of Zoli’s to mention Q-set spaces was [Ba78b], where he
showed that if a member of a certain class of spaces was non-metrizable,
it was because it either contained the one-point compactification of an
uncountable discrete space, or the so-called “Alexandrov duplicate” of a
metric @-set space (this was the relation to the Normal Moore Space Con-
jecture he refers to in the title of [Ba78b]).

Zoli’s first paper studying a kind of )-set type of space for itself was
with H. JUNNILA in 1983 [BJ83], where the authors consider “totally an-
alytic” spaces, i.e., spaces in which every subset is analytic. In this paper
they show that under Gédel’s axiom of constructibility V=L, every totally
analytic space of character < ¥N; is o-discrete.

Of course, this left open the problem if there could be a totally analytic
non-o-discrete space, or even a -set space, in ZFC. Zoli finally settled
this [Ba91b] by constructing a ZFC example of a Q)-set space of cardinality
¢ and character 2°. This was his first use of a technique of M. E. Rudin
which he later went on to develop into an amazing example-constructing
machine. More on this in Section 6. Later [Ba98al, he saw how to obtain a
paracompact Q-set space in ZFC, and in a handwritten note, unpublished
at the time of his death, he obtained a Lindel6f Q-set space.
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4. Locally nice spaces

Zoli also had a long-standing interest in spaces that are “locally nice”,
usually in the sense of being locally compact, sometimes also locally con-
nected or even a manifold. His earliest paper in this area is “Locally nice
spaces under Martin’s Axiom” [Ba83]. Zoli’s results here are fundamen-
tal structural results which had many important corollaries, for example,
Rudin’s result that under MA + —CH, all perfectly normal Hausdorff man-
ifolds are metrizable. The results of this paper are still finding important
uses, e.g., in the recent work of P. Larson and F. Tall where a long-standing
problem of S. Watson is solved by proving that, consistently, all perfectly
normal locally compact spaces are paracompact.

In 1986, Zoli published two more papers on the theme of paracom-
pactness in locally nice spaces. In [Ba86a], he answers a question of G.
Gruenhage by showing that normal, locally connected, rim-compact, met-
alindel6f? spaces are paracompact. The paper [Ba86b] starts with answers
to questions of Tall and Watson by showing:

Theorem 4.1. Normal locally compact (or more generally, locally
Lindelof) screenable spaces are paracompact.

Theorem 4.2 ((V=L)). Normal, locally compact, metalindelof spaces
are paracompact.

The first result is a pretty partial result on a famous problem of
Nagami, to be discussed in Section 6, whether the statement is true with-
out the “locally compact” assumption (see that section for the definition
of “screenable”). The second extends a result of Watson in which “meta-
compact” replaces “metalindelof.”

The first of Zoli’s “greatest hits” that we get to in this article happens
to be in the locally nice theme. The Normal Moore Space Conjecture had
been shown to be essentially equivalent to the question whether normal
first-countable spaces must be collectionwise normal®. It had been known
for some time that the Normal Moore Space Conjecture was consistently

2X is metalindelof (resp., metacompact) if every open cover has a point-countable (resp.,
point-finite) open refinement.

3A space X is collectionwise normal if every closed discrete collection of closed sets can
be separated by a pairwise-disjoint collection of open sets.
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false. Assuming the existence of sufficiently large cardinals, the Normal
Moore Space Conjecture was finally shown to be consistently true, and
hence independent, first by P. Nyikos and K. Kunen, and a bit later using
a more flexible technique, by A. Dow, Tall, and W. Weiss. The analogous
problem for locally compact spaces was formulated by Watson, and worked
on over a period of years by Tall, who obtained a number of positive
partial results in which typically the character of the space was bounded by
some cardinal (e.g., X,). It is Tall’s work on this problem that apparently
prompted Zoli in his paper to refer to it as the “Toronto project”. Here’s
the result:

Greatest Hit # 1: It is consistent (modulo sufficiently large car-
dinals) that all locally compact normal spaces are collectionwise normal
[Ba9lal.

In fact, Zoli obtained a more general result which has the Normal
Moore Space Conjecture as a corollary. In his review of the paper, Watson
calls this result “one of the finest results of the last few years in general
topology.”

5. Base-multiplicity

Zoli’s early work included, in particular, results about point-countable
bases. He retained an interest in such “base-multiplicity” topics through-
out his professional life. Probably his most interesting work in this area
are the results (with S. Davis, W. JusT, S. SHELAH, and P. SZEPTY-
cKI) in [BDJSS00]. The primary motivation for the results in this paper
is an old (circa 1976) question of R. Heath and W. Lindgren: Does every
first-countable space with a weakly uniform base have a (possibly differ-
ent) point-countable base? Recall that a base B is weakly uniform if the
intersection of any infinite subcollection of B is either empty or a singleton.

Old partial results of Davis, G. M. Reed, and M. Wage say that there
is a counterexample under MA + ¢ > Ry, but the answer is positive in
ZFC if there are not more than Nj-many isolated points. These results
already suggest that some interesting and difficult combinatorics are at the
heart of this problem. Much later, Arhangel’skii, W. Just, E. Reznichenko
and Szeptycki showed that, under CH, every first-countable space with
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a weakly uniform base and no more than X, -many isolated points has a
point-countable base.

In [BDJSS00], the authors finish off the problem, obtaining a consis-
tent positive answer to the Heath—Lindgren question, with no restriction
on the number of isolated points. The deep set-theoretic combinatorial re-
sults they develop to prove this are sure to have many other applications.

For many other interesting results of Zoli on the base-multiplicity
theme, see the papers [BGO01], [BGri03], [Ba02a], and [Ba03a].

6. Dowker spaces

A classical homotopy extension theorem of K. Borsuk in 1937 had as
part of the hypothesis that X x [0, 1] is normal. But it was not known
at the time if normality of X was sufficient to imply normality of X X
[0,1]. In 1951 C. H. Dowker characterized those normal spaces X whose
product with the unit interval [0, 1] is not normal as precisely those normal
spaces which are not countably paracompact. He asked if such spaces,
soon to be called Dowker spaces, exist. In 1971, M. E. Rudin constructed
a Dowker space. But this was far from the end of the matter, because it
turned out the Dowker pathology was present in many natural topological
problems. Thus it was important to search for “nice” Dowker spaces.
Rudin’s example failed to be nice in many ways. In particular, it was not
“small” in the sense of cardinality or weight (which were X)), or character
(which was X,). Many Dowker spaces that were small, and/or “nice” in
other ways, were constructed, but only assuming various axioms beyond
ZFC. E.g., Rudin herself constructed a Dowker manifold (non-metrizable
of course) assuming CH. But for decades the only known ZFC Dowker
space was still Rudin’s 1971 example.

So Zoli’s 1996 example of an entirely new ZFC Dowker space was very
exciting and certainly deserves the “greatest hit” label.

Greatest Hit # 2: There is a o-discrete Dowker space of cardinality
¢ in ZFC [Ba96].

J. E. Vaughan, in his review of Zoli’s paper, calls it “a milestone in
set-theoretic topology.” Indeed it was, not only for it’s properties stated
above, or just that it was the first new ZFC Dowker space in a quarter
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century, but even more for the technique, which he subsequently applied,
in highly non-trivial fashion, to obtain solutions of long-standing problems
of Nagami and K. Morita, which we also are calling greatest hits.

Greatest Hit # 3 : Solution to Nagami’s problem: there is a normal
screenable non-paracompact space [Ba98b].

R. H. Bing defined a space to be screenable if every open cover has a o-
disjoint open refinement. In 1955, K. Nagami explicitly asked the natural
question whether normal screenable spaces are paracompact. It is easily
seen that normal, countably paracompact, screenable spaces are paracom-
pact, so a counterexample if it exists must be a Dowker space. In 1983,
M. E. Rudin obtained an example under ™1, a powerful combinatorial
axiom that holds under V=L. In 1998, Zoli finally settled the problem with
his ZFC example.

Greatest Hit #4 : Morita conjectures established: X is metrizable
iff its product with every Morita P-space is normal [Ba01b].

In 1976, K. Morita stated three basic conjectures about normality in
products. The first one was solved by Rudin in 1978, and the second
implies the third, so we only discuss the second. Morita studied the class
of P-spaces, i.e., normal spaces whose product with every metrizable space
is normal. It is well-known that not every normal space is in this class (e.g.,
any Dowker space). Now, if X is metrizable, then trivially X x Y is normal
for every Morita P-space Y. Morita’s second conjecture is that the reverse
also holds. K. Chiba, T. Przymusinski, and Rudin showed that the second
conjecture (and hence all three) is true if, for each uncountable cardinal
K, there is a Morita P-space X which has a well-ordered increasing open
cover in type w1, but there is no refinement of this open cover by at most
r-many closed sets. Such examples were constructed by A. Beslagic and
Rudin in 1985 under V=L. But there was no ZFC solution to the problem
until Zoli, using another version of his Dowker space technique, constructed
spaces in ZFC having the same properties as those constructed by Beslagic
and Rudin under V=L. This was an outstanding achievement which finally
settled the three conjectures of Morita in the affirmative in ZFC.
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7. Miscellaneous

The name of this category does not imply a value judgement of any
sort. In fact, we begin this section by discussing two more of his greatest
hits!

Greatest Hit #5: Solution to the Moore—Mrowka problem: the
Proper Forcing Axiom implies that compact countably tight spaces are se-
quential [Ba89).

In an AMS Notices article in 1964, R. C. Moore and S. Mrowka asked
if every countably tight compact Hausdorff space is sequential*. In other
words, if the topology of a compact Hausdorff space X is determined by
its countable subsets, must the topology of X in fact be determined by its
convergent sequences?

This natural and important problem received quite a bit of attention.
Nyikos called it ”Classic Problem VI” in his 1977 list of major open prob-
lems in set-theoretic topology. Arhangel’skii gives a thorough discussion
of it in a 1978 survey paper, where he puts it as Number 1 in an extensive
list of open problems, and indicates that he believes there should be a
ZFC counterexample. In 1976, Ostaszweski and Fedorchuk had each con-
structed counterexamples under the axiom <». But since then not very
much happened until the power of Shelah’s technique of “proper forcing”
became widely known. In 1986, D. Fremlin and Nyikos had obtained some
related results using Fremlin’s write-up of a proper forcing method due
to S. Todorcevié. Nyikos also showed that MA + —CH is not sufficient
to solve the Moore-Mrowka problem, and that the stronger Proper Forc-
ing Axiom (PFA) implied a positive answer for hereditarily normal spaces.
Then Zoli completed the solution, showing that the answer is positive un-
der PFA. The result followed as a corollary to a more general statement
which had some of the results of Fremlin and Nyikos as other corollar-
ies. D. B. Shakhmatov, in his 1991 survey of results on the structure of
compact spaces over the previous 8-10 years, called Zoli’s result “the main
advance in the theory of compact spaces during the covered period.”

Greatest Hit # 6: Fvery open cover of a monotonically normal space

4x is countably tight (resp., sequential) if for any non-closed subset A of X, there exists
x € A\A and a countable A" = {ay}new C A with z € A’ (resp., {an}new converges
to x).
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X has a o-disjoint (partial) refinement V by open sets such that X\ |JV
1s the union of a discrete family of closed subspaces each homeomorphic to
some stationary subset of a reqular uncountable cardinal (the cardinal may
vary with the subspaces) [BR92].

The class of monotonically normal spaces was introduced by Heath,
D. J. Lutzer and P. Zenor in 1973 as a common generalization of ordered
spaces and metrizable (or more generally, “stratifiable”) spaces. Balogh
and Rudin proved the deep and powerful result stated above, a very impor-
tant corollary of which is that R. Engelking and Lutzer’s theorem, which
says that an ordered space is paracompact if and only if it does not con-
tain a closed copy of a stationary subset of a regular uncountable cardinal,
extends to the class of monotonically normal spaces. The Balogh-Rudin
result answered almost every question in the literature having to do with
covering properties of monotonically normal spaces. The proof is lengthy
and complicated — just what one would expect, given these authors!

Zoli obtained many more significant results but there is no space here
to mention them all. We content ourselves with discussing just one more
very nice paper. An interesting problem of M. Katetov, which dates back
to 1951, is whether every normal Ts-space X in which the Baire and Borel
algebras in X coincide must be perfectly normal. (If a space is perfectly
normal, they must coincide.) In [Ba88al, Zoli obtained several examples
giving a negative answer to the problem under CH, and another one based
on a consistent construction due to A. Miller of a subset M of the real line
in which every subset is Baire but not every subset is Gs. It is not known if
a counterexample to Katetov’s question exists in ZFC. In the same paper,
Zoli solves in ZFC a 1965 problem of K. A. Ross and K. Stromberg by
constructing a normal locally compact space in which there exists a closed
Baire set which is not a zero-set.
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