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Perturbations of nonlinear evolution equations

By W. M. BIAN (Southampton)

Abstract. Existence results are given for the evolution inclusions /() +
A(t,z(t))+ G(t,z(t)) > f(t) with A(¢,-) a monotone mapping and G a set-valued
bounded or Lipschitz mapping.

1. Introduction

Consider the existence of solutions to the evolution inclusion
2'(t) + A(t,z(t)) + G(t,z(t)) > f(t) a.e. on [0,T], =(0) = zq

in a evolution triple (V, H,V*) with A(t,-) a monotone mapping and G a
set-valued mapping.

As a perturbation to the classical equation z'(t) + A(z(t)) = f(t),
this problem is very important not only in evolution equation theory but
also in other subjects such as distributed parameter control systems (see
[1], [2], [11]). So, it has been recently studied in many publications under
different conditions (see [3], [6], [8], [9], [12] and the references therein). In
[3], the coerciveness assumptions made to A involves the norm of H and
G is assumed to satisfy a convergence condition; In [8] and [9], v — G(t,v)
is supposed to be an upper semicontinuous mapping with closed convex
values and satisfy a growth condition. In [6], G can be an nonconvex-
valued mapping but it is supposed to be integrablly bounded. We notice
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although a wrong imbedding result is used in [6], the main conclusion is
not effected due to the reason stated in [8].

In this paper, we will give two new existence results for the above
problem. In one of our result, we just suppose that the mapping v +—
G(t,v) is upper semicontinuous and bounded (maps bounded sets into
bounded sets), do not impose growth condition, and consider the local
existence. In another result, v — G(t,v) is supposed to be Lipschitz with
the constant depending on t and the values of G can be nonconvex. A
continuity theorem is also presented, which is a modification to a similar
one in [8].

2. Preliminaries

In this paper, we always suppose (V, H, V*) is an evolution triple, that
is, H is Hilbert space, V is a separable reflexive Banach space with dual
V*and V — H — V* densely and continuously. The inner product of H
as well as the duality pairing between V' and V* are denoted by (-,-). We
also suppose that co > p > 2 is a real number and ¢ = p/(p — 1). (-,-)
stands for the duality pairing between LP(0,7;V) and L(0,7T;V*). The
norm in any Banach space X involved is denoted by || - ||x. The space
X endowed with weak topology is denoted by X,,, the weak convergence
(in X) is denoted by “x,, — z”, and the functional space L"(0,7T; X') with
r > 0 will be abbreviated to L"(X). For a sequence of subsets D,, C X,
we denote by

w-limsup D, = {z € X : there exist ny and z,, € D,, with z,, — z}.
n—oo

For a set-valued mapping G : [0,7] — X, we denote by
SL={zx e L' (X):z(t) € G(t) ae.}.

A known result is that SE # 0 if inf{||u||x : u € G(t) a.e.} € L1(X).

Let W(0,T) = {x € LP(V) : 2/ € LY(V*)}. Tt is known that W (0,T)
is a reflexive Banach space endowed with the norm ||z[|w := ||z z»(v) +
2" || Lagv+y, W(0,T) < C(0,T; H) continuously and, if the imbedding of
V into H is compact, then W(0,T) — LP(H) compactly.
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We also recall that a set-valued mapping F' between Hausdorff spaces
X and Y is said to be upper semicontinuous (u.s.c.) if F~1(D) := {z €
X : F(z)N D # (0} is closed for each closed subset D C Y; F is said to be
hemicontinuous if ¢ — F(x +ty) is w.s.c. If X is a reflexive Banach space,
Y = X* and (y1 — y2, 21 —x2) > 0 for all x; € X, y; € F(x;),i = 1,2, then
F is called monotone on X.

Now, we consider evolution equation

2(t) + A(t,x(t)) = f(t) a.e. on [0,T], x(0) =z € H (2.1)

under the following assumptions.

(H1) A:[0,T] x V — V* is an operator with ¢ — A(¢,v) measurable,
v — A(t,v) hemicontinuous and monotone.

(H2) There exist a; > 0, ag € L4(0,T) such that

JA(t,v)|[ve < arl|o][5 " + ag(t), forallv eV, te0,T).

(H3) There exist ag > 0, a4 € L'(0,T) such that
(A(t,v),v) > as||v|}, —aa(t), forallveV, tel0,T].

(H4) V — H compactly.

It is well known (see [7] or [12]) that if (H1)—(H3) are satisfied, then, for
each g € H and each f € L4(V*), equation (2.1) has a unique solution in
W (0,T), which will be always denoted in the following by x ¢, and, if D is a
bounded subset of L4(V*), then the solution set {x; : f € D} is bounded in
W(0,T). In fact, there exists ¢ > 0 such that ||z ¢|lwo7r) < c+cl fllLaqv+)-
(This is also true for some implicit problems, see [4].) Moreover, the
solution mapping f + s has a property as stated below.

Proposition 2.1. Suppose (H1)—-(H4) are satisfied. Then the solu-
tion mapping f +— xy of equation (2.1) is continuous from LY(H), to
C(0,T; H), monotone on L1(V*) and

lzy(t) = 2g(t)ller < /0 1f(s) —g(s)luds forall f,g € L'(H). (2.2)

PRrROOF. Let f, = fin LY(H). Then { f,} is bounded in L4(V*). From
the remarks we made above, we know that {z,} is bounded in W(0,T).
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So, by passing to a subsequence, we may assume that z;, — y in W(0,T).
Since W(0,T) — C(0,T; H) continuously, {xy, } is bounded in C(0,T; H).
Since x4, (0) = z7(0) = z¢ and

2, () + At wy, () = fu(t), 27(t) + At 25(t) = f(t)  ae.,

(1, (6) = 50 23, (0) — 2(0)) = 5 o, () — 2O,

by the monotonicity of A(t,-), we have

5 g (0) g () < (o) = £ 25, (5) — 5 (5)).

Therefore
1 5 t
sl () —2p(®)F < / (fals) = f(s),25,(s) —xp(s))ds  (2.3)
0
t
B /0 (£als) = F(s),21,(5) = y(s))ds (2.4)
+ /0 (Fa(s) — £(5),9(s) — 25(s))ds.

Since W(0,T) — LP(H) compactly, we may suppose that s, — y strongly
in LP(H). So from the boundedness of {f,}, it follows that

¢
/O (fuls) = F(s),24,(s) = y(s))ds < |lfu = fllpacm e, = yllLogmy — 0.

By letting x(s) =1 for s <t and x(s) = 0 for s > ¢, we see
[ ()= 165)066) = ()
T
= [ () = 551 x$)015) — (s1)ds — 0.

So, from (2.3) and (2.4), it follows that ||z, (t) — zf(t)||z — O for each t.
Together with the boundedness of {xy, } in C'(0,T; H), we see that 7, —
xy in LP(H) and therefore, by (2.3) and Hélder’s Inequality, we see

Iz, (8) = 2¢O < 201fa = Flranlles, — 2l — 0.
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That is, g, (t) — x¢(t) in H uniformly. This proves the continuity of
f— xy from LY(H), to C(0,T; H).

Using the same method as used to obtain (2.3), we can prove, for all
fyg € LYV™), that

Slar® = ol < [ (7= g(s)oas(s) = ay(e))ds, ¢ €0.7] 25)

Let t =T, we see that ((f —g, 2 —x4)) > 0 which implies the monotonicity
of fraxy. If, in (2.5), let f,g € L9(H), then we obtain

Slar®) =2yl < [ 156) = g)llles(s) =y (s) .

Applying the extended Gronwall’s inequality (see [5] or [13]), we have

s (1) — 2o ()]l < / 1£(5) — g(s)llads.

This proves (2.2) and completes the proof. O

Remark 2.2. The continuity of f — z; from L(H), to C(0,T;H)
was also claimed in Proposition 1 of [8] where as is a constant and a4 = 0.
Moreover, our method is different.

3. Existence results

In this section, under (H1)-(H4), we suppose G(t, -) is either a bounded
or a Lipschitz mapping on H, and consider the existence of solutions of
the inclusion

2 (t)+ A(t,z(t)) + G(t,z(t)) > f(t) a.e. on [0,T], z(0) =z9 € H. (3.1)

Theorem 3.1. Under assumptions (H1)-(H4), suppose b € L9(0,T)
is a given function. Let G : [0,T] x H — 2" be a set-valued mapping with
closed convex values, t — G(t,v) be measurable and v — G(t,v) be u.s.c.
from H to H,,. If for any bounded subset D C H, there exists M > 0 such
that

sup{||G(t,v)|m :vE D} <M +b(t) ae.,

then problem (3.1) admits solutions on [0, Ty| for some Ty € (0,T].



100 W. M. Bian

PRrROOF. Let

1/2 T
_ 2
= (ool + 2Nasllrom + ol My )+ [t
D={ueH:|ul|lg<d+k} with k>0 a given number.
By our assumptions on G, there exists M > 0 such that
sup{||ullm : v € G(t,v), ve D} <M +b(t) ae. on [0,7]. (3.2)

We choose Ty € (0,T] such that ToM < k (that is, Ty = min{T,k/M})
and denote by

= {g€ LI(H) : |g(t)llx < M +b(t) a.e. on [0,Tp]},
F(g) - Sé'(-,xf,g(-)) for g € Ds.

Then D, is a bounded, closed and convex subset of L4(0,Ty; H), F(g) is a
nonempty, closed, bounded and convex subset for each g € Dy.
Take g € Dy and write z = xy_, for convenience. Then

(@'(t),2(t) + (A(t, 2(t)), 2(t)) = (f(t) — g(t), x(t)) ae.

From (H3), the fact that (2/(t), z(t)) = 34 |lz(t)||% and Young’s inequality,
it follows that

t t
lz ()11 +2a3 | 2 (s)|[7ds < [lzoll + 2/ as(s)ds
0 0

w2 [ 156

+mmmwT+mJWx\wm— W/quw@

t
v :B(S)Ilv+2/ lg()llzllz(s)llds < [lwolE

+2A|m@mmmwwH@.

By the extended Gronwall’s Inequality ([5] or [13]), we have

9 1/2
2
o0l < (Ieolfy +2asllorom + 2 My
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t
+/ lg(s)|uds < d+ToM < d+k a.e. on [0, Tp].
0

So x(t) = xj_4(t) € D for each t € [0,Tp] and, therefore, ||2(t)||p <
M + b(t) for each z € F(g) and each ¢t € [0,Tp] because of (3.2). This
means that F' maps D; into itself as a set-valued mapping.

Let (gn,2n) € Graph(F) and g, — ¢, 2z, — z in L9(0,Tp; H). By
Proposition 2.1, x¢_,4, — x5_4 in C(0,Tp; H) and, therefore, x;_,, (t) —
xf_g(t) in H for each t € [0,Tp]. Since G(t,-) is u.s.c., we see

w-limsup G(t,zf_g, (1)) C G(t,x_4(t)) ae..

n—oo

Invoking Theorem 4.2 of [10], we have

z € w- liisolép F(gn) C S}U_limsupnﬂoo Gloajg, () C Sé(~,zf_g(~)) = F(g).
So (g, z) € Graph F, that is, I is closed under the weak topology. Since D
is weakly compact, we see that F' is weakly u.s.c. under the weak topology.
From Kakutani’s fixed point theorem, it follows that F' has fixed point,
say g. By the meaning of the notion x; we see that xy_, is a solution of
(3.1) on [0, Tp). O

Remark 3.2. Suppose z7 is a solution of (3.1) on [0, Tp]. Then, by the
same method as used above, we can prove that there exist 77 € (1p, T
and zo € W (Tp,T1) such that

xQ(To) = Q?l(To), 1'/2(t) —i—A(t, xg(t)) —i—G(t,l’g(t)) > f(t) a.e. on [To,Tl].

This implies that the interval on which (3.1) has solutions can be extended.
But, without further assumptions, we are not sure whether this interval
can be extended to [0, 7.

Now, we consider the case when G is Lipschitz with nonconvex values.

Theorem 3.3. Under assumptions (H1)-(H4), let G : [0, T] x H — 21
be a set-valued mapping with closed and bounded values, sup{||u||g : u €
G(t,0)} € L9(0,T) and t — G(t,v) be measurable. Suppose there exists
k € L1(0,T) such that

H(G(t, Ul),G(t,’Ug)) < k(t)HUl — UQHH, for allt € [O,T], V1,02 € H.
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Here, H(-,-) means the Hausdorff distance on H. Then problem (3.1) has
solutions. If, in addition, G is single-valued, then the solution is unique.

PROOF. Let f + z; be the same operator as in Proposition 2.1 and
let
F(g) = Sé(-,%f,g(-)) for g S Lq(H)

Then F(g) # () for every g € LY(H) and F(g) C L%(H) because of our
assumptions on G. It is easy to see that F'(g) is closed and bounded.

Take ¢g1,92 € LY(H) and let ¢ > 0,21 € F(g1) be given. Since G is
Lipschitz, there exists zo € F(g2) such that

l22(t) = 22Ol < k(Oll2g—g0(8) — 25—l +, ace..
Let [ > 0 be a real number such that 27/7(2lq)~% < 1. For each
z€ Li(H), let

1/q

T ¢
Izl = </0 exp(2lqr(t))||z(t)”?{dt> with r(t) :/0 k9 (s)ds.

Clearly, || - ||; is @ norm on LY(H) and equivalent to the usual one. By
Proposition 2.1, Holder’s Inequality and using the integration by parts, we
obtain

T
1 — zoll? = /0 exp(—2lgr(t)) | 1(£) — za()|% dt
q

<2 [ xn(-21ar(0) (560) [ 1106) - o))

T
+62q/ exp(—2lqr(t)dt
0

T t
< 2qTq/p/ exp(—2lqr(t))kq(t)/ llg1(s) — ga2(s)||%,dsdt + 29T
0 0

T4/P t . T
— 21 Cexp(=2ar(t) [ 1)~ ga(o)fds
q 0 0
qTq/p

+2

T
sio [ P2 (s))lon(s) = ga(o) s + 21T
0

24 o 44 29T
<99 — .
2q g1 92”1 €
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We denote by H;(-,-) the Hausdorff distance in LI(H) endowed with the
new norm || - ||;. Since g1, g2 are arbitrary, we see

Ta/p
(Hi(F(g1), F(g2)))? < QqTqul — gol|f + 29€T.

By letting ¢ — 0, we obtain

Hi(F(91), F(g2)) < 2T"7(219) (|91 — goll-

So F' is a contraction on LY(H), and therefore F' has a fixed point g.

Obviously, z = r(g) is a solution of (3.1). If, in addition, G is single-

valued, then the solution is unique due to the uniquness of fixed point

of I' as a single-valued mapping. O
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