
Publ. Math. Debrecen
63/1-2 (2003), 105–113

Another characterization of the gamma function

By DETLEF GRONAU (Graz) and JANUSZ MATKOWSKI (Zielona Góra)

Abstract. The function log Γ(x)
log x is characterized to be the only convex solu-

tion of the functional equation

f(x + 1) =
log x

log(x + 1)
(f(x) + 1), x ∈ (0,∞).

Some relations to the function log Γ(x + 1)/xa, 0 < a ≤ 1 are shown.

0. Introduction

In this paper we examine the behavior of the Euler gamma function
Γ in the logarithmically scaled coordinate system. More exactly, we show
that the function g : (0,∞) → R defined by

g(x) :=





log Γ(x)
log x

for x 6= 1,

−γ for x = 1,

(where γ is the Euler gamma constant) is increasing, convex, g(0+) = −1
and g(2) = 0. The main result of our paper states that the function g is
the only convex solution of the functional equation

f(x + 1) =
log x

log(x + 1)
(f(x) + 1), x ∈ (0,∞). (1)
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One can weaken the supposition of convexity of the solution in this way
that only convexity is supposed in a neighborhood of infinity.

Note that no initial condition is required.
We would like to remark that this characterization of the gamma func-

tion is not a consequence of the famous Bohr–Mollerup characterization
of the gamma function (see e.g. [2] or [3], p. 288) as the only log-convex
solution of the functional equation

f(x + 1) = x · f(x), x ∈ (0,∞) ; f(1) = 1. (2)

And, the more, it cannot be derived from the recent generalization of the
Bohr–Mollerup theorem [5] that says that the gamma function is the only
solution of (2), which is geometrically convex on a neighborhood of infinity.
In these characterizations the initial condition is indispensable.

As an interesting consequence we infer that the function G(x) =
log Γ(exp x)

log x is strictly increasing and strictly convex on R.

We further consider the functions log Γ(x+1)
log xα and log Γ(x)

log xα for a fixed real
α, 0 < α ≤ 1, relating it with a recent paper of Grabner et al. [4].

-

6

-1

1

2

3

1 2 3 4 5

log Γ(x)

log Γ(x)
log x



Another characterization of the gamma function 107

1. Some properties of log Γ(x)/log x

The function g(x) := log Γ(x)
log x is analytic on (0,∞) with a removable

singularity at x = 1, g(1) = −0.577215 · · · = −γ

(where γ = limn→∞
(∑n

k=1
1
k − log n

)
, the Euler gamma constant). We

further have g(0+) = limx→0+ g(x) = −1, and g′+(0) = 0.
To show this the following representations are useful (see [3], p. 287f.):

log Γ(x) = − log x− γx−
∞∑

n=1

(
log

(
1 +

x

n

)
− x

n

)
, x > 0;

Ψ(x) =
d

dx
log Γ(x) =

Γ′(x)
Γ(x)

= −1
x
− γ +

∞∑

n=1

x

(x + n)n
, x > 0.

Proposition. The function g(x) = log Γ(x)
log x is strictly monotone in-

creasing and strictly convex on (0,∞).

Proof. We show that g′ and g′′ are positive on (0,∞). To do this we
use asymptotic expansions for log ◦Γ, Ψ and Ψ′ which will show us, that
g′(x) and g′′(x) are positive for large x. For smaller x one can see this
from the graph of these functions:

-
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g(x) =
log Γ(x)

log x
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The following asymptotic formulas are valid for positive x:

log Γ(x) =
(

x− 1
2

)
log x− x +

1
2

log(2π) +
1

12x
− 1

360x3
+ . . . (3)
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Ψ(x) = log x− 1
2x

− 1
12x2

+
1

120x4
− 1

252x6
+ . . . (4)

Ψ′(x) =
1
x

+
1

2x2
+

1
6x3

− 1
30x5

+
1

42x7
− . . . (5)

If we only take a partial sum of one of these series then the error will be
less than the first term neglected and has the same sign ([1], p. 257f.).

1. Note that

g′(x) =
Ψ(x)
log x

− log Γ(x)
x(log x)2

, x > 0,

with a removable singularity at x = 1. By (3) and (4) we have

log Γ(x) < (x− 1/2x) log x and Ψ(x) > log x− 1
2x

− 1
12x2

.

Hence

g′(x)x(log x)2 = x(log x)Ψ(x)− log Γ(x)

> x(log x)
(

log x− 1
2x
− 1

12x2

)
−

(
x− 1

2

)
log x > 0

if x > 2.7484 . . . .

2. g′′(x) = Ψ′(x)
log x − 2Ψ(x)

x(log x)2
+

(
1

x2(log x)2
+ 2

x2(log x)3

)
log Γ(x) for x > 0,

again with a removable singularity at x = 1. We get

x2(log x)3g′′(x) = x2(log x)2Ψ′(x) + (log x + 2) log Γ(x)

− 2x log xΨ̇(x).
(6)

Here we use the inequalities following from (5), (3) (where 1
2 log(2π) =

0.9189 . . . ) and (4):

Ψ′(x) >
1
x

+
1

2x2
, log Γ(x) >

(
x− 1

2

)
log x−x+0.9 and Ψ(x) < log x.

Herewith we get a lower bound for (6) by
(

x− 1
10

)
log x− 10x− 9

5
,

which is positive for say x ≥ 6 (more exactly x > 5.491776524 . . . ). Thus
also g′′(x) > 0 for at least x > 5.491776524 . . . . ¤
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Remark 1. In the previous proof we found it more appropriate to use
computer aided calculations to show the convexity of g(x) for small x than
to tackle complicate inequalities. For those who are not convinced by
these methods we have a second version of our main result (see Theorem 2
below).

Remark 2. The function G : R→ R defined by G = g ◦ exp, i.e.

G(x) =
log Γ(expx)

x
,

as a composition of two strictly increasing and strictly convex functions is
again strictly increasing and strictly convex on R.

2. The functional equation

The function g satisfies the functional equation

f(x + 1) =
log x

log(x + 1)
(f(x) + 1), x ∈ (0,∞). (7)

If f : (0,∞) → R is an arbitrary solution of (7), then (7) with x = 1
yields

f(2) = 0. (8)

Thus, the initial condition (8) is forced by the functional equation (7) itself.
Furthermore we have

f(n) =
log Γ(n)

log n
, n ∈ N, n ≥ 2.

and also

f(x + n) =
log x

log(x + n)
f(x) +

log
[
(x + n− 1) . . . x

]

log(x + n)
, x ∈ (0,∞), n ∈ N.

Hence also for x ∈ (0,∞), n ∈ N,

f(x + n + 1) =
log x

log(x + n + 1)
f(x) +

log
[
(x + n) . . . (x)

]

log(x + n + 1)
, (9)
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Theorem 1. The only solution of (7), convex on (0,∞) is

g(x) =
log Γ(x)

log x
.

Proof. Let f : (0,∞) → R a solution of (7), convex on (0,∞). Then
we have automatically (8) and

f(n) = g(n) =
log(n− 1)!

log n
, n ∈ N, n ≥ 2. (10)

For x ∈ (0, 1], n ∈ N, n ≥ 2 the convexity condition yields:

f(n + 1)− f(n) ≤ f(x + n + 1)− f(n + 1)
x

≤ f(n + 2)− f(n + 1), (11)

whence

0 ≤ 1
x

[f(x + n + 1)− f(n + 1)− x (f(n + 1)− f(n))]

≤ f(n + 2) + f(n)− 2f(n + 1).

Hence, applying in turn: relation (9) and (10), multiplication by log(x +
n + 1) > 0, the monotonicity of log and log Γ

log , and, finally the Stirling
formula which implies that log n! < (n + 1

2) log n− n + 1 (see [1], p. 257),
we obtain

0 ≤ 1
x

[
log x · f(x) + log[(x + n) . . . x]

− x log(x + n + 1)
(

log n!
log(n + 1)

− log(n− 1)!
log n

)]

≤ log(x + n + 1)
[
log(n + 1)!
log(n + 2)

+
log(n− 1)!

log n
− 2

log n!
log(n + 1)

]

≤ log(n + 2)
[
log(n + 1)!
log(n + 2)

+
log(n− 1)!

log n
− 2

log n!
log(n + 1)

]

= log(n + 2)
[
log(n+1)!
log(n + 2)

− log n!
log(n + 1)

]

+ log(n + 2)
[
log(n− 1)!

log n
− log n!

log(n + 1)

]
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< log(n + 2)
[
log(n + 1)!
log(n + 2)

− log n!
log(n + 1)

]

+ log(n + 1)
[
log(n− 1)!

log n
− log n!

log(n + 1)

]

= log(n + 1)!− log n!− log(n + 2)
log(n + 1)

log n! +
log(n + 1)

log n
log(n− 1)!

= log(n + 1)− log(n + 1)
log n

(log n!− log(n− 1)!)

+
(

log(n + 1)
log n

− log(n + 2)
log(n + 1)

)
log n!

=
[
log(n + 1)

log n
− log(n + 2)

log(n + 1)

]
log n!

<

[
log(n + 1)

log n
− log(n + 2)

log(n + 1)

] [(
n +

1
2

)
log n− n + 1

]
=: θ(n).

With the aid of the expansions

log(n + 1) = log n− log
(

1− 1
n + 1

)
= log n +

∞∑

i=1

1
i · (n + 1)i

,

log(n + 2) = log(n + 1) + log
(

1 +
1

n + 1

)

= log(n + 1) +
∞∑

i=1

(−1)i+1

i · (n + 1)i

we get

log(n + 1)
log n

− log(n + 2)
log(n + 1)

=
1

log n
·
∞∑

i=1

1
i · (n + 1)i

− 1
log(n + 1)

·
∞∑

i=1

(−1)i+1

i · (n + 1)i

=
(

1
log n

− 1
log(n + 1)

)
1

n + 1

+
(

1
log n

+
1

log(n + 1)

)
1

2(n + 1)2
+ · · · = o

(
1

n log n

)
.
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From this it is easy to see that θ(n) tends to 0 for n →∞. Therefore
for x ∈ (0, 1] we have

f(x) = lim
n→∞

[
x log(x + n + 1)

(
log n!

log(n + 1)
− log(n− 1)!

log n

)

− log[(x + n) . . . x]
]

1
log x

that is, f is uniquely determined on (0, 1]. According to well known unique-
ness theorems on difference equations, we have that f , as a convex solution
of (7), is uniquely determined on all of (0,∞). Since g is also a convex
solution of (7), we have f = g. ¤

Theorem 2. The only solution of (7), convex on a neighborhood of

infinity is g(x) = log Γ(x)
log x .

Proof. Let f : (0,∞) → R a solution of (7), convex say for x > a for
some positive real a. We can proceed as in the proof of Theorem 1, except
that we have suppose in (11) that n > a holds. ¤

3. Final remarks

In a recent paper [4] P. Grabner et al. showed that the function
x 7→ log Γ(x+1)

x is concave on (−1,∞) and it is characterized as the only
concave solution of its functional equation. In contrary to this the function
log Γ(x+1)

log x = log Γ(x)
log x + 1 is convex on (0,∞).

In this connection the following question arises. What is the behavior
of the function x 7→ log Γ(x+1)

xα or x 7→ log Γ(x)
xα for a fixed real α? Here the

case 0 < α < 1 is of interest.
For α ∈ (0, 1) the plotted graph of these functions looks like convex,

at least for small x. Nevertheless it is easy to show that there is a constant
c, depending on α, such that these functions are concave for x > c.

The function x 7→ log Γ(x)
xα e.g. fulfills the functional equation

f(x + 1) = f(x) · xα

(x + 1)α
+

log(x)
(x + 1)α

, x ∈ (0,∞). (12)
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It is routine to show that x 7→ log Γ(x)
xα is the only solution of (12),

concave in a neighborhood of infinity, together with the side condition
f(1) = 0. A similar statement can be given for the function x 7→ log Γ(x+1)

xα .
By this we receive different forms of characterizations of the gamma

function.
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