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Statistical approximation in the space
of locally integrable functions

By O. DUMAN (Ankara) and C. ORHAN (Ankara)

Abstract. In this paper, using A-statistical convergence, we prove a Ko-
rovkin type approximation theorem which deals with the problem of approximat-
ing a function f by a sequence {Tn(f ; x)} of positive linear operators over the
weighted space of locally integrable functions.

1. Introduction

It is known that the classical approximation operators tend to con-
verge to the value of the function being approximated. However, at points
of discontinuity, they often converge to the average of the left and right
limits of the function. There are, however, some exceptions such as the
interpolation operator of Hermite–Fejer [4] that do not converge at points
of simple discontinuity. In this case, the matrix summability methods of
Cesáro type are applicable to correct the lack of convergence [5].

Statistical convergence which is a regular non-matrix summability
method is also effective in “summing” non-convergent sequences [10], [12],
[13]. Recently, their use in approximation theory has been considered
in [8], [16]. The purpose of the present paper is to study a Korovkin type
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approximation theorem via A-statistical convergence in the space of locally
integrable functions.

Approximation theory has important applications in the theory of
polynomial approximation in various areas of functional analysis, numeri-
cal solutions of differential and integral equations [1], [23].

Before proceeding further we recall some notation on statistical con-
vergence. Let A = (ank) be an infinite summability matrix. For a given se-
quence x := (xk), the A-transform of x, denoted by Ax := ((Ax)n), is given
by (Ax)n =

∑∞
k=1 ankxk, provided the series converges for each n. We say

that A is regular if limn(Ax)n = L whenever limn xn = L [18]. Assume
now that A is a non-negative regular summability matrix and K is a sub-
set of N, the set of all natural numbers. The A-density of K is defined by
δA(K) := limn

∑∞
k=1 ankχK(k) provided the limit exists, where χK is the

characteristic function of K. The sequence x := (xk) is A-statistically con-
vergent to the number L if, for every ε > 0, δA{k ∈ N : |xk − L| ≥ ε} = 0
[6], [11], [22], [24]. We denote this limit by stA - limx = L. The case in
which A = C1, the Cesáro matrix, A-statistical convergence reduces to
statistical convergence [10], [12], [13]. We note that if A = (ank) is a non-
negative regular summability matrix for which limn maxk{ank} = 0, then
A-statistical convergence is stronger than convergence [22].

It should be noted that the concept of A-statistical convergence may
also be given in normed spaces: Assume (X, ‖ . ‖) is a normed space and
u = (uk) is a X−valued sequence. Then (uk) is said to be A-statistically
convergent to u0 ∈ X if, for every ε > 0, δA{k ∈ N : ‖uk − u0‖ ≥ ε} = 0,
[20], [21].

2. A Korovkin type theorem via A-statistical convergence

In this section, using A-statistical convergence, we prove a Korovkin
type approximation theorem which deals with the problem of approximat-
ing a function f by a sequence {Tn(f ;x)} of positive linear operators over
the weighted space of locally integrable functions.

Let w(x) = 1 + x2, −∞ < x < +∞, and let h > 0. By Lp,w(loc) we
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denote the space of all measurable functions f for which

(
1
2h

∫ x+h

x−h
|f(t)|pdt

) 1
p

≤ Mf w(x), −∞ < x < +∞,

where Mf is a positive constant depending on f and p ≥ 1. It is known
[15] that Lp,w(loc) is a linear normed space with norm

‖f‖p,w = sup
−∞<x<+∞

(
1
2h

∫ x+h
x−h |f(t)|p dt

) 1
p

w(x)
,

and ‖f‖p,w may also depend on h.
For any real numbers a, b we write

‖f ;Lp(a, b)‖ :=
(

1
b− a

∫ b

a
|f(t)|pdt

) 1
p

,

‖f ;Lp,w(a, b)‖ := sup
a≤x≤b

‖f ;Lp(x− h, x + h)‖
w(x)

,

‖f ; Lp,w(|xt| ≥ a)‖ := sup
|x|≥a

‖f ; Lp(x− h, x + h)‖
w(x)

.

With this notation the norm in Lp,w(loc) may be written in the form

‖f‖p,w = sup
−∞<x<+∞

‖f ; Lp(x− h, x + h)‖
w(x)

.

Let Lk
p,w(loc) be the subspace of functions f ∈ Lp,w(loc) such that there

exists a constant kf with

lim
|x|→∞

‖f − kf w; Lp(x− h, x + h)‖
w(x)

= 0.

If kf = 0, we then write L0
p,w(loc) instead of Lk

p,w(loc).
Some Korovkin type approximation theorems for a sequence of positive

linear operators acting in the weighted space of continuous functions have
been studied in [14], [17]. Similar type of theorems in Lp(a, b) may be
found in [9]. See also [2], [3], [7], [19], [26] for related results.

The set of all positive linear operators acting on Lp,w(loc) into itself
will be denoted by (Lp,w(loc) → Lp,w(loc))+. It is shown in [15] that if the
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sequence of operators Tn ∈ (Lp,w(loc) → Lp,w(loc))+ is uniformly bounded
and

lim
n→∞ ‖Tn(tm; x)− xm‖p,w = 0, (m = 0, 1, 2),

then limn→∞ ‖Tnf − f‖p,w = 0 for each function f ∈ Lk
p,w(loc). It is

also observed in [15] that the above mentioned result fails if Lk
p,w(loc) is

replaced by Lp,w(loc).
Replacing ordinary limit operator with A-statistical limit operator, we

shall consider the analogous problems.
We shall require the following

Lemma 1. Let A = (ank) be a non-negative regular summability ma-

trix. Assume that the sequence of positive linear operators Tn : Lp,w(loc)→
Lp,w(loc) satisfy

stA - lim
n
‖Tnfv − fv‖p,w = 0 (1)

where fv(y) = yv, v = 0, 1, 2. Then, for any continuous and bounded f on

the real axis, we have

stA - lim
n
‖Tnf − f ; Lp,w(a, b)‖ = 0.

Proof. Since f is uniformly continuous on any closed interval, given
ε > 0, there exists a δ = δ(ε) > 0 such that |f(t) − f(x)| < ε whenever
|t−x| < δ, x ∈ [a, b], t ∈ R. Let M := supx∈R |f(x)|. Then |f(t)− f(x)| ≤
2M if |t− x| ≥ δ, x ∈ [a, b], t ∈ R. Hence

|f(t)− f(x)| = |f(t)− f(x)|χ[x−δ,x+δ](t) + |f(t)− f(x)|χR\[x−δ,x+δ](t)

< ε + 2M
(t− x)2

δ2
.

Therefore

‖Tnf − f ; Lp,w(a, b)‖ = ‖Tn(f(t);x)− f(x); Lp,w(a, b)‖
≤ ‖Tn(|f(t)− f(x)|;x); Lp,w(a, b)‖+ M‖Tnf0 − f0;Lp,w(a, b)‖

< ε‖Tn(f0; x);Lp,w(a, b)‖+
2M

δ2
‖Tn((t− x)2; x);Lp,w(a, b)‖

+ M‖Tnf0 − f0; Lp,w(a, b)‖
≤ ε + (1 + M)‖Tn(f0;x);Lp,w(a, b)‖
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+
2M

δ2
{‖Tnf2 − f2;Lp,w(a, b)‖+ 2C‖Tnf1 − f1; Lp,w(a, b)‖
+ C2‖Tnf0 − f0; Lp,w(a, b)‖}

where C = max{|a|, |b|}. Now letting

H := max
{

1 + M,
2C2M

δ2
,

4CM

δ2

}

we get

‖Tnf − f ; Lp,w(a, b)‖ < ε

+ H{‖Tnf0 − f0; Lp,w(a, b)‖
+ ‖Tnf1 − f1; Lp,w(a, b)‖+ ‖Tnf2 − f2; Lp,w(a, b)‖}

(2)

for each n ∈ N. Given r > 0 choose ε > 0 such that ε < r. Define

D := {n : ‖Tnf0 − f0; Lp,w(a, b)‖+ ‖Tnf1 − f1; Lp,w(a, b)‖
+ ‖Tnf2 − f2;Lp,w(a, b)‖ ≥ r − ε},

D1 :=
{

n : ‖Tnf0 − f0; Lp,w(a, b)‖ ≥ r − ε

3H

}
,

D2 :=
{

n : ‖Tnf1 − f1; Lp,w(a, b)‖ ≥ r − ε

3H

}
,

D3 :=
{

n : ‖Tnf2 − f2; Lp,w(a, b)‖ ≥ r − ε

3H

}
.

Then D ⊆ D1 ∪D2 ∪D3. Hence, by (2)
∑

k : ‖Tkf−f ;Lp,w(a,b)‖≥r

ank ≤
∑

k∈D

ank ≤
∑

k∈D1

ank +
∑

k∈D2

ank +
∑

k∈D3

ank. (3)

Now taking limit as n →∞, (1) and (3) yield the result. ¤

Theorem 2. Let A = (ank) be a non-negative regular summability

matrix. If the sequence of positive linear operators Tn : Lp,w(loc) →
Lp,w(loc) satisfies the following conditions

(a) there exists an H > 0 such that δA{n ∈ N : ‖Tn‖ ≥ H} = 0
and
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(b) stA - limn ‖Tnfv − fv‖p,w = 0 where fv(t) = tv, v = 0, 1, 2;

then

stA - lim
n
‖Tnf − f‖p,w = 0 (4)

for each f ∈ Lk
p,w(loc).

Proof. If f ∈ Lk
p,w(loc), then F := f−kf w ∈ L0

p,w(loc). Considering
the inequality

‖Tnf − f‖p,w ≤ ‖TnF − F‖p,w + kf‖Tnw − w‖p,w

≤ ‖TnF − F‖p,w + kf‖Tnf0 − f0‖p,w + kf‖Tnf2 − f2‖p,w

we conclude by (b) that if (4) holds for the function F , then so does for
the function f . So, it suffices to prove the theorem for the function f ∈
L0

p,w(loc). Hence given ε > 0, there exists x0 such that for all x satisfying
the condition |x| ≥ x0 we have

(
1
2h

∫ x+h

x−h
|f(t)|pdt

) 1
p

< ε w(x). (5)

It follows from Lusin’s theorem [25] that there exists a continuous function
ϕ on the interval [−x0 − h, x0 + h] for which

‖f − ϕ; Lp(−x0 − h, x0 + h)‖ < ε (6)

holds. Now choose a δ > 0 such that

δ < min
{

2hεp

Mp(x0)
, h

}
(7)

where M(x0) := max{max|x|≤x0+h |ϕ(x)|, 1}.
Define a continuous function g : R→ R by

g(x) =





ϕ(x), |x| ≤ x0 + h

0, |x| ≥ x0 + h + δ

linear, otherwise.

Considering (5) and (6) we have

‖f − g‖p,w ≤ ‖f − g; Lp,w(−x0, x0)‖+ ‖f − g;Lp,w(|x| ≥ x0 + h + δ)‖
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+ ‖f − g; Lp,w(x0, x0 + h + δ)‖+ ‖f − g; Lp,w(−x0 − h− δ,−x0)‖
≤ 2ε + ‖f − g; Lp(x0 − h, x0 + 2h + δ)‖
+ ‖f − g; Lp(−x0 − 2h− δ,−x0 + h)‖
≤ 2ε + ‖f − ϕ;Lp(x0 − h, x0 + h)‖+ ‖f ;Lp(x0 + h, x0 + 2h + δ)‖

+ ‖g;Lp(x0 + h, x0 + h + δ)‖+ ‖f ; Lp(−x0 − 2h− δ,−x0 − h)‖
+ ‖g;Lp(−x0 − h− δ,−x0 − h)‖+ ‖f − ϕ; Lp(−x0 − h,−x0 + h)‖ .

Using the fact that

|g(x)| ≤ M(x0) for all x ∈ R (8)

and considering (5) and (6) again, one can get

‖f − g‖p,w < 4ε + 2M(x0)
(

δ

2h

) 1
p

+ ‖f ; Lp(x0 + h, x0 + 3h)‖

+ ‖f ; Lp(−x0 − 3h,−x0 − h)‖ .

Also, by (5) and (7),

‖f − g‖p,w < 6ε + 2εw(x0 + 2h) = C1ε (9)

where C1 = 6 + 2w(x0 + 2h).
Since w(x) = 1 + x2, we can find a point x1 > x0 such that

M(x0)
w(x1)

< ε and g(x) = 0 (10)

for |x| > x1. Now let E := {n ∈ N : ‖Tn‖ ≤ H}. Then, by (a), δA(E) = 1.
Hence, given ε > 0, by (9) and (10) we get, for any n ∈ E, that

‖Tnf − f‖p,w ≤ ‖Tn(f − g)‖p,w + ‖Tng − g‖p,w + ‖f − g‖p,w

≤ ‖Tn‖ ‖f − g‖p,w + ‖Tng − g‖p,w + ‖f − g‖p,w

< (H + 1)C1ε + ‖Tng − g; Lp,w(−x1, x1)‖
+ ‖Tng − g; Lp,w(|x| ≥ x1)‖ .

By (8) and (10),

‖Tnf − f‖p,w < (H + 1)C1ε + ‖Tng − g; Lp,w(−x1, x1)‖+
M(x0)
w(x1)

< Kε + ‖Tng − g; Lp,w(−x1, x1)‖
(11)
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for any n ∈ E, where K = (H + 1)C1 + 1. Now given r > 0 choose ε > 0
such that Kε < r. Hence

∑

k∈E : ‖Tkf−f‖p,w≥r

ank ≤
∑

k∈E : ‖Tkg−g;Lp,w(−x1,x1)‖≥r−Kε

ank.

Now, it follows from Lemma 1, for any f ∈ L0
p,w(loc), that

stA - lim
n
‖Tnf − f‖p,w = 0

whence the result. ¤

The preceding theorem enables us to establish a statistical approxi-
mation result for all functions in Lp,w(loc). We give it formally as follows.

Theorem 3. Let A = (ank) be a non-negative regular summability

matrix and let the sequence of positive linear operators Tn : Lp,w(loc) →
Lp,w(loc) satisfy the conditions (a) and (b) in Theorem 2. Then, for any

function f ∈ Lp,w(loc), we have

stA - lim
n

(
sup
x∈R

‖Tnf − f ;Lp(x− h, x + h)‖
w∗(x)

)
= 0,

where w∗ is a weight function such that lim|x|→∞ 1+x2

w∗(x) = 0.

Proof. By hypothesis, given ε > 0, there exists x0 such that for all
x with |x| ≥ x0 we have

1 + x2

w∗(x)
< ε. (12)

Let f ∈ Lp,w(loc) and

an := ‖Tnf − f ; Lp,w(|x| > x0)‖ .

By (a) the set E := {n ∈ N : ‖Tn‖ ≤ H} has A-density one. Hence we have
an ≤ M for all n ∈ E. By Lusin’s theorem [25] we can find a continuous
function ϕ on [−x0 − h, x0 + h] such that

‖f − ϕ;Lp(−x0 − h, x0 + h)‖ < ε. (13)

Now define the function G by

G(x) :=





ϕ(−x0 − h), x ≤ −x0 − h

ϕ(x), |x| ≤ x0 + h

ϕ(x0 + h), x ≥ x0 + h.
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We see that G is continuous and bounded on the whole real axis. Now let
n ∈ E and f ∈ Lp,w(loc). Then by hypothesis and (13) we get

bn := ‖Tnf − f ; Lp,w(−x0, x0)‖ ≤ ‖Tn(f −G);Lp,w(−x0, x0)‖
+ ‖TnG−G; Lp,w(−x0, x0)‖+ ‖f −G; Lp,w(−x0, x0)‖

≤ (‖Tn‖+ 1) ‖f − ϕ; Lp(−x0 − h, x0 + h)‖
+ ‖TnG−G; Lp,w(−x0, x0)‖ ,

so it is easy to see that

bn < (H + 1)ε + ‖TnG−G; Lp,w(−x0, x0)‖ . (14)

On the other hand, a simple calculation shows, for any n ∈ E, that

un := sup
x∈R

‖Tnf − f ; Lp(x− h, x + h)‖
w∗(x)

≤ w(x0)bn + an sup
|x|≥x0

1 + x2

w∗(x)
.

(15)

It follows from (12), (14) and (15) that

un < (H + 1)w(x0)ε + w(x0) ‖TnG−G; Lp,w(−x0, x0)‖+ Hε

= Kε + w(x0) ‖TnG−G; Lp,w(−x0, x0)‖

where n ∈ E, f ∈ Lp,w(loc), and K := (H + 1)w(x0) + H. Given r > 0
choose ε > 0 such that Kε < r. Hence one can get

∑

k∈E : uk≥r

ank ≤
∑

k∈E : ‖TkG−G;Lp,w(−x0,x0)‖≥ r−Kε
w(x0)

ank.

Now Lemma 1 implies stA - lim un = 0. This completes the proof. ¤

3. Concluding remarks

In this section we exhibit an example of a sequence of positive lin-
ear operators for which the Korovkin theorem does not work but our A-
statistical theorem works.
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Following [15] we first define Pn : Lp,w(loc) → Lp,w(loc) by

Pn(f ; x) =





x2

(x + h)2
f(x + h), (2n− 2)h ≤ x ≤ (2n + 1)h

f(x), otherwise
(16)

where h > 0. It is noted in [15] that (Pn) is sequence of positive linear
operators such that (Pn) is uniformly bounded and

lim
n→∞ ‖Pnfv − fv‖p,w = 0

where fv(y) = yv (v = 0, 1, 2). It is also observed in [15] that there is a
function f in Lp,w(loc) for which

lim
n→∞ ‖Pnf − f‖p,w = 0 (17)

does not hold, but (17) holds for every f ∈ Lk
p,w(loc).

Now define Tn : Lp,w(loc) → Lp,w(loc) by Tn(f ; x) = (1 + un)Pn(f ;x)
where (Pn) is defined by (16) and (un) is an A-statistically null sequence
but not convergent. We note that if A is non-negative regular matrix such
that limn maxk{ank} = 0, then A-statistical convergence is stronger than
convergence [22]. So it is possible to construct such an (un). Without loss
of generality we may assume that (un) is a non-negative. Hence (Tn) sat-
isfies all conditions of our Theorem 2. So we have, for every f ∈ Lk

p,w(loc),
that

stA - lim
n
‖Tnf − f‖p,w = 0

but {‖Tnf − f‖p,w} does not tend to zero.
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