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Asymptotic stability
of monomial functional equations

By DOROTA WOLNA (Czȩstochowa)

Abstract. In this paper the asymptotic stability of monomial functional
equations of any degree is proved. This kind of stability was investigated in the
case of additive functions by F. Skof and for quadratic functionals by F. Skof and
by S. M. Jung, and by A. Gilányi for higher orders.

Introduction

Throughout this paper X denotes a real normed space and Y denotes
a Banach space. Let Y X be the vector space of all functions from X to Y .
For y ∈ X, the linear difference operator ∆y : Y X → Y X is defined by

∆yf(x) = f(x + y)− f(x), f ∈ Y X , x ∈ X

and for n ∈ N by

∆n+1
y f(x) = ∆y(∆n

yf(x)), f ∈ Y X , x ∈ X.

It can be easily verified by induction that the n-th iterate satisfies

∆n
yf(x) =

n∑

k=0

(−1)n−k

(
n

k

)
f(x + ky), f ∈ Y X , x ∈ X. (1)
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A function f : X → Y is called a monomial of degree n ∈ N if

∆n
yf(x) = n!f(y), x, y ∈ X.

The stability questions concerning polynomial or monomial function
of higher orders have been extensively studied for many years, cf. e.g.
D. H. Hyers [4], M. Albert and J. A. Baker [1]. Recently some
important results were obtained by A. Gilányi [3], see Remark 3 below.

In this work we prove the Hyers–Ulam stability of the monomial func-
tional equation on a special resticted domain and this result we apply to
the study of an asymptotic behavior of that equation. The aim of this
paper is to give the asymptotic stability of monomial functional equation
in the following form:

Let X and Y be a real normed space and a Banach space, respectively,
let n be a positive integer. Then the function f : X→Y satisfies the as-
ymptotic condition:

∥∥∆n
yf(x)− n!f(y)

∥∥ → 0 as ‖x‖+ ‖y‖ → ∞

if and only if it is a monomial of degree n.

This kind of stability was verified earlier in the case of additive func-
tions by F. Skof [6], [8] and for quadratic functions by F. Skof [7], [9]
and by S. M. Jung [5], cf. also A. Gilányi [3]. The present results were
inspired by A. Gilányi [2], and in particular we will use in the sequel the
following lemma, stated as Lemma 2 in [2].

Lemma. Let (G,+) be a group, (S, +) be an abelian group, f : G → S

be a function. Fix n ∈ N, ξ ∈ G and for the integers i ∈ N∪{0} define the

functions Fi : G → S by

Fi(y) = ∆n
yf(ξ − iy)− n!f(y), y ∈ G. (2)

Then for an arbitrary integer l ≥ 2 and for the function g : G → S defined

by

g(y) = ∆n
lyf(ξ − (l − 1)ny)− n!f(ly), y ∈ G (3)

there exist positive integers k1, . . . , k(l−1)n−1 for which

k1 + · · ·+ k(l−1)n−1 = ln − 2 (4)
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and
g(y) = F0(y) + k1F1(y) + . . . + k(l−1)n−1F(l−1)n−1(y)

+ F(l−1)n(y) + lnn!f(y)− n!f(ly), y ∈ G.
(5)

Results

Lemma 1. Let X be a real normed space and Y be a Banach space.

Let δ ≥ 0 and d > 0 be real numbers, n be a positive integer. If for a

function f : X → Y

∥∥∆n
yf(x)− n!f(y)

∥∥ ≤ δ, x, y ∈ X, ‖x‖+ ‖y‖ ≥ d (6)

then

‖f(2x)− 2nf(x)‖ ≤ 2n + 1
n!

δ, x ∈ X. (7)

Proof. Let n ∈ N, d > 0, δ ≥ 0 be fixed. Let X be a real normed
space and Y be a Banach space. Assume that a mapping f : X → Y

satisfies condition (6). Let ξ ∈ X with ‖ξ‖ = nd be fixed. We define the
function Fi : X → Y for i ∈ {0, 1, . . . , n} and g : X → Y as in (2) and (3)
with l = 2:

Fi(y) = ∆n
yf(ξ − iy)− n!f(y), i ∈ {0, 1, . . . , n}, y ∈ X

and
g(y) = ∆n

2yf(ξ − ny)− n!f(2y), y ∈ X.

First we prove that

‖Fi(y)‖ ≤ δ, i ∈ {0, 1, . . . , n}, y ∈ X (8)

and
‖g(y)‖ ≤ δ, y ∈ X. (9)

We fix a z ∈ X and we show the following inequalities:

‖ξ − iz‖+ ‖z‖ ≥ d, i ∈ {0, 1, . . . , n} (10)

‖ξ − nz‖+ ‖2z‖ ≥ d. (11)
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The inequality (10), for i = 0, takes the form

‖ξ‖+ ‖z‖ = nd + ‖z‖ ≥ nd ≥ d.

Let i = 1, . . . , n be fixed. Then

‖iz‖ = ‖ξ − (ξ − iz)‖ ≥ ‖ξ‖ − ‖ξ − iz‖

and hence
‖z‖ ≥ 1

i
‖ξ‖ − 1

i
‖ξ − iz‖. (12)

Now, taking into account (12) we get for every i ∈ {1, . . . , n}

‖ξ − iz‖+ ‖z‖ ≥ ‖ξ − iz‖ − 1
i
‖ξ − iz‖+

1
i
‖ξ‖

≥
(

1− 1
i

)
‖ξ − iz‖+

1
i
nd ≥ nd

i
≥ nd

n
= d.

Thus (10) is proved and the inequality (11) is an immediate consequence
of (10) in the case i = n. Now, the inequality (6) together with (10) and
(11) implies (8) and (9).

By Gilányi’s lemma for l = 2 there exist positive integers k1, . . . , kn−1

such that
k1 + . . . + kn−1 = 2n − 2 (13)

and

n!(f(2y)− 2nf(y)) = F0(y) + k1F1(y) + · · ·+ kn−1Fn−1(y)

+ Fn(y)− g(y), y ∈ X,
(14)

(cf. (4) and (5)). From (14), (8), (9) and (13) we infer for every y ∈ X:

‖f(2y)− 2nf(y)‖

=
1
n!
‖F0(y) + k1F1(y) + · · ·+ kn−1Fn−1(y) + Fn(y)− g(y)‖

≤ 1
n!

(‖F0(y)‖+ k1 ‖F1(y)‖+ · · ·+ kn−1 ‖Fn−1(y)‖+ ‖Fn(y)‖+ ‖g(y)‖)

≤ 1
n!

(δ + (k1 + . . . + kn−1) δ + 2δ) =
δ

n!
(3 + 2n − 2) =

2n + 1
n!

δ, y ∈ X

that is, (7) holds. ¤
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Let us state our main result.

Theorem 2. Let X be a real normed space and Y be a Banach space.

Let δ ≥ 0, d > 0 be real numbers, n be a positive integer. If for a function

f : X → Y

∥∥∆n
yf(x)− n!f(y)

∥∥ ≤ δ, x, y ∈ X, ‖x‖+ ‖y‖ ≥ d (15)

then there exists a unique monomial function g : X → Y of degree n such

that

‖f(x)− g(x)‖ ≤ 2n + 1
2n−1n!

δ, x ∈ X. (16)

Proof. If a function f : X → Y satisfies a condition (15) then, by
Lemma 1, we get

‖f(2x)− 2nf(x)‖ ≤ 2n + 1
n!

δ, x ∈ X. (17)

Substituting x
2 for x in (17) and dividing this inequality by 2n, we obtain:
∥∥∥∥

1
2n

f(x)− f
(x

2

)∥∥∥∥ ≤
2n + 1

n!
δ

2n
, x ∈ X. (18)

Using (18) we prove, by induction on k, that
∥∥∥∥

1
2nk

f(x)− f
( x

2k

)∥∥∥∥ ≤
2n + 1

n!
δ

(
1

2n−1
− 1

2nk

)
, x ∈ X, k ∈ N. (19)

For k = 1 inequality (19) is (18).
Assume that (19) holds true for some k ∈ N. Applying (18) and the

induction hypothesis we get for every x ∈ X:
∥∥∥∥

1
2n(k+1)

f(x)− f
( x

2k+1

)∥∥∥∥ =
∥∥∥∥

1
2nk

(
1
2n

f(x)− 2nkf
( x

2k+1

))∥∥∥∥

=
∥∥∥∥

1
2nk

(
1
2n

f(x)− f
(x

2

)
+ f

(x

2

)
− 2nkf

( x

2k+1

))∥∥∥∥

≤ 1
2nk

∥∥∥∥
1
2n

f(x)− f
(x

2

)∥∥∥∥ +
∥∥∥∥

1
2nk

f
(x

2

)
− f

( x

2k+1

)∥∥∥∥

≤ 1
2nk

2n + 1
n!

δ

2n
+

2n + 1
n!

δ

(
1

2n−1
− 1

2nk

)
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=
2n + 1

n!
δ

(
1

2n−1
+

1
2n(k+1)

− 1
2nk

)
=

2n + 1
n!

δ

(
1

2n−1
+

1− 2n

2n(k+1)

)

≤ 2n + 1
n!

δ

(
1

2n−1
− 1

2n(k+1)

)

which ends the inductive proof of (19).
Let us define the functions gk : X → Y by

gk(x) =
f(2kx)

2nk
, x ∈ X, k ∈ N. (20)

Let us note that in view of (1) we easily get

1
2kn

∆n
2kyf(2kx) = ∆n

ygk(x), x, y ∈ X, k ∈ N. (21)

We prove that (gk(x))k∈N is a Cauchy sequence for every x ∈ X. Let x ∈ X

be any fixed and choose an m ∈ N arbitrarily. By substituting 2k+mx for
x in (19) and dividing this inequality by 2mn, we obtain:

∥∥∥∥
1

2n(k+m)
f

(
2k+mx

)
− 1

2nm
f (2mx)

∥∥∥∥

≤ 1
2nm

2n + 1
n!

δ

(
1

2n−1
− 1

2nk

)
, x ∈ X, k,m ∈ N

or, taking (20) into account,

‖gk+m(x)− gm(x)‖ ≤ 1
2nm

2n + 1
n!

δ

(
1

2n−1
− 1

2nk

)
,

x ∈ X, k, m ∈ N.

(22)

Since the right-hand side of the inequality (22) tends to 0 as m tends to
∞, the sequence (gk(x))k∈N is a Cauchy sequence for every x ∈ X.

Because of the completeness of Y there exists

g(x) := lim
k→∞

gk(x), x ∈ X. (23)

Note what in particular we have (cf. (20))

g(0) = lim
k→∞

f(0)
2nk

= 0. (24)
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Now, if we replace x by 2kx and y by 2ky in the condition (15), we get:
∥∥∆n

2kyf(2kx)− n!f(2ky)
∥∥ ≤ δ, x, y ∈ X, k ∈ N, ‖2kx‖+ ‖2ky‖ ≥ d,

or equivalently

∥∥∆n
2kyf(2kx)− n!f(2ky)

∥∥ ≤ δ, x, y ∈ X, k ∈ N, ‖x‖+ ‖y‖ ≥ d

2k
. (25)

Let us fix now x, y ∈ X so that ‖x‖+ ‖y‖ > 0, and let p ∈ N be such that
‖x‖+ ‖y‖ ≥ d

2p . Then for every k ≥ p we have by (25)
∥∥∥∥

1
2nk

∆n
2kyf(2kx)− n!

f(2ky)
2kn

∥∥∥∥ ≤
δ

2kn
,

or in view of (21)
∥∥∆n

ygk(x)− n!gk(y)
∥∥ ≤ δ

2nk
.

Whence letting k tend to infinity we obtain
∥∥∆n

yg(x)− n!g(y)
∥∥ ≤ 0

or
∆n

yg(x) = n!g(y). (26)

The inequality (26) holds true for all x, y ∈ X. Indeed, if x = y = 0, then
we get (26) immediately, taking into account (24). Thus g is a monomial
of degree n.

Now, we will prove that f−g is bounded on X. Substituting 2kx for x

in (19), we get:
∥∥∥∥

1
2nk

f(2kx)− f(x)
∥∥∥∥ ≤

2n + 1
n!

δ

(
1

2n−1
− 1

2nk

)
, x ∈ X, k ∈ N.

Letting k go to infinity in the inequality above and using (20), we obtain:

‖g(x)− f(x)‖ ≤ 2n + 1
2n−1n!

δ, x ∈ X. (27)

It remains to prove the uniqueness of function g : X → Y , which satisfies
(27) and (26). Suppose that there exists a monomial function h : X → Y
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of degree n which is different from g and satisfies

‖f(x)− h(x)‖ ≤ 2n + 1
2n−1n!

δ, x ∈ X.

Substituting 2kx for x, we get
∥∥∥f(2kx)− h(2kx)

∥∥∥ ≤ 2n + 1
2n−1n!

δ, x ∈ X.

Since h is a monomial function of degree n, we can write the above in-
equality in the form

∥∥∥f(2kx)− 2nkh(x)
∥∥∥ ≤ 2n + 1

2n−1n!
δ, x ∈ X.

Now, dividing the above by 2nk and letting k tend to infinity, we obtain:

‖g(x)− h(x)‖ ≤ 0, x ∈ X

that is,
g(x) = h(x), x ∈ X.

This ends the proof. ¤

Remark 1. If n = 1 in Theorem 2, we get the stability of additive
functions on a restricted domain. This problem was solved by F. Skof [6]
in the case of functions from R into a Banach space. Using another method
of proof, Skof showed that the difference f − g is bounded by 9δ. In this
case, our theorem yields the estimation constant equal to 3δ.

Remark 2. Monomials of degree 2 can be also characterized as solutions
of the equation

f(u + v) + f(u− v) = 2f(u) + 2f(v), u, v ∈ X (28)

The asymptotic stability of (28) was investigated by Soon-Mo Jung

in [5]. In particular S. M. Jung proved the following (cf. [5, Theorem 2]):
Let d > 0 and δ ≥ 0 be given. Suppose that f : X → Y satisfies

‖f(u + v) + f(u− v)− 2f(u)− 2f(v)‖ ≤ δ,

u, v ∈ X, ‖u‖+ ‖v‖ ≥ d
(29)
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Then there exists a unique quadratic mapping Q (i.e. a solution of (28))
such that

‖f(u)−Q(u)‖ ≤ 7
2
δ, u ∈ X. (30)

We show that Jung’s result follows from our Theorem 2, moreover, in (30)
we get a better estimation. Indeed, suppose that f : X → Y satisfies (29)
for some δ ≥ 0 and d > 0. Let x, y ∈ X be such that ‖x‖ + ‖y‖ ≥ 2d.
Then

‖x + y‖+ ‖y‖ ≥ 1
2
‖x + y‖+ ‖y‖ =

1
2

(‖x + y‖+ ‖ − y‖) +
1
2
‖y‖

≥ 1
2

(‖x‖+ ‖y‖) ≥ d,

and hence by (29)
∥∥∆2

yf(x)− 2f(y)
∥∥ = ‖f(x + 2y)− 2f(x + y) + f(x)− 2f(y)‖

= ‖f((x + y) + y) + f((x + y)− y)− 2f(x + y)− 2f(y)‖ ≤ δ.

In other words, f satisfies (15) (for n = 2) with δ and 2d instead of d. From
Theorem 2 it follows that there exists a unique monomial g of degree 2
satisfying

‖f(x)− g(x)‖ ≤ 5
4
δ, x ∈ X.

Since g is a monomial of degree 2 if and only if it satisfies (28), putting
Q = g we obtain the assertion of Jung’s theorem (with 5

4δ instead of 7
2δ).

Let us note that a asymptotic stability of slightly more general equa-
tion, i.e.

f(x + y) + f(x− y)− 2f(x)− f(y)− f(−y) = 0

was been studied by F. Skof in [9, Theorem 3] for functions mapping R
into a Banach space.

We conclude with a result generalizing theorems of F. Skof and
S. M. Jung to the case of monomials arbitrary degree (cf. [6, Teorema 4
and Corollario] and [5, Corollary 4]).

Theorem 3. Let X be a real normed space, Y be a Banach space and

let n be a positive integer. A mapping f : X → Y is a monomial function
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of degree n if and only if the asymptotic condition

∥∥∆n
yf(x)− n!f(y)

∥∥ → 0 as ‖x‖+ ‖y‖ → ∞ (31)

holds true.

Proof. Assume that f : X → Y satisfies the asymptotic condition
(31). Then for any sequence (δk)k∈N monotonically decreasing to 0 there
exists a sequence (dk)k∈N of real positive numbers such that

∥∥∆n
yf(x)− n!f(y)

∥∥ ≤ δk, x, y ∈ X, ‖x‖+ ‖y‖ ≥ dk. (32)

According to (32) and Theorem 2, there exists a unique monomial function
gk : X → Y of degree n such that

‖f(x)− gk(x)‖ ≤ 2n + 1
2n−1n!

δk, x ∈ X. (33)

Obviously, for any k, m ∈ N, k 6= m we obtain gk = gm = g (since gk − gm

is bounded monomial function, hence gk − gm = 0). ¤

Letting k tend to infinity in (33), we obtain:

‖f(x)− g(x)‖ ≤ 0, x ∈ X,

that is,
f(x) = g(x), x ∈ X.

Hence, we conclude that f : X → Y is a monomial function of degree n.
The converse is trivial.

Remark 3. We would like to call attention to the paper by A. Gilányi

[3] in which he proves that a function f from R into Banach space satisfying

lim
‖∆n

yf(x)− n!f(y)‖
|y|α = 0

for a positive integer n, a real number α < n and as (x, y) tends to
(−∞,∞), (∞,−∞), (∞,∞) or (−∞,−∞) is approximated by a mono-
mial function of degree n. For the first reading, one might think the results
in the present paper are special cases of Gilányi’s ones. However, this is
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not the case. If α = 0 in Gilányi’s [3]; Corollary 1 we get the following:

Let X be a Banach space and n ∈ N. If a function f : R→ X satisfies

lim
(x,y)→(−∞,∞)

‖∆n
yf(x)− n!f(y)‖ = 0

then there exists a uniquely determined monomial function g : R → X of
degree n for which

lim
|y|→∞

‖f(y)− g(y)‖ = 0.

In the above theorem we consider a function f on the set of reals, while
in the Theorem 3 of this paper f is a mapping defined in a real normed
space. On the other hand we assume a stronger convergence requiring that
‖x‖+ ‖y‖ → ∞. As a reward we get that (31) forces f to be a monomial.
In Gilányi’s corollary f is asymptotically equal to a monomial.
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