QR-submanifolds of a locally conformal quaternion Kaehler manifold

By BAYRAM ṢAHIN (Malatya) and RIFAT GÜNEṢ (Malatya)

Abstract

In this paper, we study QR-submanifolds of a locally conformal quaternion Kaehler manifold.We give the basic formulas for QR-submanifolds of a locally conformal quaternion Kaehler manifold and two examples of QRsubmanifolds of a locally conformal quaternion Kaehler manifold. Necessary and sufficient conditions are given for a quaternion distribution on a QR-submanifold to be integrable. Also, a necessary and sufficient condition is given for a distribution D^{\perp} on a QR -submanifold to be a totally geodesic foliation. Further, a theorem is obtained for a QR-submanifold to be mixed geodesic. Finally, totally umbilical QR-submanifolds are studied and some theorems are given.

1. Introduction

A locally conformal quaternion Kaehler manifold (shortly, l.c.q.K. manifold) is a quaternion Hermitian manifold whose metric is conformal to a quaternion Kaehler metric in some neighborhood of each point.
I. Vaisman reported on the locally conformal Kaehler structures in [10]. He also gave several results for locally conformal almost Kaehler manifolds to be Kaehler manifolds [10], [11], [12], [13], [14].
A. Bejancu introduced QR-submanifolds of a quaternion Kaehler manifold [1]. He obtained fundamental results about these submanifolds. It is known that a real hypersurface of a quaternion Kaehler manifold is a

[^0]QR-submanifold [1]. The geometry of these submanifolds has been studied by many authors.
H. Pedersen, A. Swann and Y. S. Poon [8] introduced l.c.q.K. manifolds. They showed that a manifold is a quaternion Hermitian-Weyl manifold if and only if it is a l.c.q.K. manifold. L. Ornea and P. Piccini [6] showed that the Lee form of a compact l.c.q.K. manifold can be chosen as parallel form without any restrictions. It is known that this property is not guaranteed in the complex case [12], [13]. L. Ornea and P. Piccini [6] proved a theorem for a l.c.q.K. manifold to be a quaternion Kaehler manifold.

In this paper, we introduce QR-submanifolds of a l.c.q.K. manifold. We give some necessary and sufficient conditions for a quaternion distribution on a QR-submanifold of a l.c.q.K. manifold to be integrable. We also obtain a necessary and sufficient condition for a distribution D^{\perp} of a QR-submanifold of a l.c.q.K. manifold to be a totally geodesic foliation. Moreover, we give a characterization for a QR-submanifold to be a mixed geodesic QR-submanifold. Finally, we give some results for totally umbilical QR-submanifolds.

2. Preliminaries

We denote a quaternion Hermitian manifold by (\bar{M}, g, H), where H is a subbundle of $\operatorname{End}(T \bar{M})$ of rank 3 which is spanned by almost complex structures J_{1}, J_{2} and J_{3}. We recall that a quaternion Hermitian metric g is said to be a quaternion Kaehler metric if its Levi-Civita connection ∇ satisfies $\bar{\nabla} H \subset H$.

A quaternion Hermitian manifold with metric g is a l.c.q.K. manifold if over neighborhoods $\left\{U_{i}\right\}$ covering $M,\left.g\right|_{U_{i}}=e^{f_{i}} g_{i}^{\prime}$ with g_{i}^{\prime} a quaternion Kaehler metric on U_{i}. In this case, the Lee form ω is locally defined by $\left.\omega\right|_{U_{i}}=d f_{i}$ and satisfies

$$
\begin{equation*}
d \Theta=\omega \wedge \Theta, d \omega=0 \tag{II.1}
\end{equation*}
$$

where $\Theta=\sum_{\alpha=1}^{3} \Omega_{\alpha} \wedge \Omega_{\alpha}$ is the Kaehler 4-form. We note that property (II.1) is also a sufficient condition for a quaternion Hermitian metric to be a l.c.q.K. metric [6].

The Levi-Civita connections \bar{D}^{i} of the local Kaehler metrics g_{i}^{\prime} glue together on M to a connection \bar{D}^{\prime} related to the Levi-Civita connection $\bar{\nabla}$ of g by the formula

$$
\begin{equation*}
\bar{D}_{X}^{\prime} Y=\bar{\nabla}_{X} Y-\frac{1}{2}\{\omega(X) Y+\omega(Y) X-g(X, Y) B\} \tag{II.2}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$, where $B=\omega^{\#}$ is the Lee vector field [4].
Let \bar{M} be a l.c.q.K. manifold and M a real submanifold of \bar{M}. Then M is called a QR-submanifold if there exists a vector subbundle ν of the normal bundle such that

$$
\begin{equation*}
J_{a}\left(\nu_{x}\right)=\nu_{x} \tag{II.3}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{a}\left(\nu_{x}^{\perp}\right) \subset T_{M}(x) \tag{II.4}
\end{equation*}
$$

for $x \in M$ and $a=1,2,3$, where ν^{\perp} is the orthogonal bundle complementary to ν in $T M^{\perp}$ [1]. Let M be a QR-submanifold of \bar{M}. Set $D_{a x}=J_{a}\left(\nu_{x}^{\perp}\right)$. We consider $D_{1 x} \oplus D_{2 x} \oplus D_{3 x}=D_{x}^{\perp}$. Then the $3 s$ dimensional distribution $D^{\perp}: x \rightarrow D_{x}^{\perp}$ is globally defined on M, where $s=\operatorname{dim} \nu_{x}^{\perp}$. Also, we have for each $x \in M$

$$
\begin{equation*}
J_{a}\left(D_{a x}\right)=\nu_{x}^{\perp}, J_{a}\left(D_{b x}\right)=D_{c x} \tag{II.5}
\end{equation*}
$$

where (a, b, c) is a cyclic permutation of $(1,2,3)$. We denote the orthogonal distribution complementary to D^{\perp} in $T M$ by D. Then D is invariant with respect to the action of J_{a}, i.e. we have

$$
\begin{equation*}
J_{a}\left(D_{x}\right)=D_{x} \tag{II.6}
\end{equation*}
$$

for any $x \in M . D$ is called a quaternion distribution.
Let \bar{M} be a l.c.q.K. manifold and $\bar{\nabla}$ be the connection of \bar{M}. Then the Weyl connection does not preserve the compatible almost complex structures individually but only their 3 -dimensional bundle H. Indeed, Pedersen, Poon and Swann showed that

$$
\begin{equation*}
\bar{D}^{\prime} J_{a}=\sum Q_{a b} \otimes J_{b} \tag{II.7}
\end{equation*}
$$

for $a, b=1,2,3$, and $Q_{a b}$ is a skew-symmetric matrix of local forms [8]. Thus, from (II.1) and (II.2) we have

$$
\bar{\nabla}_{X} J_{a} Y=J_{a} \bar{\nabla}_{X} Y+\frac{1}{2}\left\{\theta_{o}(Y) X-\omega(Y) J_{a} X-\Omega(X, Y) B+g(X, Y) J_{a} B\right\}
$$

$$
\begin{equation*}
+Q_{a b}(X) J_{b} Y+Q_{a c}(X) J_{c} Y \tag{II.8}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$, where $\theta_{o}=\omega o J_{a}$.
We give the following
Theorem 2.1. [7] Let (\bar{M}, \bar{g}, H) be a compact quaternion Hermitian Weyl manifold, non-quaternion Kaehler, whose foliation \bar{D} has compact leaves. Then the leaves space $P=\bar{M} / \bar{D}$ is a compact quaternion Kaehler orbifold with positive scalar curvature, the projection is a Riemannian, totally geodesic submersion and a fibre bundle map with fibres as described in Proposition 4.10 of [7], where \bar{D} is locally generated by $B, J_{1} B=B_{1}, B_{2}, B_{3}$.

If \bar{D} is a regular foliation, then $P=\bar{M} / \bar{D}$ is a compact quaternion Kaehler manifold.

Let M be a QR-submanifold of a l.c.q.K. manifold \bar{M}. Let P denote the projection morphism of $T M$ to the quaternion distribution D and choose a local field of orthonormal frames $\left\{v_{1}, \ldots, v_{s}\right\}$ on the vector subbundle ν^{\perp} in $T M^{\perp}$. Then, on the distribution D^{\perp}, we have the local field of orthonormal frames

$$
\begin{equation*}
\left\{E_{11}, \ldots, E_{1 s}, E_{21}, \ldots, E_{2 s}, E_{31}, \ldots, E_{3 s}\right\} \tag{II.9}
\end{equation*}
$$

where $E_{a i}=J_{a} v_{i}$ and $i=1, \ldots, s$. Thus any vector field Y tangent to M can be written locally as follows

$$
\begin{equation*}
Y=P Y+\sum_{b=1}^{3} \sum_{i=1}^{s} W_{b i}(Y) E_{b i} \tag{II.10}
\end{equation*}
$$

where the $W_{b i}$ are 1-forms locally defined on M by

$$
\begin{equation*}
W_{b i}(Y)=g\left(Y, E_{b i}\right) \tag{II.11}
\end{equation*}
$$

Applying J_{a} to (II.10) and taking account of (II.1) we have

$$
\begin{equation*}
J_{a} Y=J_{a} P Y+\sum_{i=1}^{s}\left\{W_{b i}(Y) E_{c i}-W_{c i}(Y) E_{b i}\right\}-W_{a i}(Y) v_{i} \tag{II.12}
\end{equation*}
$$

We can decompose $J_{a} Y$ as follows:

$$
\begin{equation*}
J_{a} Y=\phi_{a} Y+F_{a} Y, a=1,2,3 \tag{II.13}
\end{equation*}
$$

for $Y \in \Gamma(T M)$, where $\phi_{a} Y$ and $F_{a} Y$ are the tangential and normal parts of $J_{a} Y$, respectively. Similarly, we get

$$
\begin{equation*}
J_{a} V=t_{a} V+f_{a} V \tag{II.14}
\end{equation*}
$$

Example 2.1. Let \bar{M} be a l.c.q.K. manifold. Assume that the foliation \bar{D} is regular. Then $P=\bar{M} / \bar{D}$ is a compact quaternion Kaehler manifold (cf. Theorem 2.1). We denote almost complex structures of \bar{M} and P by J_{a} and J_{a}^{\prime}, respectively. Now we consider the following commutative diagram:

where N and \bar{N} are submanifolds of \bar{M} and P, respectively. We denote the horizontal lift by *. Then we have

$$
\begin{equation*}
\left(J_{a}^{\prime} X\right)^{*}=J_{a} X^{*} \tag{II.15}
\end{equation*}
$$

We note that the projection π is a totally geodesic Riemannian submersion and a fibre bundle map. Hence $\bar{\pi}$ is also a Riemannian submersion. We denote the vertical distribution of the Riemannian submersion π by v, i.e. $\operatorname{ker} \pi_{*}=v$. Let \bar{H} be the horizontal distribution of π. Then we have $T \bar{M}=\bar{H} \oplus v$. We denote the horizontal distribution of $\bar{\pi}$ by H_{0}. We will investigate the relation between normal spaces of N and \bar{N}. We denote the Riemannian metrics of \bar{M} and P by g and g^{\prime}, respectively. Let V^{*} be the horizontal lift of $V \in \Gamma\left(T \bar{N}^{\perp}\right)$. Then we get

$$
g\left(V^{*}, X\right)=g\left(\left(\pi_{*}\right)^{*} V, X\right)=g^{\prime}\left(\pi_{*} X, V\right)=0
$$

for any $X \in H_{0}$. Thus, $\left(T \bar{N}^{\perp}\right)^{*}$ is orthogonal to H_{0}. Note that the normal space is always horizontal. Hence $\left(T \bar{N}^{\perp}\right)^{*}$ is orthogonal to v. Consequently, we have $\left(T \bar{N}^{\perp}\right)^{*} \subseteq T N^{\perp}$. Since π is a Riemannian submersion we get

$$
\begin{equation*}
\left(T \bar{N}^{\perp}\right)^{*}=T N^{\perp} \tag{II.16}
\end{equation*}
$$

Now, let t_{a} and f_{a} be the operators on \bar{N} appearing in (II.14). We denote the operators in N corresponding to t_{a} and f_{a} by t_{a}^{\prime} and f_{a}^{\prime}, respec-
tively. From (II.15) and (II.16) we obtain

$$
\begin{equation*}
\left(t_{a} V\right)^{*}=t_{a}^{\prime} V^{*} \tag{II.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(f_{a} V\right)^{*}=f_{a}^{\prime} V^{*} \tag{II.18}
\end{equation*}
$$

So, from (II.17) and (II.18) we see that N is a QR-submanifold of \bar{M} if and only if \bar{N} is a QR-submanifold of P.

Example 2.2. Let \bar{M} be a l.c.q.K. manifold. We assume that the distribution \bar{D} is regular. Then $P=\bar{M} / \bar{D}$ is a quaternion Kaehler manifold. It is known that a real hypersurface of a quaternion Kaehler manifold is a QR-submanifold [1]. From the previous example, a real hypersurface of a l.c.q.K. manifold is a QR-submanifold. Let M be a real hypersurface of a l.c.q.K. manifold \bar{M}. We denote the normal space of M by $T M^{\perp}$. Set $T M^{\perp}=S p\{N\}$. Since $\operatorname{dim}\left(T_{x} M^{\perp}\right)=1$ and $g\left(J_{a} N, N\right)=0$, we obtain $J_{a}\left(T M^{\perp}\right) \subset T M$. Thus, $\nu_{x}=\{0\}$ and $\nu_{x}^{\perp}=T_{x} M^{\perp}$ for $x \in M$.

Let \bar{M} be a l.c.q.K. manifold and M be a QR-submanifold of \bar{M}. The formulae of Gauss and Weingarten are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{II.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{II.20}
\end{equation*}
$$

for vector fields X, Y tangent to M and any vector field V normal to M, where ∇ is the induced Riemann connection in M, h is the second fundamental form, A_{V} is the fundamental tensor field of Weingarten with respect to the normal section V and ∇^{\perp} is the normal connection. Moreover, we have the relation

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{II.21}
\end{equation*}
$$

3. QR-submanifolds of a l.c.q.K. manifold

Lemma 3.1. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. Then we have

$$
\begin{equation*}
h\left(X, E_{a i}\right)=W_{a i}\left(A_{v_{i}} X\right) v_{i}+f_{a} \nabla \stackrel{\perp}{X} v_{i} \tag{III.1}
\end{equation*}
$$

and

$$
\begin{align*}
g\left(\nabla_{X} Y, E_{a i}\right)= & \frac{1}{2} \omega\left(v_{i}\right) g\left(J_{a} X, Y\right)-\frac{1}{2} \theta_{o}\left(v_{i}\right) g(X, Y) \tag{III.2}\\
& +g\left(J_{a} P A_{v_{i}} X, Y\right)
\end{align*}
$$

for any $X, Y \in \Gamma(D)$ and $v_{i} \in \Gamma\left(\nu^{\perp}\right)$.
Proof. From (II.8), (II.19) and (II.20), we obtain

$$
\begin{aligned}
h\left(X, E_{a i}\right)= & \bar{\nabla}_{X} E_{a i}-\nabla_{X} E_{a i} \\
= & \frac{1}{2}\left\{\theta_{o}\left(v_{i}\right) X-\omega\left(v_{i}\right) J_{a} X\right\}-Q_{a b}(X) E_{c i}+Q_{a c}(X) E_{b i} \\
& -\nabla_{X} E_{a i}-J_{a} P A_{v_{i}} X-\sum_{i=1}^{s}\left\{W_{b i}\left(A_{v_{i}} X\right) E_{c i}-W_{c i}\left(A_{v_{i}} X\right) E_{b i}\right. \\
& \left.-W_{a i}\left(A_{v_{i}} X\right) v_{i}\right\}+t_{a} \nabla \frac{\perp}{X} v_{i}+f_{a} \nabla \frac{\perp}{X} v_{i} .
\end{aligned}
$$

Considering the tangential and normal parts of the last equation we get

$$
h\left(X, E_{a i}\right)=\sum_{i=1}^{s} W_{a i}\left(A_{v_{i}} X\right) v_{i}+f_{a} \nabla \frac{1}{X} v_{i},
$$

and

$$
\begin{aligned}
0= & \frac{1}{2}\left\{\theta_{o}\left(v_{i}\right) X-\omega\left(v_{i}\right) J_{a} X\right\}-Q_{a b}(X) E_{c i}+Q_{a c}(X) E_{b i}-\nabla_{X} E_{a i} \\
& -J_{a} P A_{v_{i}} X-\sum_{i=1}^{s}\left\{W_{b i}\left(A_{v_{i}} X\right) E_{c i}-W_{c i}\left(A_{v_{i}} X\right) E_{b i}\right\}+t_{a} \nabla_{X}^{\perp} v_{i} .
\end{aligned}
$$

The proof of the lemma is complete.
As a result of the lemma we have the following
Corollary 3.1. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. If the Lee vector field is tangent to D and $A_{v_{i}} X \in \Gamma\left(D^{\perp}\right)$ then D defines a totally geodesic foliation.

Definition 3.1. A QR-submanifold is called mixed geodesic if $h(X, Y)=0$ for any $X \in \Gamma(D)$ and $Y \in \Gamma\left(D^{\perp}\right)[2]$.

Theorem 3.1. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. Then M is mixed geodesic if and only if

$$
\begin{equation*}
A_{v_{i}} X \in \Gamma(D) \tag{III.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X}^{\perp} v_{i} \in \Gamma\left(\nu^{\perp}\right) \tag{III.4}
\end{equation*}
$$

for any $X \in \Gamma(D)$.
Proof. (\Rightarrow) Let M be a mixed geodesic QR -submanifold. From (III.1) we get

$$
0=W_{a i}\left(A_{v_{i}} X\right) v_{i}+f_{a} \nabla \frac{\perp}{X} v_{i}
$$

or

$$
W_{a i}\left(A_{v_{i}} X\right) v_{i}=0, f_{a} \nabla \stackrel{\perp}{X} v_{i}=0
$$

Thus we have $A_{v_{i}} X \in \Gamma(D)$ and $\nabla \frac{1}{X} v_{i} \in \Gamma\left(\nu^{\perp}\right)$.
(\Leftarrow) We suppose that (III.3) and (III.4) are satisfied. From (III.1) we have $h\left(X, E_{a i}\right)=0$ for any $X \in \Gamma(D)$.

Let \bar{M} be a l.c.q.K. manifold and M a QR-submanifold of \bar{M}. From (II.8), (II.13), (II.14), (II.19) and (II.20) we get

$$
\begin{align*}
h\left(X, J_{a} P Y\right)= & f_{a} h(X, Y)-W_{a i}\left(\nabla_{X} Y\right) v_{i}+\frac{1}{2} \omega(Y) W_{a i}(X) v_{i} \\
& -\frac{1}{2} \Omega(X, Y) B^{\perp}+\frac{1}{2} g(X, Y) B_{0}^{\perp}-Q_{a b}(X) \omega_{b i}(Y) v_{i} \\
& -Q_{a c}(X) W_{c i}(Y) v_{i}-W_{b i}(Y) h\left(X, E_{c i}\right)+W_{c i}(Y) h\left(X, E_{b i}\right) \\
& +X\left(W_{a i}(Y)\right) v_{i}+W_{a i}(Y) \nabla^{\perp} v_{i} \tag{III.5}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$, where $B_{o}=J_{a} B, B^{\perp}=N$ or $B, B^{T}=\operatorname{Tan} B$.
Lemma 3.2. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. Then we have

$$
\begin{align*}
h\left(X, J_{a} Y\right)= & f_{a} h(X, Y)-W_{a i}\left(\nabla_{X} Y\right) v_{i}-\frac{1}{2} \Omega(X, Y) B^{\perp} \tag{III.6}\\
& +\frac{1}{2} g(X, Y) B_{0}^{\perp}
\end{align*}
$$

for any $X, Y \in \Gamma(D)$.
Proof. It can easily be seen from (III.5).

From Lemma 3.4 we have the following
Corollary 3.2. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. If D is integrable and $h\left(X, J_{a} Y\right)=h\left(J_{a} X, Y\right)$ for any $X, Y \in \Gamma(D), a=1,2,3$, then the Lee vector field is tangent to M.

Definition 3.2. Let M be a QR-submanifold of a l.c.q.K. manifold. Then M is called D-geodesic if $h(X, Y)=0$ for any $X, Y \in \Gamma(D)$.

Theorem 3.2. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. Assume that the Lee vector field is tangent to M. Then the following assertions are equivalent:

1) $h\left(X, J_{a} Y\right)=h\left(J_{a} X, Y\right)$ for any $X, Y \in \Gamma(D)$.
2) M is D-geodesic.
3) The quaternion distribution is integrable.

Proof. (1) $\Longrightarrow(2)$: Since \bar{M} is a quaternion Hermitian manifold, we have $J_{c} o J_{b}=-J_{b} o J_{c}=J_{a}$. Thus we get

$$
\begin{aligned}
h\left(X, J_{a} Y\right) & =h\left(J_{a} X, Y\right)=h\left(\left(J_{c} o J_{b}\right) X, Y\right) \\
& =h\left(J_{b} X, J_{c} Y\right)=h\left(X,\left(J_{b} o J_{c}\right) Y\right)=-h\left(X, J_{a} Y\right) .
\end{aligned}
$$

Hence we have $h\left(X, J_{a} Y\right)=0$.
$(2) \Longrightarrow$ (3): By using (III.6) we get

$$
-W_{a i}\left(\nabla_{X} Y\right) v_{i}+\frac{1}{2} g(X, Y) B_{0}^{\perp}=0 .
$$

Thus, interchanging X and Y in the last equation, we have

$$
-W_{a i}\left(\nabla_{Y} X\right) v_{i}+\frac{1}{2} g(Y, X) B_{0}^{\perp}=0 .
$$

Hence we obtain $[Y, X] \in \Gamma(D)$.
$(3) \Longrightarrow(1)$: We suppose that D is integrable. From (III.5) we obtain

$$
-W_{a i}\left(\nabla_{X} Y\right) v_{i}-\frac{1}{2} \Omega(X, Y) B^{\perp}+\frac{1}{2} g(X, Y) B_{0}^{\perp}=0
$$

or

$$
-W_{a i}\left(\nabla_{Y} X\right) v_{i}-\frac{1}{2} \Omega(Y, X) B^{\perp}+\frac{1}{2} g(Y, X) B_{0}^{\perp}=0
$$

for any $X, Y \in \Gamma(D)$. Hence we get

$$
h\left(X, J_{a} Y\right)-h\left(J_{a} X, Y\right)=\Omega(Y, X) B^{\perp} .
$$

Since B is tangent to M we have $h\left(X, J_{a} Y\right)=h\left(J_{a} X, Y\right)$.
Corollary 3.3. Let M be a $Q R$-submanifold of a l.c.q.K. manifold \bar{M}. Then D^{\perp} defines a totally geodesic foliation if and only if

$$
A_{v_{i}} V \in \Gamma\left(D^{\perp}\right)
$$

for any $V \in \Gamma\left(D^{\perp}\right)$.
Proof. From (II.8) we have

$$
\begin{aligned}
& \bar{\nabla}_{E_{b j}} v_{i}=-\bar{\nabla}_{E_{b j}} J_{a} E_{a i}=-\left(\bar{\nabla}_{E_{b j}} J_{a}\right) E_{a i}-J_{a} \bar{\nabla}_{E_{b j}} E_{a i} \\
& =-\frac{1}{2}\left\{\theta_{0}\left(E_{a i}\right) E_{b j}-\omega\left(E_{a i}\right) J_{a} E_{b i}-\Omega\left(E_{b j}, E_{a i}\right) B+g\left(E_{b j}, E_{a i}\right) J_{a} B\right\} \\
& \quad+Q_{a b}\left(E_{b j}\right) J_{b} E_{a i}+Q_{a c}\left(E_{b j}\right) J_{c} E_{a i}-J_{a}\left(\nabla_{E_{b j}} E_{a i}+h\left(E_{b j}, E_{a i}\right) .\right.
\end{aligned}
$$

Considering (II.20) we have

$$
\begin{align*}
P A_{v_{i}} & E_{b j}+\sum_{i=1}^{s} W_{b i}\left(A_{v_{i}} E_{b j}\right) E_{c i}-W_{c i}\left(A_{v_{i}} E_{b j}\right) E_{b i}+t_{a} \nabla_{E_{b j}} v_{i} \\
= & -\frac{1}{2}\left\{\theta_{o}\left(E_{a i}\right) E_{c j}+\omega\left(E_{a i}\right) E_{b i}\right\} \tag{III.7}\\
& +Q_{a b}\left(E_{b j}\right) E_{b i}+Q_{a c}\left(E_{b j}\right) E_{c i}+\nabla_{E_{b j}} E_{a i} .
\end{align*}
$$

If D^{\perp} defines a totally geodesic foliation then we have $P A_{v_{i}} E_{b j}=0$. Hence $A_{v_{i}} E_{b j} \in \Gamma\left(D^{\perp}\right)$. Conversely, if $A_{v_{i}} E_{b j} \in \Gamma\left(D^{\perp}\right)$ then D^{\perp} defines a totally geodesic foliation.

Lemma 3.3. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. Then, we have

$$
\begin{equation*}
A_{j} E_{a i}=A_{i} E_{a j}+\frac{1}{2} \omega\left(v_{i}\right) E_{a j}-\frac{1}{2} \omega\left(v_{j}\right) E_{a i} \tag{III.8}
\end{equation*}
$$

for any $v_{i}, v_{j} \in \Gamma\left(\nu^{\perp}\right)$.
Proof. From (II.8), (II.19) and (II.20) we have

$$
\nabla_{X} E_{a i}+h\left(X, E_{a i}\right)=-J_{a} A_{v_{i}} X+J_{a} \nabla \frac{\perp}{X} v_{i}
$$

$$
\begin{align*}
& +\frac{1}{2}\left\{\theta_{o}\left(v_{i}\right) X-\omega\left(v_{i}\right) J_{a} X-g\left(X, E_{a i}\right) B\right\} \\
& +Q_{a b}(X) E_{b i}+Q_{a c}(X) E_{c i} \tag{III.9}
\end{align*}
$$

or

$$
\begin{aligned}
g\left(h\left(X, E_{a i}\right), v_{j}\right)= & -g\left(J_{a} A_{v_{i}} X, v_{j}\right)+g\left(J_{a} \nabla \frac{1}{X} v_{i}, v_{j}\right) \\
& +\frac{1}{2} \omega\left(v_{i}\right) g\left(X, J_{a} v_{j}\right)-\frac{1}{2} \omega\left(v_{j}\right) g\left(E_{a i}, X\right) \\
g\left(A_{j} E_{a i}, X\right)= & g\left(A_{v_{i}} X, E_{a j}\right)+\frac{1}{2} \omega\left(v_{i}\right) g\left(X, E_{a j}\right)-\frac{1}{2} \omega\left(v_{j}\right) g\left(E_{a i}, X\right)
\end{aligned}
$$

for any $X \in \Gamma(T M)$. Hence we get

$$
A_{j} E_{a i}=A_{i} E_{a j}+\frac{1}{2} \omega\left(v_{i}\right) E_{a j}-\frac{1}{2} \omega\left(v_{j}\right) E_{a i}
$$

Lemma 3.4. Let M be a $Q R$-submanifold of a l.c.q.K. manifold \bar{M}. Then, we have

$$
\begin{equation*}
B_{a i j}(X)=-\frac{1}{2} \delta_{i j} \omega(X)+g\left(A_{j} E_{a i}, J_{a} X\right) \tag{III.10}
\end{equation*}
$$

for any $X \in \Gamma(D)$, where $B_{a i j}(X)=g\left(\nabla_{E_{a i}} E_{a j}, X\right)$.
Proof. From (III.9) we get

$$
\begin{aligned}
g\left(\nabla_{E_{a i}} E_{a j}, X\right) & =-g\left(J_{a} A_{v_{j}} E_{a i}, X\right)-\frac{1}{2} g\left(E_{a i}, E_{a j}\right) g(B, X) \\
& =g\left(A_{v_{j}} E_{a i}, J_{a} X\right)-\frac{1}{2} \delta_{i j} \omega(X)
\end{aligned}
$$

Lemma 3.5. Let \bar{M} be a l.c.q.K. manifold and M be a $Q R$-submanifold of \bar{M}. Then we have

$$
\begin{equation*}
g\left(\nabla_{E_{a i}} E_{b j}, X\right)=-B_{a j i}\left(J_{c} X\right)-\frac{1}{2} \delta_{i j} g\left(B, J_{c} X\right) \tag{III.11}
\end{equation*}
$$

for any $X \in \Gamma(D)$.
Proof. From (II.20) we obtain

$$
g\left(\nabla_{E_{a i}} E_{b j}, X\right)=g\left(\bar{\nabla}_{E_{a i}} E_{b j}, X\right)=g\left(J_{c} \bar{\nabla}_{E_{a i}} E_{b j}, J_{c} X\right)
$$

$$
=g\left(\bar{\nabla}_{E_{a i}} J_{c} E_{b j}-\left(\bar{\nabla}_{E_{a i}} J_{c}\right) E_{b j}, J_{c} X\right)
$$

Since $J_{c} E_{b j}=-E_{a j}$, we get

$$
g\left(\nabla_{E_{a i}} E_{b j}, X\right)=-g\left(\bar{\nabla}_{E_{a i}} E_{a j}, J_{c} X\right)-g\left(\left(\bar{\nabla}_{E_{a i}} J_{c}\right) E_{b j}, J_{c} X\right)
$$

By using (II.8) we get

$$
g\left(\nabla_{E_{a i}} E_{b j}, X\right)=-B_{a i j}\left(J_{c} X\right)-\frac{1}{2} \delta_{i j} g\left(B, J_{c} X\right)
$$

From Lemma 3.4, Lemma 3.5 and Corollary 3.3, we have the following corollaries:

Corollary 3.4. Let M be a $Q R$-submanifold of a l.c.q.K. manifold \bar{M}. Then D^{\perp} defines a totally geodesic foliation if and only if B is normal to D and $B_{a i j}(X)=0, X \in \Gamma(D)$.

Corollary 3.5. Let M be a $Q R$-submanifold of a l.c.q.K. manifold \bar{M}. If the distribution D^{\perp} is integrable and $B_{a i j}(X)=0, X \in \Gamma(D)$ for all $i, j=1, \ldots, s$, then B is normal to D.

Proof. From (III.8) and (III.10) we get

$$
\begin{align*}
B_{a i j}(X)= & -\frac{1}{2} \delta_{i j} \omega(X)+g\left(A_{i} E_{a j}+\frac{1}{2} \omega\left(v_{i}\right) E_{a j}-\frac{1}{2} \omega\left(v_{j}\right) E_{a i}, J_{a} X\right) \\
& =-\frac{1}{2} \delta_{i j} \omega(X)+g\left(A_{j} E_{a i}, J_{a} X\right)=B_{a j i}(X) \tag{III.12}
\end{align*}
$$

On the other hand we have

$$
\begin{equation*}
g\left(\nabla_{E_{b j}} E_{a i}, X\right)=-B_{b j i}\left(J_{c} X\right)-\frac{1}{2} \delta_{i j} g\left(B, J_{c} X\right) \tag{III.13}
\end{equation*}
$$

Thus, from (III.11) and (III.13) we get

$$
\begin{equation*}
g\left(\left[E_{a i}, E_{b j}\right], X\right)=-B_{a i j}\left(J_{c} X\right)-B_{b j i}\left(J_{c} X\right)+\delta_{i j} g\left(B, J_{c} X\right) \tag{III.14}
\end{equation*}
$$

From (III.14) and (III.12) the proof is results.
The rest of this section is devoted to the study of totally umbilical QR-submanifolds of a l.c.q.K. manifold.

We recall that any submanifold is called totally umbilical in a Riemann manifold if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \tag{III.15}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$, where H is the mean curvature vector.

Corollary 3.6. Let \bar{M} be a l.c.q.K. manifold and M be a totally umbilical $Q R$-submanifold of \bar{M}. Then D^{\perp} defines a totally geodesic foliation if and only if B is normal to the quaternion distribution.

Proof. From (III.10) and (III.15) we have

$$
\begin{align*}
B_{a i j}(X)= & -\frac{1}{2} \delta_{i j} \omega(X)+g\left(A_{j} E_{a i}, J_{a} X\right)=-\frac{1}{2} \delta_{i j} g(X, B) \\
& +g\left(h\left(E_{a i}, J_{a} X\right), v_{j}\right)=-\frac{1}{2} \delta_{i j} g(X, B), \tag{III.16}
\end{align*}
$$

for any $X \in \Gamma(D)$. By using (III.11) we get

$$
\begin{equation*}
g\left(\nabla_{E_{a i}} E_{b j}, X\right)=-B_{a i j}\left(J_{c} X\right)-\frac{1}{2} \delta_{i j} g\left(B, J_{c} X\right) . \tag{III.17}
\end{equation*}
$$

Thus from (III.16) and (III.17) we have the assertion of the corollary.
Theorem 3.3. Let \bar{M} be a l.c.q.K. manifold and M be a totally umbilical $Q R$-submanifold of \bar{M}. Assume that the Lee vector field is tangent to M. If $\operatorname{dim} \nu_{x}^{\perp}>1$ for $x \in M$, then the $Q R$-submanifold is totally geodesic.

Proof. From (III.8) we have

$$
A_{j} E_{a i}=A_{i} E_{a j}+\frac{1}{2} \omega\left(v_{i}\right) E_{a j}-\frac{1}{2} \omega\left(v_{j}\right) E_{a i}
$$

for $X, Y \in \Gamma\left(D_{a x}\right)$, hence

$$
A_{J_{a} X} Y=A_{J_{a} Y} X+\frac{1}{2} \omega\left(v_{i}\right) X-\frac{1}{2} \omega\left(v_{j}\right) Y
$$

where $J_{a} v_{i}=Y, J_{a} v_{j}=X$. Since $t_{a} H \in \Gamma\left(D_{a x}\right)$ at each $x \in M$, we have

$$
A_{J_{a} X} t_{a} H=A_{J_{a} t_{a} H} X+\frac{1}{2} \omega\left(t_{a} H\right) X-\frac{1}{2} \omega\left(v_{j}\right) t_{a} H .
$$

Now we derive

$$
\begin{aligned}
g\left(A_{J_{a} X} t_{a} H, X\right)= & g\left(A_{J_{a} t_{a} H} X, X\right)+\frac{1}{2} \omega\left(J_{a} t_{a} H\right) g(X, X) \\
& -\frac{1}{2} \omega\left(v_{j}\right) g\left(t_{a} H, X\right)
\end{aligned}
$$

$$
\begin{aligned}
g\left(h\left(t_{a} H, X\right), J_{a} X\right)= & g\left(h(X, X), J_{a} t_{a} H\right)+\frac{1}{2} \omega\left(J_{a} t_{a} H\right) g(X, X) \\
& -\frac{1}{2} \omega\left(v_{j}\right) g\left(t_{a} H, X\right)
\end{aligned}
$$

Since M is totally umbilical, we have

$$
\begin{aligned}
g\left(t_{a} H\right. & , X) g\left(H, J_{a} X\right)=g(X, X) g\left(H, J_{a} t_{a} H\right)+\frac{1}{2} \omega\left(J_{a} t_{a} H\right) g(X, X) \\
& -\frac{1}{2} \omega\left(v_{j}\right) g\left(t_{a} H, X\right) \\
& =-g(X, X) g\left(t_{a} H, t_{a} H\right)+\frac{1}{2} \omega\left(J_{a} t_{a} H\right) g(X, X)-\frac{1}{2} \omega\left(v_{j}\right) g\left(t_{a} H, X\right)
\end{aligned}
$$

By the hypothesis of the theorem, we can choose $X \in \Gamma(T M)$ such that $X \neq 0$ and X is orthogonal to $B_{a} H$. Since the Lee vector field is tangent to M, we obtain

$$
0=-g(X, X) g\left(t_{a} H, t_{a} H\right)
$$

that is

$$
\begin{equation*}
t_{a} H=0 \tag{III.18}
\end{equation*}
$$

On the other hand, by using (II.12), (II.14), (II.19) and (II.20) in (II.8) and taking the tangential parts we obtain

$$
\begin{aligned}
\nabla_{Y} t_{a} V-A_{f_{a} V} Y= & -J_{a} P A_{V} Y-W_{b k}\left(A_{V} Y\right) E_{c k}+W_{c k}\left(A_{V} Y\right) E_{b k} \\
& +t_{a} \nabla \frac{\perp}{Y} V+\frac{1}{2} \theta_{o}(V) Y-\frac{1}{2} \omega(V) \phi_{a} Y \\
& -\frac{1}{2} \Omega(Y, V) B^{T}+Q_{a b}(Y) t_{b} V+Q_{a c}(Y) t_{c} V
\end{aligned}
$$

or

$$
\begin{align*}
P \nabla_{Y} t_{a} V-P A_{f_{a} V} Y= & -J_{a} P A_{V} Y+\frac{1}{2} \theta_{o}(V) P Y-\frac{1}{2} \omega(V) P \phi_{a} Y \\
& -\frac{1}{2} \Omega(Y, V) P B^{T} \tag{III.19}
\end{align*}
$$

for any $Y \in \Gamma(T M)$ and $V \in \Gamma\left(T M^{\perp}\right)$. From (III.18) and (III.19) we get

$$
-P A_{f_{a} H} Y=-J_{a} P A_{H} Y+\frac{1}{2} \theta_{o}(H) P Y-\frac{1}{2} \Omega(Y, H) P B^{T}
$$

For $Z \in \Gamma(D)$, we have

$$
\begin{aligned}
g\left(P A_{f_{a} H} Y, Z\right) & =-g\left(A_{f_{a} H} Y, Z\right)=-g\left(h(Y, Z), J_{a} H\right) \\
& =-g(Y, Z) g\left(H, J_{a} H\right)=0 .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& g\left(J_{a} P A_{H} Y, Z\right)+\frac{1}{2} \theta_{o}(H) g(P Y, Z)-\frac{1}{2} \Omega(Y, H) g\left(P B^{T}, Z\right)=0 \\
& g\left(P A_{H} Y, J_{a} Z\right)+\frac{1}{2} \theta_{o}(H) g(P Y, Z)-\frac{1}{2} g\left(Y, J_{a} H\right) g\left(P B^{T}, Z\right)=0 \\
& g\left(A_{H} Y, J_{a} Z\right)+\frac{1}{2} \theta_{o}(H) g(P Y, Z)-\frac{1}{2} g\left(Y, t_{a} H\right) g\left(P B^{T}, Z\right)=0 \\
& g\left(h\left(Y, J_{a} Z\right), H\right)+\frac{1}{2} \theta_{o}(H) g(P Y, Z)-\frac{1}{2} g\left(Y, t_{a} H\right) g\left(P B^{T}, Z\right)=0 .
\end{aligned}
$$

Since the Lee vector field is tangent to M and $t_{a} H=0$, we get

$$
\begin{aligned}
g\left(h\left(Y, J_{a} Z\right), H\right) & =0 \\
g\left(Y, J_{a} Z\right) g(H, H) & =0 .
\end{aligned}
$$

Thus, we obtain $H=0$ for $Y=J_{a} Z$.
Let \bar{M} be a compact l.c.q.K. manifold. Then we can choose the metric g such that
i) The fixed metric g makes ω parallel:

$$
\begin{equation*}
\bar{\nabla} \omega=0, \tag{III.20}
\end{equation*}
$$

ii)

$$
\begin{equation*}
\|\omega\|=1 \tag{III.21}
\end{equation*}
$$

[6]. From now on we will denote a compact l.c.q.K. manifold by \bar{M}.
Lemma 3.6. Let K_{0} be the curvature tensor field of the Weyl connection \bar{D}^{\prime} of the l.c.q.K. manifold \bar{M} and \bar{R} the curvature tensor field of the Levi-Civita connection ∇ of the l.c.q.K. manifold \bar{M}. Then we have

$$
\begin{array}{r}
K_{0}(X, Y) Z=\bar{R}(X, Y) Z+\frac{1}{4}\{\omega(Z) \omega(Y) X-\omega(Z) \omega(X) Y\} \tag{III.22}\\
\quad+\frac{1}{4}\{-\omega(Y) g(X, Z)+\omega(X) g(Y, Z)\} B-\frac{1}{4}(X \wedge Y) Z
\end{array}
$$

for any $X, Y, Z \in \Gamma(T \bar{M})$.
Proof. From (II.2) we have

$$
\begin{aligned}
K_{0}(X, Y) Z= & \bar{R}(X, Y) Z-\frac{1}{2}\left\{L_{0}(X, Z) Y-L_{0}(Y, Z) X\right. \\
& \left.+g(X, Z) L_{0}(Y, .)^{\#}-g(Y, Z) L_{0}(X, .)^{\#}\right\}-\frac{1}{4}\|\omega\|^{2}(X \wedge Y) Z
\end{aligned}
$$

for any $X, Y, Z \in \Gamma(T \bar{M})$, where $L_{0}=\bar{\nabla} \omega+\frac{1}{2} \omega \otimes \omega$. Since $\bar{\nabla} \omega=0$ we have

$$
\begin{equation*}
\bar{\nabla} B=0 . \tag{III.23}
\end{equation*}
$$

Thus, from (III.20), (III.21) and (III.23) we have the assertion of the lemma.

Let \bar{D}^{\prime} be the Weyl connection of \bar{M}. Then we have

$$
\begin{equation*}
K_{0}(X, Y) J_{1} Z-J_{1} K_{0}(X, Y) Z=\alpha(X, Y) J_{2} Z-\beta(X, Y) J_{3} Z \tag{III.24}
\end{equation*}
$$

where

$$
\alpha=d Q_{12}+Q_{32} \wedge Q_{13}
$$

and

$$
\beta=d Q_{13}+Q_{23} \wedge Q_{12}
$$

Theorem 3.4. There exist no proper totally umbilical $Q R$-submanifolds in negatively curved L.c.q.K. manifolds with $B^{T}=0$.

Proof. Considering the definition of a QR-submanifold, from (III.22) and (III.24) we have

$$
\begin{aligned}
& -\bar{R}\left(X, E_{a i}, J_{a} X, v_{i}\right)-\bar{R}\left(X, E_{a i}, X, E_{a i}\right) \\
& \quad=-\frac{1}{4} \omega(X) \omega(X)-\frac{1}{4} \omega\left(E_{a i}\right) \omega\left(E_{a i}\right)+\frac{1}{4}
\end{aligned}
$$

for any orthonormal vector field $X \in \Gamma(D)$ and $E_{a i} \in \Gamma\left(D^{\perp}\right)$. Thus, if B is normal to M we get

$$
\begin{equation*}
-\bar{R}\left(X, E_{a i}, J_{a} X, v_{i}\right)+\bar{R}\left(X, E_{a i}, E_{a i}, X\right)=\frac{1}{4} . \tag{III.25}
\end{equation*}
$$

Now suppose that M is a proper totally umbilical QR-submanifold of \bar{M} with $K_{\bar{M}}<0$.

Then from the equation of Codazzi we have

$$
g(\bar{R}(X, Y) Z, W)=g(Y, Z) g\left(\nabla \frac{1}{X} H, W\right)-g(X, Z) g\left(\nabla \frac{1}{Y} H, W\right)
$$

for any X, Y, Z tangent to M and V normal to M. Thus, if we take $X \in \Gamma(D), Z=J_{1} X, Y=E_{1 i}$ and $W=v_{i}$ we obtain

$$
\begin{equation*}
\bar{R}\left(X, E_{a i}, J_{a} X, v_{i}\right)=0 . \tag{III.26}
\end{equation*}
$$

Using (III.25) and (III.26) we get $K_{\bar{M}}\left(X, E_{1 i}\right)=\frac{1}{4}$ which is a contradiction.

From the Gauss equation for totally umbilical submanifolds we have

$$
K_{M}(X, Y)=K_{\bar{M}}(X, Y)+\|H\|^{2},
$$

for any X, Y tangent to $M[3]$. Now we take $X \in \Gamma(D)$ and $E_{a i}=Y$ in this equation and taking account of $K_{\bar{M}}\left(X, E_{a i}\right)=0$ we obtain

$$
\begin{equation*}
K_{M}\left(X, E_{a i}\right)=\|H\|^{2}+\frac{1}{4} . \tag{III.27}
\end{equation*}
$$

Thus, from (III.27) and (III.26) we have the following.
Corollary 3.7. There exist no proper totally umbilical negatively curved $Q R$-submanifolds of a l.c.q.K. manifold with $B^{T}=0$.

References

[1] A. Bejancu, QR-submanifolds of Quaternion Kaehlerian Manifolds, Chinese J. Math. 14, no. 2 (1986).
[2] A. Bejancu, Geometry of CR-submanifolds, Kluwer, Dortrecht, 1986.
[3] B.-Y. Chen, Geometry of Submanifolds, Marcel-Dekker, Inc., 1973.
[4] S. Dragomir and L. Ornea, Locally Conformal Kähler Geometry, Birkhäuser, 1998.
[5] K. Matsumoto, On CR-Submanifolds of Locally Conformal Kaehler manifolds, J. Korean Math. Soc. 21, no. 1 (1984), 49-61.
[6] L. Ornea and P. Piccini, Locally Conformal Kähler Structures in Quaternionic Geometry, Trans. Amer. Math. Soc. 349, no. 2 (1997), 641-645.
[7] L. Ornea, Weyl Structures on Quaternionic Manifolds, A State of the Art, arXiv:math. DG/0105041, v1, (2002).
[8] H. Pedersen, Y. S. Poon and A. Swann, The Einstein-Weyl Equations in Complex and Quaternionic Geometry, Diff. Geo. and Its Appl. (1993), 3309-321.
[9] H. Pedersen and A. Swann, Riemannian Submersions, Four Manifolds and Einstein Weyl Geometry, Proc. London Math. Soc. (3)66 (1993), 381-399.
[10] I. Vaisman, On Locally Conformal Almost Kähler manifolds, Israel J. Math. 24 (1976), 338-351.
[11] I. Vaisman, A Theorem on Compact Locally Conformal Kähler Manifolds, Proc. Amer. Math. Soc. 75, no. 2 (1979).
[12] I. Vaisman, On Locally and Globally Conformal Kähler Manifolds, Trans. Amer. Math. Soc. 262, no. 2 (1980).
[13] I. Vaisman, Some Curvature Properties of Locally Conformal Kähler Manifolds, Trans. Amer. Math. Soc. 259, no. 2 (1980).
[14] I. Vaisman, A Geometric Condition For An l.c.K. Manifold To Be Kähler, Geometriae Dedicata 10 (1981).
B. ṢAHIN and R. GÜNEȘ
department of mathematics
faculty of science and art
INONU UNIVERSITY
44100-MALATYA
turkey
E-mail: bsahin@inonu.edu.tr

[^0]: Mathematics Subject Classification: 53C40, 53C35, 53C26.
 Key words and phrases: locally conformal quaternion Kaehler manifold, QR-submanifold, totally umbilical submanifold, sectional curvature.

