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QR-submanifolds of a locally conformal
quaternion Kaehler manifold

By BAYRAM SAHIN (Malatya) and RIFAT GUNES (Malatya)

Abstract. In this paper, we study QR-submanifolds of a locally conformal
quaternion Kaehler manifold.We give the basic formulas for QR-submanifolds
of a locally conformal quaternion Kaehler manifold and two examples of QR-
submanifolds of a locally conformal quaternion Kaehler manifold. Necessary and
sufficient conditions are given for a quaternion distribution on a QR-submanifold
to be integrable. Also, a necessary and sufficient condition is given for a distri-
bution D+ on a QR-submanifold to be a totally geodesic foliation. Further, a
theorem is obtained for a QR~submanifold to be mixed geodesic. Finally, totally
umbilical QR-submanifolds are studied and some theorems are given.

1. Introduction

A locally conformal quaternion Kaehler manifold (shortly, l.c.q.K.
manifold) is a quaternion Hermitian manifold whose metric is conformal
to a quaternion Kaehler metric in some neighborhood of each point.

I. VAisMAN reported on the locally conformal Kaehler structures in
[10]. He also gave several results for locally conformal almost Kaehler
manifolds to be Kaehler manifolds [10], [11], [12], [13], [14].

A. BEJANCU introduced QR-submanifolds of a quaternion Kaehler
manifold [1]. He obtained fundamental results about these submanifolds.
It is known that a real hypersurface of a quaternion Kaehler manifold is a
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QR~submanifold [1]. The geometry of these submanifolds has been studied
by many authors.

H. PEDERSEN, A. SWANN and Y. S. PooN [8] introduced l.c.q.K.
manifolds. They showed that a manifold is a quaternion Hermitian—Weyl
manifold if and only if it is a l.c.q.K. manifold. L. ORNEA and P. P1CCINI
[6] showed that the Lee form of a compact l.c.q.K. manifold can be chosen
as parallel form without any restrictions. It is known that this property is
not guaranteed in the complex case [12], [13]. L. ORNEA and P. P1cCINI
[6] proved a theorem for a l.c.q.K. manifold to be a quaternion Kaehler
manifold.

In this paper, we introduce QR-submanifolds of a l.c.q.K. manifold.
We give some necessary and sufficient conditions for a quaternion distri-
bution on a QR-submanifold of a l.c.q.K. manifold to be integrable. We
also obtain a necessary and sufficient condition for a distribution D+ of
a QR-submanifold of a l.c.q.K. manifold to be a totally geodesic folia-
tion. Moreover, we give a characterization for a QR-submanifold to be a
mixed geodesic QR-submanifold. Finally, we give some results for totally
umbilical QR~submanifolds.

2. Preliminaries

We denote a quaternion Hermitian manifold by (]\_4 ,q9, H ), where H
is a subbundle of End(T'M) of rank 3 which is spanned by almost complex
structures Ji, Jo and J3. We recall that a quaternion Hermitian metric g
is said to be a quaternion Kaehler metric if its Levi-Civita connection V
satisfies VH C H.

A quaternion Hermitian manifold with metric g is a l.c.q.K. manifold
if over neighborhoods {U;} covering M, g|y, = e/igl with g/ a quaternion
Kaehler metric on U;. In this case, the Lee form w is locally defined by
wly, = df; and satisfies

dO=wA0BO,dw=0 (IL.1)

where © = 22:1 Qo N Qg is the Kaehler 4-form. We note that property
(I1.1) is also a sufficient condition for a quaternion Hermitian metric to be
a l.c.q.K. metric [6].
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The Levi-Civita connections D’ of the local Kaehler metrics gi glue
together on M to a connection D’ related to the Levi-Civita connection
V of g by the formula

DY =VxY — % {wX)Y +w(Y)X —g(X,Y)B} (I1.2)

for any X,Y € I' (TM), where B = w¥ is the Lee vector field [4].
Let M be a l.c.q.K. manifold and M a real submanifold of M. Then
M is called a QR~submanifold if there exists a vector subbundle v of the
normal bundle such that
Jo(Vz) = Vg (IL.3)
and
Ja(vh) € Tor(x) (I1.4)

for x € M and a = 1,2,3, where v+ is the orthogonal bundle comple-
mentary to v in TM* [1]. Let M be a QR-submanifold of M. Set
Doy = Ju(vE). We consider Dy, ® Doy @ D3, = DE. Then the 3s-
dimensional distribution D+ : 2 — D is globally defined on M, where
s = dimv,. Also, we have for each 2 € M

Jo(Daz) = v, Jo(Dpy) = Dy (IL.5)

where (a, b, ¢) is a cyclic permutation of (1,2, 3). We denote the orthogonal
distribution complementary to D+ in TM by D. Then D is invariant with
respect to the action of J,, i.e. we have

Ja(D:c) - Dz (IIG)

for any x € M. D is called a quaternion distribution.

Let M be a l.c.q.K. manifold and V be the connection of M. Then
the Weyl connection does not preserve the compatible almost complex
structures individually but only their 3-dimensional bundle H. Indeed,
PEDERSEN, POON and SWANN showed that

D'J, = Z Qab @ Jp (IL7)

for a,b = 1,2,3, and Qg is a skew-symmetric matrix of local forms [8].
Thus, from (II.1) and (I1.2) we have

_ _ 1
VoY = JaVxY+ 5 (0o (V) X0 (V) JuX—-Q (X,Y) B+g(X,Y)J.B}
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+ Qab(X)JbY + Qac(X)JcY (IIS)

forany X,Y €T’ (TM), where 0, = wolJ,.
We give the following

Theorem 2.1. [7] Let (M, g, H) be a compact quaternion Hermit-
ian Weyl manifold, non-quaternion Kaehler, whose foliation D has com-
pact leaves. Then the leaves space P = M /D is a compact quaternion
Kaehler orbifold with positive scalar curvature, the projection is a Rie-
mannian, totally geodesic submersion and a fibre bundle map with fibres
as described in Proposition 4.10 of [7], where D is locally generated by
B,J1B = By, By, Bs.

If D is a regular foliation, then P = M /D is a compact quaternion
Kaehler manifold.

Let M be a QR-submanifold of a l.c.q.K. manifold M. Let P de-
note the projection morphism of T'M to the quaternion distribution D
and choose a local field of orthonormal frames {vi,...,vs} on the vector
subbundle v in TM*L. Then, on the distribution D, we have the local
field of orthonormal frames

{Ell’ [N 7E15, EQI’ “ee 7E287 E317 “ e 7E38} (II.Q)

where Ey; = Jyv; and i = 1,...,s. Thus any vector field Y tangent to M
can be written locally as follows

3 s
Y =PY+Y Y Wy(Y)Ey (11.10)
b=1 i=1
where the Wy, are 1-forms locally defined on M by

Wy (Y) = g(Y, Ep;). (I1.11)

Applying J, to (I1.10) and taking account of (II.1) we have
JJY = J,PY + Z{Wbi(Y)Eci — Wa(Y)Epi} — Wei(Y)v;. (I1.12)

i=1

We can decompose J,Y as follows:

J.Y = ¢.Y + FyY,a=1,2,3, (I1.13)



QR-submanifolds of a l.c.q.K. manifold 161

for Y e I'(T'M), where ¢,Y and F,Y are the tangential and normal parts
of J,Y, respectively. Similarly, we get

TV =tV + fuV. (I.14)

Example 2.1. Let M be a l.c.q. K. manifold. Assume that the foliation
D is regular. Then P = M /D is a compact quaternion Kaehler manifold
(cf. Theorem 2.1). We denote almost complex structures of M and P
by J, and J!, respectively. Now we consider the following commutative
diagram:
M —"— P=i1/D

[ [s

N N
where N and N are submanifolds of M and P, respectively. We denote
the horizontal lift by *. Then we have

(JLX)* = JX*. (11.15)

We note that the projection 7 is a totally geodesic Riemannian submersion
and a fibre bundle map. Hence 7 is also a Riemannian submersion. We
denote the vertical distribution of the Riemannian submersion « by v, i.e.
kerm, = v. Let H be the horizontal distribution of 7. Then we have
TM = H @ v. We denote the horizontal distribution of @ by Hy. We will
investigate the relation between normal spaces of N and N. We denote
the Riemannian metrics of M and P by g and ¢/, respectively. Let V* be
the horizontal lift of V € T'(TN1). Then we get

g(V*, X) = g((m)"V, X) = g/(m. X, V) = 0,

for any X € Hy. Thus, (TN1)* is orthogonal to Hy. Note that the nor-
mal space is always horizontal. Hence (T'N-)* is orthogonal to v. Con-
sequently, we have (TTN+)* C TN+, Since 7 is a Riemannian submersion
we get,

(TN*)" = TN (11.16)

Now, let t, and f, be the operators on N appearing in (I1.14). We
denote the operators in N corresponding to ¢, and f, by ¢, and f,, respec-
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tively. From (II.15) and (II.16) we obtain
(t, V) =t V* (I1.17)

and
(faV)" = faV™" (I1.18)

So, from (I1.17) and (II.18) we see that N is a QR-submanifold of M if
and only if N is a QR-submanifold of P.

Example 2.2. Let M be a l.c.q.K. manifold. We assume that the dis-
tribution D is regular. Then P = M /D is a quaternion Kaehler manifold.
It is known that a real hypersurface of a quaternion Kaehler manifold is
a QR-submanifold [1]. From the previous example, a real hypersurface of
a l.c.q.K. manifold is a QR-submanifold. Let M be a real hypersurface of
a l.c.q.K. manifold M. We denote the normal space of M by TM=*. Set
TM* = Sp{N}. Since dim(7,M~*) = 1 and g(J,N,N) = 0, we obtain
J(TM*) Cc TM. Thus, v, = {0} and v} = T, M+ for € M.

Let M be a l.c.q.K. manifold and M be a QR-submanifold of M. The
formulae of Gauss and Weingarten are given by
VxY = VxY +h(X,)Y) (I1.19)
and

VxV = Ay X +VxV (I1.20)

for vector fields X,Y tangent to M and any vector field V normal to M,
where V is the induced Riemann connection in M, h is the second funda-
mental form, Ay is the fundamental tensor field of Weingarten with respect
to the normal section V and V- is the normal connection. Moreover, we
have the relation

g(h(X,Y),V)=g(Av X,Y). (I1.21)

3. QR-submanifolds of a l.c.q.K. manifold

Lemma 3.1. Let M be a Lc.q.K. manifold and M be a QR-subman-
ifold of M. Then we have

h(X, Eu) = Wai(Ap, X)v; + faV0; (II1.1)
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and

L bo(u)g(X,Y)

1
—w(v;)g(Jo X,Y) — 5

2
+9(J,PA,X,Y)
for any X,Y € I'(D) and v; € T (v+).

PROOF. From (IL.8), (I1.19) and (I1.20), we obtain

g(vaa Eai) = (III 2)

WX, Eq) = VxEq — VxEyg;
1
= 5 {eo(vi)X —w (Uz) JaX} - Qab(X)Eci + Qac(X)Ebi

S
— VxEai — JaPA, X =Y {Wyi(Ay, X)Eei — Wei( Ay, X) Ey;
i=1
— Wai(Ay, X)vi} + tav)l(vi + faV)L(vi.
Considering the tangential and normal parts of the last equation we
get

WX, Bai) = Y Wai(Ap, X)vi + faVxv;,
=1
and

0= % {0o(vi) X — w (vi) Ja X} — Qab(X) Eei + Qac(X) Epi — Vx Eai

— JaPAyX = {Wyi(Ay, X)Ee; — Wei( Ay, X) By} + taVvs.
=1

The proof of the lemma is complete. O

As a result of the lemma we have the following

Corollary 3.1. Let M be a lLc.q.K. manifold and M be a QR-sub-
manifold of M. If the Lee vector field is tangent to D and A,, X € T (D+)
then D defines a totally geodesic foliation.

Definition 3.1. A QR-submanifold is called mixed geodesic if
h(X,Y) =0 for any X e (D) and Y €' (D) [2].

Theorem 3.1. Let M be a Lc.q.K. manifold and M be a QR-sub-
manifold of M. Then M is mixed geodesic if and only if

A, X € T(D) (111.3)
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and
Vv er <uL> (I11.4)
for any X € I' (D).

PROOF. (=) Let M be a mixed geodesic QR-submanifold. From
(IT1.1) we get

0= Wai(Ay, X)v; + faVJ)gvi

or
Wai(AviX)Ui =0, fav)L(Ui =0.
Thus we have A,, X € I'(D) and Vyv; € T (v1).
(<) We suppose that (I11.3) and (I11.4) are satisfied. From (III.1) we
have h(X, Ez) = 0 for any X € I'(D). O

Let M be a l.c.q.K. manifold and M a QR-submanifold of M. From
(I1.8), (I1.13), (I1.14), (IL.19) and (I1.20) we get

WX, JuPY) = fh(X,Y) — Wai(V Y )vi + %w(Y)Wai(X)vi

1 1
- 5Q(X, Y)Bt + 5g(X, Y) By — Qap(X)wyi (Y)v;

— Qac(X)Wei(Y)v; = Wiy (Y)h(X, Eg) + Wei(Y)R(X, Ey;)
+ X (Wai(Y))v; 4+ Wi (V) V05 (IIL.5)
for any X,Y € I'(TM), where B, = J,B, B- = NorB, BT = TanB.

Lemma 3.2. Let M be a Lc.q.K. manifold and M be a QR-subman-
ifold of M. Then we have

1
h(X,J.Y) = fh(X,Y) = Waui(VxY)v; — —Q(X,Y)B*
. 2 (IIL6)

for any X,Y € I'(D).

PROOF. It can easily be seen from (IIL5). O
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From Lemma 3.4 we have the following

Corollary 3.2. Let M be a lLc.q.K. manifold and M be a QR-sub-
manifold of M. If D is integrable and h(X,J,Y) = h(J,X,Y) for any
X, Y €T(D), a =1,2,3, then the Lee vector field is tangent to M.

Definition 3.2. Let M be a QR-submanifold of a l.c.q.K. manifold.
Then M is called D-geodesic if h(X,Y) =0 for any X,Y € I'(D).

Theorem 3.2. Let M be a Lc.q.K. manifold and M be a QR-sub-
manifold of M. Assume that the Lee vector field is tangent to M. Then
the following assertions are equivalent:

1) (X, J,Y) =h(J,X,Y) for any X,Y € I'(D).
2) M is D-geodesic.

3) The quaternion distribution is integrable.

PROOF. (1) = (2): Since M is a quaternion Hermitian manifold,
we have J.oJy, = —JyoJ. = J,. Thus we get

WX, JY) = h(J,X,Y) = h((J.ody) X,Y)
= (X, J.Y) = h(X, (Jy0Jo)Y) = —h(X, J,Y).

Hence we have h(X, J,Y) = 0.
(2) = (3): By using (II1.6) we get

1
~Wai(VxY)vi + 59(X,Y) By = 0.
Thus, interchanging X and Y in the last equation, we have
1
~Wai(Vy X)v; + 59(Y. X) By = 0.

Hence we obtain [Y, X] € T' (D).
(3) = (1): We suppose that D is integrable. From (II.5) we obtain

1 1
~Wai(VxY)vi = 5Q(X,Y) BY + Sg(X,Y)By =0,

or
1 1
~Wai(Vy X)vi = (Y, X) Bt + §g(Y,X)BOL =0,
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for any X,Y € I'(D). Hence we get
WX, JY) = h(JX,Y) = QY, X)Bt.
Since B is tangent to M we have h(X, J,Y) = h(J,X,Y). O

Corollary 3.3. Let M be a QR-submanifold of a l.c.q.K. manifold
M. Then D defines a totally geodesic foliation if and only if

A,V eT (Di)
for any V €T’ (DL).
ProOOF. From (II.8) we have
Vi, Vi = =V, JaBa = — (VE,Ja) Eai — JoViE,; Eai
= — S {00(Ba) By — w(Fat) JuFyg — 9 By, Eai) B + g (Fyy, Fur) JuB)
+ Qab(Evj) Sy Eai + Qac(Evj) JeEai — Ja(V B, Eai + h(Eyj, Eqi).
Considering (I1.20) we have
PA, Epj + XS: Whi(Au, Epj) Eci — Wei(Av, Evj) Ebi + taV g, i
L (IIL7)
= —5100(Buai) Eej + w (Eai) Eyi }
+ Qab(Epj) Evi + Qac(Evj) Eci + Vi, Eai-

If D+defines a totally geodesic foliation then we have PA,, E,; = 0. Hence
Ay By € T (DL). Conversely, if A,,Ep; € F(DL) then D+ defines a
totally geodesic foliation. O

Lemma 3.3. Let M be a Lc.q.K. manifold and M be a QR-subman-
ifold of M. Then, we have

1 1
Aani = AiEaj + 5(4) (’Ul) E, — 5&) (Uj) E,; (1118)

for any v;,v; € T (Z/J‘).
ProOOF. From (I1.8), (I1.19) and (I1.20) we have

VxEai+ WX, Ey) = —JgAp, X 4+ J.Vi0;
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1
5 180(0)X — @ (00) Ju X — g(X, Eor) B}
=+ Qab(X)Ebi + Qac(X)Eci (IIIQ)
or

g(h(X7 Eai)uvj) = _g(‘]aAviX7 U]) + g(JaV§‘<vi,vj)

1 1
+ ¥ (vi) 9(X, Jqvj) — ¥ (vj) 9(Eqi, X)

1 1
9(AjEui, X) = g(Ap, X, Eaj) + o¥ (vi) 9(X, Eqj) — o@ (v5) 9(Eai, X)

for any X € I'(T'M). Hence we get

1 1
AjEm' = AiEa]’ + 50} (’U,L) Eaj — iw (’Uj) Em’. O

Lemma 3.4. Let M be a QR-submanifold of a l.c.q.K. manifold M.
Then, we have

1
Baij(X) = = 5035w (X) + 9(A;Eai, JoX) (II1.10)

for any X € I'(D), where Byi;(X) = 9(VE,, Eaj, X).
PRrROOF. From (II1.9) we get
1
9(VE,Eaj, X) = =g (JoAv, Eei, X) — Qg(Eaia Eqj)g(B, X)
1
=g (Avania JaX) - §5Uw(X) O

Lemma 3.5. Let M be a l.c.q.K. manifold and M be a QR-submani-
fold of M. Then we have

1
9 (VEwEjy X) = =Baji(JeX) = 50ij9(B, J:X) (TIL.11)
for any X € I'(D).
PrOOF. From (II.20) we obtain

9(VEuEvj, X) =9 (VE, B, X) = 9 (JeV i, By, JX)
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= g (VB — (i, o) Eyy, JX)
Since J.Ey; = —E,j, we get
9 (Ve Epj, X) = —9(VE,,Eaj, J X) — 9((VE,,Je) Epj, JX).
By using (I1.8) we get
9(V i, Buy, X) = ~Bus(JeX) — 36359(B, JX). 0
From Lemma 3.4, Lemma 3.5 and Corollary 3.3, we have the following

corollaries:

Corollary 3.4. Let M be a QR-submanifold of a l.c.q.K. manifold
M. Then D+ defines a totally geodesic foliation if and only if B is normal
to D and Baij(X) =0,X € F(D)

Corollary 3.5. Let M be a QR-submanifold of a l.c.q.K. manifold
M. If the distribution D= is integrable and By;;(X) = 0, X € I'(D) for
alli,7=1,...,s, then B is normal to D.

PrOOF. From (II1.8) and (II1.10) we get

1 1 1
Baij(X> = — 5(51 w(X) + g(AiEaj + iw (Uz) Eaj — §w (Uj) E, JaX)

- —%@jw(X) + g(A; Baiy JuX) = Baji(X). (I1.12)
On the other hand we have
9 (Vi Fui, X) =~ Bugs(JeX) = 30550(B, 1), (I1L.13)
Thus, from (II1.11) and (III.13) we get
9([Eai, Bvj], X) = = Baij(JeX) — Byji(JeX) + 0i59(B, J.X).  (IIL.14)
From (II1.14) and (II1.12) the proof is results. O

The rest of this section is devoted to the study of totally umbilical
QR-submanifolds of a l.c.q.K. manifold.
We recall that any submanifold is called totally umbilical in a Riemann
manifold if
MX,Y)=9(X,Y)H (IT1.15)

for any X,Y € I'(T'M), where H is the mean curvature vector.
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Corollary 3.6. Let M be a l.c.q.K. manifold and M be a totally um-
bilical QR-submanifold of M. Then D defines a totally geodesic foliation
if and only if B is normal to the quaternion distribution.

ProOF. From (II1.10) and (III.15) we have

1 1
Baij(X) = _§5ijW(X) + g(AjEqi, Jo X) = —552']'9()(7 B)

) (IIL.16)
+ g(h (Eai7 JaX) ,’Uj) = *Qéijg(X, B),
for any X € I'(D). By using (III.11) we get
1
g (aniEbj7X) = _Baij(JcX) - 55@'9(3, JCX) (11117)

Thus from (II1.16) and (III.17) we have the assertion of the corollary. [

Theorem 3.3. Let M be a l.c.q.K. manifold and M be a totally
umbilical QR-submanifold of M. Assume that the Lee vector field is
tangent to M. If dimvy > 1 for x € M, then the QR-submanifold is
totally geodesic.

PrOOF. From (IIL.8) we have
1 1
Aani = AiEaj + Qw (’Ul) E,i — 5&) (Uj) E,

for XY € I'(Dgy), hence

1 1
AJaXY = AJaYX + iw (Ul)X — iw (Uj)x

where Jov; =Y, Jov; = X. Since t,H € I (Dg,) at each x € M, we have
1 1
AJaXtaH = AJataHX + iw (taH) X — 5&) (’Uj) taH.
Now we derive

1
g (AJaXtaHJ X) = g (AJataHX7 ‘X) + 50‘) (JataH) g(X7 X)

— 59 (05) gltat, X)
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oAt X), JuX) = g(h(X, X), JataT) + 50(Juta H)g(X, X)
~ S()gltaH, X).
Since M is totally umbilical, we have
9(taH, X) g (H, 1.X) = g(X, X)g (H, JutaH) + 2 (JaluH) (X, X)
w (v5) g(taH, X)
= (X X)g (taHo ) + S0 (JotaH) 9(X, X) — Lo (0) gltaH. X).

By the hypothesis of the theorem, we can choose X € I'(T'M) such that
X # 0 and X is orthogonal to B,H. Since the Lee vector field is tangent
to M, we obtain

0= -9 (XvX)g(taH7taH))
that is
toH = 0. (I1.18)

On the other hand, by using (I1.12), (II.14), (IL.19) and (I1.20) in (II.8)
and taking the tangential parts we obtain

VytlV — ApvY = —J,PAYY — Wiy, (AvY) Eg, + Wer, (AvY') By
+t,VyV + %HO(V)Y - %W(V)%Y
20 VIBT 4 QuY )V + Qe eV
or
PVyt,V — PA;vY = —J,PAYY + %HO(V)PY — %w(V)P(baY
— %Q (v,V)PBT (I11.19)
for any Y € I(TM) and V € T (TM*). From (I11.18) and (II1.19) we get

1 1
_PAfaHY = _JaPAHY + 590(H)PY — §Q(Y, H)PBT
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For Z € T'(D), we have
g(PAfaHK Z) =—9g (AfaHyv Z) =g (h(Ya Z)vjaH)
=—g(Y,2)g(H, J,H) = 0.
Hence we obtain

1 1
9(JaPARY, Z) + 500(H)g(PY, Z) = SQY, H)g (PB", Z) = 0

1 1
9 (PARY, JoZ) + S06(H)g(PY, Z) = 5 g (Y, JuH) g (PB", Z) =0

1 1
9(AnY, JuZ) + 50,(H)g(PY, Z) = 59 (Y:taH) g (PBT,Z) =0

g (h (Y, 1.2) H) + L0.(H)a(PY, Z) — Lg (Y. 1.H) g (PB", Z) = 0
Since the Lee vector field is tangent to M and t,H = 0, we get
g(h(Y,JuZ),H) =0
g(Y,J,Z)g(H,H) =0.
Thus, we obtain H =0 for Y = J,Z. O

Let M be a compact l.c.q.K. manifold. Then we can choose the metric
g such that

i) The fixed metric g makes w parallel:
Vw =0, (I11.20)

ii)
|| = 1 (IIL.21)

[6]. From now on we will denote a compact l.c.q.K. manifold by M.

Lemma 3.6. Let Ky be the curvature tensor field of the Weyl con-
nection D' of the l.c.q.K. manifold M and R the curvature tensor field of
the Levi-Civita connection V of the l.c.q.K. manifold M. Then we have

Ko(X,Y)Z = R(X,Y)Z + % {w(Z2)w(Y)X — w(Z)w(X)Y}
. . (IT1.22)
+ 1 {-0()9(X, 2) + w(X)g(Y, 2)} B - 1(X AY)Z,
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for any XY, Z €T (TM)

PRrROOF. From (I1.2) we have
_ 1
Ko(X,Y)Z = R(X,Y)Z — J{Lo(X, 2)Y — Lo(Y, Z)X
1

forany X,Y,Z € T (TM), where Ly = Vw + %w ® w. Since Vw = 0 we
have
VB =0. (I11.23)

Thus, from (II1.20), (II1.21) and (II1.23) we have the assertion of the
lemma. ]

Let D’ be the Weyl connection of M. Then we have
Ko X, Y)W Z — 1 Ko(X,Y)Z =a(X,Y) )2 Z — 3(X,Y) JsZ, (I11.24)

where

a=dQ2+ Q32 N Q13
and

B =dQ13+ Qa3 A Q2.

Theorem 3.4. There exist no proper totally umbilical QR-submani-
folds in negatively curved L.c.q.K. manifolds with BT = 0.

PROOF. Considering the definition of a QR-submanifold, from (I11.22)
and (I11.24) we have

_R(X7 Eai7JQX7 Ui) - R(X) Eaiu X7 Eaz)
1 1 1

_ _ZW(X)M(X) -1 (Eai) w (Eai) + 1

for any orthonormal vector field X € T'(D) and E,; € I'(D*). Thus, if B
is normal to M we get

_ _ 1
—R(X, Eyi, Jo X, v)) + R(X, Egi, Eyiy, X) = 1 (I11.25)
Now suppose that M is a proper totally umbilical QR-submanifold of M

with K7 < 0.
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Then from the equation of Codazzi we have
9(R(X,Y)Z,W) = (Y, Z)g (VEH, W) = g(X, 2)g (VEH.W) .

for any X, Y, Z tangent to M and V normal to M. Thus, if we take
X el(D),Z=J,X,Y = Ey; and W = v; we obtain

R(X, Eaia Ja)(7 Ui) = 0. (11126)

Using (I11.25) and (II1.26) we get K ; (X, E1;) = § which is a contradiction.
]

From the Gauss equation for totally umbilical submanifolds we have
Ky (X,Y) = Ky (X,Y) +||H|?,
for any X, Y tangent to M [3]. Now we take X € I'(D) and E,; =Y in
this equation and taking account of K;(X, E,;) = 0 we obtain
1
1
Thus, from (II1.27) and (II1.26) we have the following,.

Ky(X,Ey) = | H||> + (IT1.27)

Corollary 3.7. There exist no proper totally umbilical negatively
curved QR-submanifolds of a l.c.q.K. manifold with BT = 0.
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