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A class of contact Riemannian manifolds
whose associated CR-structures are integable

By JONG TAEK CHO (Kwangju)

Abstract. We study the geometry of contact Riemannian manifolds whose
associated CR-structures are integrable.

1. Introduction

There are two typical examples of contact manifolds; one is formed
by the principal circle bundles over symplectic manifolds of integral class
(including the odd-dimensional spheres) and the other is given by the unit
tangent sphere bundles of Riemannian manifolds. These spaces have the
standard Riemannian structures and their associated CR-structures. A
contact structure η is a global differentiable 1-form on a smooth manifold
M2n+1 such that η ∧ (dη)n 6= 0 everywhere on M . It is well-known that
there exists an associated Riemannian metric structure g and (1, 1)-type
tensor φ, where (η, g) and (η, φ) are canonically related. We call the pair
(η, g) a contact Riemannian structure and M = (M ; η, g) a contact Rie-
mannian manifold. Sasaki and Hatakeyama [10] defined the normality
of the contact Riemannian structure (see Section 2). A normal contact
Riemannian manifold is said to be a Sasakian manifold. One the other
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hand, the associated CR-structure of a given contact Riemannian mani-
fold M = (M ; η, g, φ) is given by the holomorphic subbundle

H = {X − iφ̄X : X ∈ D}

of the complexification TMC of the tangent bundle TM , where D is the
subbundle of TM defined by the kernel of η and φ̄ = φ | D, the restriction
of φ to D. Then we see that each fiberHx (x ∈ M) is of complex dimension
n and H∩H̄ = {0}. Furthermore, we have CD = H⊕H̄. We say that the
associated CR-structure is integrable if [H,H] ⊂ H. For H we define the
Levi form by

L : D ×D → F(M), L(X,Y ) = −dη(X, φY )

where F(M) denotes the algebra of differential functions on M . Then we
see that the Levi form is hermitian and positive definite, that is, the CR-
structure is a strongly pseudo-convex, pseudo-hermitian CR structure. In
[14] S. Tanno proved that for a given contact Riemannian manifold M the
associated CR-structure is strongly pseudo-convex integrable if and only
if M satisfies the integrability condition Q1 = 0 (see Section 2). Here,
we note that the normality of a contact Riemannian structure implies
the integrability of the associated CR-structure, but the converse does
not always hold. The associated CR-structures of 3-dimensional contact
Riemannian manifolds are always integrable (see [14]).

In this paper, we concentrate our attention on contact Riemannian
manifolds whose associated CR-structures are integrable. We call such
manifolds briefly, contact Riemannian manifolds of class Q1. We intro-
duce a class Q of contact Riemannian manifolds whose associated CR-
structures are integrable (Q1 = 0) and satisfy the additional condition
Q2 = 0 (see Section 4). Here, we remark that these classes Q1 and Q are
invariant under a D-homothetic deformation (see Sections 2, 4). Further,
we can see that the class Q contains the unit tangent sphere bundles of
real space forms and the contact (k, µ)-spaces which appeared in [3], [6]. In
Section 2, we prepare some fundamental facts about contact Riemannian
manifolds and we review their associated CR-structures. In Section 3, we
study the curvature tensor R of contact Riemannian manifolds of class Q1.
In Section 4, we obtain the nice form of the curvature tensor of a contact
Riemannian manifold of class Q and of constant φ-holomorphic sectional
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curvature. We call a simply connected and complete space belonging to
Q and of constant φ-holomorphic sectional curvature a contact Riemann-
ian space form. In case of dimension three, the contact Riemannian space
forms coincide with contact (k, µ)-spaces (see Remark 4.5). In higher di-
mensions, we can find (non-Sasakian) contact Riemannian space forms of
constant φ-holomorphic sectional curvature H > 0, H = 0, or H < 0.
From this observation, we see that the contact Riemannian space form is
a proper extension of the Sasakian space form. Furthermore, in Section 4
we prove the equivalence theorem, the homogeneity and the φ-symmetry
of a contact Riemannian space form.

Acknowledgements. The author thanks to Prof. L. Vanhecke and
Dr. E. Boeckx for discussions and useful comments about this subject
during his stay at the Katholieke Universiteit Leuven from February 1,
2002 till February 28, 2002.

2. Preliminaries

All manifolds in the present paper are assumed to be connected and of
class C∞. A (2n + 1)-dimensional manifold M2n+1 is said to be a contact
manifold if it admits a global 1-form η such that η∧ (dη)n 6= 0 everywhere.
Given a contact form η, we have a unique vector field ξ, which is called
the characteristic vector field, satisfying η(ξ) = 1 and dη(ξ, X) = 0 for any
vector field X. It is well-known that there exists an associated Riemannian
metric g and a (1, 1)-type tensor field φ such that

η(X) = g(X, ξ), dη(X, Y ) = g(X,φY ), φ2X = −X + η(X)ξ, (2.1)

where X and Y are vector fields on M . From (2.1) it follows that

φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X,Y )− η(X)η(Y ). (2.2)

Although g and φ are not uniquely determined for η, the two pairs (η, g)
and (η, φ) are canonically related to each other by the equation dη(X, Y ) =
g(X, φY ). A Riemannian manifold M equipped with structure tensors
(η, g) satisfying (2.1) is said to be a contact Riemannian manifold and
is denoted by M = (M ; η, g). Given a contact Riemannian manifold M ,
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we define a (1, 1)-type tensor field h by h = 1
2Lξφ, where L denotes Lie

differentiation. Then we may observe that h is symmetric and satisfies

hξ = 0, hφ = −φh, (2.3)

(∇Xη)(Y ) = g(X,φY )− g(X,φhY ) (or ∇Xξ = −φX − φhX), (2.4)

∇ξh = φ− φRξ − φh2, (2.5)

where ∇ is the Levi–Civita connection and Rξ = R(·, ξ)ξ. Here, R is the
Riemannian curvature tensor of M defined by

R(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z

for all vector fields X,Y, Z on M .
A contact Riemannian manifold for which ξ is Killing, is called a K-

contact Riemannian manifold. It is easy to see that a contact Riemannian
manifold is K-contact if and only if h = 0. For a contact Riemannian
manifold M , one may define naturally an almost complex structure J on
M × R by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where X is a vector field tangent to M , t the coordinate of R and f a
function on M × R. If the almost complex structure J is integrable, M is
said to be normal or Sasakian. It is known that M is normal if and only
if M satisfies

[φ, φ] + 2dη ⊗ ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ. A Sasakian manifold is charac-
terized by a condition

(∇Xφ)Y = g(X,Y )ξ − η(Y )X (2.6)

for all vector fields X and Y on the manifold.
It is well-known that a contact Riemannian manifold M is Sasakian if

and only if
R(X, Y )ξ = η(Y )X − η(X)Y

for all vector fields X and Y . For more details about contact Riemannian
manifolds, we refer to [5], [10], [11].
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For a contact Riemannian manifold M = (M ; η, φ), the tangent space
TpM of M at each point p ∈ M is decomposed as TpM = Dp⊕{ξ}p(direct
sum), where we denote Dp = {v ∈ TpM | η(v) = 0}. Then D : p → Dp

defines a distribution orthogonal to ξ. The 2n-dimensional distribution D

is called the contact distribution. We see that the restriction φ̄ = φ|D of
φ to D defines an almost complex structure on D. Then the associated
CR-structure of a given contact Riemannian manifold M is given by the
holomorphic subbundle

H = {X − iφ̄X : X ∈ D}
of the complexification TMC of the tangent bundle TM . Then we see
that each fiber Hx (x ∈ M) is of complex dimension n and H ∩ H̄ = {0}.
Furthermore, we have CD = H ⊕ H̄. We say that the associated CR-
structure is integrable if [H,H] ⊂ H. For H, we define the Levi form,
by

L : D ×D → F(M), L(X,Y ) = −dη(X, φY )

where F(M) denotes the algebra of differential functions on M . Then
we see that the Levi form is hermitian and positive definite, that is, the
CR-structure is a strongly pseudo-convex, pseudo-hermitian CR-structure.

Since dη(φX, φY ) = dη(X, Y ), we see that [φ̄X, φ̄Y ]− [X,Y ] ∈ D and
[φX, Y ] + [X, φY ] ∈ D for X, Y ∈ D. Thus, the associated CR-structure
is integrable ([H,H] ⊂ H) if and only if

[φ̄, φ̄](X, Y ) = 0

for X, Y ∈ D, where [φ̄, φ̄] is the Nijenhuis torsion of φ̄. It was obtained
([14, Proposition 2.1]) that for a given contact Riemannian manifold M the
associated CR-structure is strongly pseudo-convex integrable if and only
if M satisfies the integrability condition Q1 = 0, where Q1 is a (1, 2)-type
tensor field on M defined by

Q1(X,Y ) = (∇Xφ)Y − g(X + hX, Y )ξ + η(Y )(X + hX)

for all vector fields X, Y on M . We remark here that the class of con-
tact strongly pseudo-convex integrable CR-manifolds is invariant under
D-homothetic deformations ([12])

η̃ = aη, ξ̃ =
1
a
ξ, φ̃ = φ, g̃ = ag + a(a− 1)η ⊗ η,
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where a is a positive constant. In fact, by direct computations, we have
h̃ = 1

ah and

(∇̃X φ̃)Y = (∇Xφ)Y + (a− 1)η(Y )φ2X − a− 1
a

g(X, hY )ξ.

From this, we easily see that Q1 = 0 implies Q̃1 = 0. Taking account of
(2.6) we see that for a Sasakian manifold the associated CR-structure
is strongly pseudo-convex integrable (h = 0). For 3-dimensional con-
tact Riemannian manifolds their associated CR structures are always inte-
grable (see [14]). One other class of contact Riemannian manifolds whose
associated-CR structure is integrable is the class which is determined by
the condition (see [6])

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

k, µ ∈ R. A space belonging to this class is called a contact (k, µ)-space
([3], [6]). In [6] the authors proved that k ≤ 1. If k = 1, then h = 0 and the
structure is Sasakian. It was also proved in [6] that the standard contact
Riemannian structure of the unit tangent sphere bundle is a (k, µ)-space if
and only if the base manifold is of constant curvature c with k = c(2− c)
and µ = −2c.

Now, we give

Definition 2.1. The class Q1 is formed by the contact Riemannian
manifolds whose associated CR-structures are integrable, that is,

Q1 = {(M, η, g) : Q1 = 0}.

3. A class Q1 of contact Riemannian manifolds

Let M be a contact Riemannian manifold belonging to Q1. Then we
have

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX) (3.1)

for all vector fields X and Y . Comparing with (2.6), we see that a contact
Riemannian manifold ∈ Q1 is normal (or Sasakian) if and only if h = 0.
We put P (X, Y ) = (∇Xh)Y −(∇Y h)X. Then we see that P is a (1, 2)-type
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tensor field on M . We have the following

Proposition 3.1. For all vector fields X, Y, Z on M

R(X, Y )ξ = η(Y )(X + hX)− η(X)(Y + hY ) + φP (Y, X), (3.2)

g(R(ξ, X)Y, Z) = η(Z)g(Y + hY,Z)− η(Y )g(Z + hZ, X)

+ g(φP (Z, Y ), X), (3.3)

and

R(X, Y )φZ = φR(X, Y )Z − g(Y + hY, Z)(φX + φhX)

+ g(X + hX,Z)(φY + φhY ) + g(φX + φhX, Z)(Y + hY )

− g(φY + φhY,Z)(X + hX) + g(P (X, Y ), Z)ξ

− η(Z)P (X, Y ). (3.4)

Proof. From the definition of the curvature tensor R, by using (2.4),
(3.1) and the fundamental symmetries of the curvature tensor, we obtain
(3.2) and (3.3). The Ricci identity for φ is given as

R(X, Y )φZ − φR(X,Y )Z = (∇2
X,Y φ)Z − (∇2

Y,Xφ)Z, (3.5)

where ∇2
X,Y = ∇X∇Y −∇∇XY . From (3.1) we have

(∇2
X,Y φ)Z = −g(Y + hY, Z)(φX + φhX) + g(φX + φhX,Z)(Y + hY )

+ g((∇Xh)Y,Z)ξ − η(Z)(∇Xh)Y, (3.6)

and thus (3.4) follows easily from this and (3.5). ¤

Now, we prove

Proposition 3.2. Let M be a space ∈ Q1. Then the necessary and

sufficient condition for M to have pointwise constant φ-holomorphic sec-

tional curvature H is

g(R(X, Y )Z, W )

=
1
4
{
(H + 3)

[
(g(Y,Z)− η(Y )η(Z))(g(X, W )− η(X)η(W ))

− (g(X, Z)− η(X)η(Z))(g(Y,W )− η(Y )η(W ))
]
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+ (H−1)
[
g(φY, Z)g(φX,W )−g(φX, Z)g(φY, W )−2g(φX, Y )g(φZ, W )

]

+ 2
[
2g(hY,Z)(g(X, W )−η(X)η(W ))−2g(hX,Z)(g(Y, W )−η(Y )η(W ))

+ 2g(hX, W )(g(Y,Z)− η(Y )η(Z))− 2g(hY, W )(g(X,Z)− η(X)η(Z))

+ g(hY,Z)g(hX, W )− g(hX,Z)g(hY, W )− g(hY, φZ)g(hX, φW )

+ g(hX, φZ)g(hY, φW )
]}

+ η(X)
[
g(φP (W,Z)− η(W )φP (ξ, Z)− η(Z)φP (W, ξ), Y )

]

− η(Y )
[
g(φP (W,Z)− η(W )φP (ξ, Z)− η(Z)φP (W, ξ), X)

]

+ η(Z)
[
g(φP (Y, X)− η(Y )φP (ξ, X)− η(X)φP (Y, ξ),W

)]

− η(W )
[
g(φP (Y, X)− η(Y )φP (ξ, X)− η(X)φP (Y, ξ), Z)

]

− η(X)η(Z)
[
g(Y + hY, W )− η(Y )η(W ) + g(φP (ξ, Y ),W )

]

+ η(X)η(W )
[
g(Y + hY, Z)− η(Y )η(Z) + g(φP (ξ, Y ), Z)

]

+ η(Y )η(Z)
[
g(X + hX, W )− η(X)η(W ) + g(φP (ξ, X),W )

]

− η(Y )η(W )
[
g(X + hX, Z)− η(X)η(Z) + g(φP (ξ, X), Z)

]
(3.7)

for all vector fields X, Y , Z, W in M .

Proof. For X, Y ∈ D, using the first Bianchi identity and the funda-
mental properties of the curvature tensor, (2.1), (2.2) and (2.3), we obtain
from (3.4)

g(R(X,φX)Y, φY ) = g(R(X, φY )Y, φX) + g(R(X, Y )φX, φY ) (3.8)

and

g(R(X, Y )φX, φY ) = g(R(X,Y )X,Y )− g(X, Y )2 − g(hX, Y )2

− 2g(X, Y )g(hX, Y ) + g(X, X)g(Y, Y ) + g(X, X)g(hY, Y )

+ g(Y, Y )g(hX, X) + g(hX, X)g(hY, Y )− g(φX, Y )2

+ g(φhX, Y )2 − g(φhX, X)g(φhY, Y ).

(3.9)

Similarly, from (3.4) we get

g(R(X, φY )X, φY ) = g(R(X, φY )Y, φX) + g(X,Y )2 − g(hX, Y )2
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− g(φhX, X)g(φhY, Y )− g(X,X)g(Y, Y )− g(Y, Y )g(hX,X)

+ g(X, X)g(hY, Y ) + g(hX,X)g(hY, Y ) + g(φX, Y )2

+ g(φhX, Y )2 + 2g(φX, Y )g(φhX, Y ) (3.10)

and

g(R(Y, φX)Y, φX) = g(R(X,φY )Y, φX) + g(X, Y )2 − g(hX, Y )2

− g(φhX, X)g(φhY, Y )− g(X,X)g(Y, Y ) + g(Y, Y )g(hX,X)

− g(X, X)g(hY, Y ) + g(hX,X)g(hY, Y ) + g(φX, Y )2

+ g(φhX, Y )2 − 2g(φX, Y )g(φhX, Y ). (3.11)

We now suppose that the φ-holomorphic sectional curvature is con-
stant, i.e., K(X,φX) = H for any X ∈ D. Then we have

g(R(X, φX)φX, X) = Hg(X, X)2, (3.12)

for any X ∈ D. Replacing X by X + Y and X − Y for X,Y ∈ D in (3.12)
respectively, and summing them, we get

2g(R(X, φX)φY, Y ) + g(R(X,φY )φY, X) + 2g(R(X, φY )φX, Y )

+ g(R(Y, φX)φX, Y ) = 2H{2g(X, Y )2 + g(X, X)g(Y, Y )}.
(3.13)

From (3.8), (3.9), (3.10), (3.11) and (3.13), we get

3g(R(X, φY )φX, Y ) + g(R(X, Y )Y, X) + 2g(hX, Y )2

+ 2g(X, Y )g(hX, Y )− g(X, X)g(hY, Y )− g(Y, Y )g(hX, X)

− 2g(hX, X)g(hY, Y )− 2g(φhX, Y )2 + 2g(φhX, X)g(φhY, Y )

= H{2g(X, Y )2 + g(X, X)g(Y, Y )}. (3.14)

Replacing Y by φY in (3.14) and using (2.1), (2.2) and (2.3), we have

3g(R(X, Y )φY, φX)− g(R(X,φY )X, φY ) + 2g(φhX, Y )2

− 2g(X, φY )g(hX, φY ) + g(X,X)g(hY, Y )− g(Y, Y )g(hX, X)

+ 2g(hX, X)g(hY, Y )− 2g(hX, Y )2 − 2g(φhX,X)g(φhY, Y )
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= H{2g(X, φY )2 + g(X, X)g(Y, Y )}. (3.15)

From (3.15), together with (3.9) and (3.10), we get

− 3g(R(X,Y )Y, X)− g(R(X, φY )φX, Y ) + 2g(X, Y )2 + 2g(hX, Y )2

+ 6g(X, Y )g(hX, Y )− 2g(X,X)g(Y, Y )− 3g(X, X)g(hY, Y )

− 3g(Y, Y )g(hX,X)− 2g(hX, X)g(hY, Y )

+ 2g(X, φY )2 − 2g(φhX, Y )2 + 2g(φhX, Y )g(φhY, Y )

= H{2g(X, φY )2 + g(X,X)g(Y, Y )}. (3.16)

From (3.14) and (3.16), we have

4g(R(X, Y )Y,X) = (H + 3){g(X, X)g(Y, Y )− g(X,Y )2}
+ 3(H − 1)g(X, φY )2 − 2{g(hX, Y )2 + 4g(X, Y )g(hX, Y )

− 2g(X,X)g(hY, Y )− 2g(Y, Y )g(hX, X)

− g(hX, X)g(hY, Y )− g(φhX, Y )2 + g(φhX, X)g(φhY, Y )} (3.17)

for any X,Y ∈ D. Replacing X = X + Z in (3.17), we obtain

4g(R(X,Y )Y, Z) = (H + 3){g(X, Z)g(Y, Y )− g(X, Y )g(Y, Z)}
+ 3(H − 1)g(X, φY )g(Z, φY )− 2{g(hX, Y )g(hY,Z)

+ 2g(X,Y )g(hY, Z) + 2g(Y,Z)g(hX, Y )

− 2g(X,Z)g(hY, Y )− 2g(Y, Y )g(hX,Z)− g(hX, Z)g(hY, Y )

− g(φhX, Y )g(φhZ, Y ) + g(φhX,Z)g(φhY, Y )}.

(3.18)

If we replace Y = Y + W in (3.18) again and use (2.3), then we obtain

4{g(R(X, Y )W,Z) + g(R(X, W )Y, Z)}
= (H + 3){2g(X,Z)g(Y,W )− g(X,Y )g(W,Z)− g(X, W )g(Y, Z)}
+ 3(H − 1){g(X,φY )g(Z, φW ) + g(X, φW )g(Z, φY )}
− 2{g(hX, Y )g(hZ,W ) + g(hX,W )g(hZ, Y ) + 2g(X,Y )g(hZ, W )

+ 2g(X,W )g(hZ, Y ) + 2g(Z, Y )g(hX, W ) + 2g(Z, W )g(hX, Y )
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− 4g(X,Z)g(hY,W )− 4g(Y,W )g(hX,Z)− 2g(hX,Z)g(hY, W )

− g(φhX, Y )g(φhZ, W )− g(φhX,W )g(φhZ, Y )

+ 2g(φhX,Z)g(φhY,W )} (3.19)

and we have

4{g(R(X,Z)W,Y ) + g(R(X,W )Z, Y )}
= (H + 3){2g(X, Y )g(Z,W )− g(X, Z)g(W,Y )− g(X, W )g(Z, Y )}
+ 3(H − 1){g(X, φZ)g(Y, φW ) + g(X,φW )g(Y, φZ)}
− 2{g(hX,Z)g(hY, W ) + g(hX, W )g(hY, Z)

+ 2g(X, Z)g(hY, W ) + 2g(X,W )g(hY,Z) + 2g(Y, Z)g(hX,W )

+ 2g(Y, W )g(hX,Z)− 4g(X,Y )g(hZ, W )− 4g(Z, W )g(hX, Y )

− 2g(hX, Y )g(hZ, W )− g(φhX, Z)g(φhY, W )− g(φhX, W )g(φhY, Z)

+ 2g(φhX, Y )g(φhZ, W )}. (3.20)

We subtract (3.20) from (3.19). Then by using the first Bianchi identity
and (2.3), we get

4g(R(X, Y )Z, W )=(H +3){g(Y, Z)g(X, W )−g(X,Z)g(Y,W )}+(H − 1)

× {g(φY,Z)g(φX, W )− g(φX, Z)g(φY, W )− 2g(φX, Y )g(φZ, W )}
+ 2{2g(hY, Z)g(X, W )− 2g(hX, Z)g(Y, W ) + 2g(Y, Z)g(hX, W )

− 2g(X, Z)g(hY, W ) + g(hY,Z)g(hX, W )− g(hX,Z)g(hY, W )

− g(hY, φZ)g(hX, φW ) + g(hX, φZ)g(hY, φW )}, (3.21)

where X, Y, Z, W ∈ D. We now let X be an arbitrary vector field on M .
Then we may write

X = XT + η(X)ξ,

where XT denotes the horizontal part of X. Then we have for all vector
fields X,Y, Z,W in M :

g(R(X, Y )Z, W ) = g(R(XT , Y T )ZT ,W T ) + η(X)g(R(ξ, Y T )ZT , W T )
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+ η(Y )g(R(XT , ξ)ZT ,W T ) + η(Z)g(R(XT , Y T )ξ, W T )

+ η(W )g(R(XT , Y T )ZT , ξ) + η(X)η(Z)g(R(ξ, Y T )ξ,W T )

+ η(X)η(W )g(R(ξ, Y T )ZT , ξ) + η(Y )η(Z)g(R(XT , ξ)ξ,W T )

+ η(Y )η(W )g(R(XT , ξ)ZT , ξ). (3.22)

Furthermore, from (3.22), by using (3.2), (3.3), (3.21) and straightforward
calculations, we obtain (3.7). ¤

From (3.6), by using (2.4) and (2.5), we find for the Ricci tensors

ρ(X, Y ) =
1
4
{
(2(n + 1)H + 6n− 2)(g(X, Y )− η(X)η(Y ))

+ 4(2n− 1)g(hX, Y )
}

− η(X)
∑

i

g(φP (Y, ei), ei) + η(Y )
∑

i

g(φP (X, ei), ei)

+ g(φP (ξ,X), Y ) + η(X)η(Y )(2n− trh2)

(3.23)

for all vector fields X and Y in M , where {ei} (i = 1, 2, . . . , 2n + 1) is
an arbitrary local orthonormal frame field on M . Since the trace of h

vanishes, from (3.23), we have for the scalar curvature

τ =
1
2
· n(

2(n + 1)H + 6n− 2)
)

+ 2n− 2(trh2).

4. A class of contact Riemannian manifolds Q

There are two typical examples of contact manifolds; one is formed
by the principal circle bundles over symplectic manifolds of integral class
(including the odd-dimensional spheres) and the other is given by the unit
tangent sphere bundles. The former admit a Riemannian metric which is
Sasakian. Concerning the latter, in [15], it was proved that the associated
CR-structure of a unit tangent sphere bundle T1M with standard contact
Riemannian structure is integrable if and only if the base manifold is of
constant curvature. Here, we note that the unit tangent sphere bundle of
a space of constant curvature satisfies ([6])

g((∇XT h)Y T , ZT ) = 0, (1)



A class of contact Riemannian manifolds . . . 205

that is, h is η-parallel and at the same time it also satisfies

∇ξh = µhφ (2)

where µ is a constant. Now, we consider a contact Riemannian manifolds
whose structure tensor h satisfies (1) and (2) simultaneously. Then

0 = g((∇XT h)Y T , ZT ) = g((∇X−η(X)ξh)(Y − η(Y )ξ, Z − η(Z)ξ)

= g((∇Xh)Y, Z)− η(X)g((∇ξh)Y, Z)− η(Y )g((∇Xh)ξ, Z)

− η(Z)g((∇Xh)Y, ξ)+η(X)η(Y )g((∇ξh)ξ, Z)+η(Y )η(Z)g((∇Xh)ξ, ξ)

+ η(Z)η(X)g((∇ξh)Y, ξ)− η(X)η(Y )η(Z)g((∇ξh)ξ, ξ).

From the above equation, by using (2.3), (2.4) and ∇ξh = µhφ, we have

(∇Xh)Y = g((h− h2)φX, Y )ξ + η(Y )(h− h2)φX + µη(X)hφY (4.1)

for any vector fields X and Y . Now, we define a (1, 2)-tensor field Q2(X, Y )
by

Q2(X,Y ) = (∇Xh)Y − g((h− h2)φX, Y )ξ

− η(Y )(h− h2)φX − µη(X)hφY.

Definition 4.1. The class Q is given by the spaces belonging to Q1 and
satisfying Q2 = 0, that is,

Q = {(M, η, g) ∈ Q1 : Q2 = 0}.

Then, as mentioned before, we can see that this class Q is invariant
under D-homothetic deformations. More precisely, for a D-homothetic
deformation, we have

(∇̃Xh)Y = g̃((h̃− h̃2)φ̃X, Y )ξ̃ + η̃(Y )(h̃− h̃2)φ̃X + µ̃η̃(X)hφ̃Y,

where µ̃ = (2(a−1)+µ)/a. Furthermore, assume that hY = λY for Y ∈ D

and ‖Y ‖ = 1. Then from (4.1), we easily get g((∇Xh)Y, Y ) = 0 for any
vector X, from which we have

Lemma 4.2. The eigenvalues of h are constant.
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Further, from (4.1), we have

P (X, Y ) = −g((φh2 + h2φ)X,Y )ξ + η(X)((µ− 1)hφY + h2φY ) (4.2)

− η(Y )((µ− 1)hφX + h2φX),

φP (X, Y ) = η(X)((µ− 1)hY − h2Y )− η(Y )((µ− 1)hX − h2X). (4.3)

Now, we prove a Schur-type theorem for the class Q.

Theorem 4.3. Let M = (M2n+1; η, g) (n > 1) be a contact Riemann-

ian manifold belonging to the class Q. If the φ-holomorphic sectional cur-

vature at any point of M is independent of the choice of φ-holomorphic

section, then it is constant on M and the curvature tensor is given by

g(R(X, Y )Z, W ) =
1
4
{
(c + 3)

[
(g(Y, Z)− η(Y )η(Z))(g(X,W )

− η(X)η(W ))− (g(X,Z)− η(X)η(Z))(g(Y, W )− η(Y )η(W ))
]

+ (c−1)
[
g(φY, Z)g(φX, W )− g(φX, Z)g(φY, W )−2g(φX, Y )g(φZ,W )

]

+ 2
[
2g(hY,Z)(g(X, W )−η(X)η(W ))−2g(hX,Z)(g(Y, W )−η(Y )η(W ))

+ 2g(hX, W )(g(Y,Z)− η(Y )η(Z))− 2g(hY, W )(g(X,Z)−η(X)η(Z))

+ g(hY, Z)g(hX,W )− g(hX, Z)g(hY,W )− g(hY, φZ)g(hX, φW )

+ g(hX, φZ)g(hY, φW )
]}

− η(X)η(Z)g(Y + µhY − h2Y, W ) + η(X)η(W )g(Y + µhY − h2Y,Z)

+ η(Y )η(Z)g(X + µhX − h2X,W )

− η(Y )η(W )g(X + µhX − h2X,Z) (4.4)

for all vector fields X, Y , Z, W in M .

Proof. Suppose that M has pointwise constant φ-holomorphic sec-
tional curvature H. Then, taking account of (4.1), (4.2) and (4.3), from
(3.23) we obtain

ρ(X,Y ) =
1
4
{
(2(n + 1)H + 6n− 2)(g(X,Y )− η(X)η(Y ))

+ 4(2n− 2 + µ)g(hX, Y )− 4g(h2X,Y )
}
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+ η(X)η(Y )(2n− trh2), (4.5)

τ =
1
2
· n

(
2(n + 1)H + 6n− 2

)
+ 2n− 2(trh2). (4.6)

From (4.1) and by using (2.4) and Lemma 4.2, we have

(∇Xρ)(Y,Z) =
1
4
{
(2(n + 1)(XH))(g(Y, Z)− η(Y )η(Z))

+ (2(n + 1)H + 6n− 2)(η(Z)g(φX + φhX, Y )

+ η(Y )g(φX + φhX, Z))

+ 4(2n− 2 + µ)g(g((h− h2)φX, Y )η(Z)

+ η(Y )g((h− h2)φX,Z) + µη(X)g(hφY, Z))

− 4(g((h− h2)φX, hY )η(Z) + g((h− h2)φX, hZ)η(Y ))
}

+ (η(Z)g(−φX − φhX, Y )

+ η(Y )g(−φX−φhX, Z))(2n− trh2),

which yields
∑

i

(∇eiρ)(X, ei) =
1
2
(n + 1){(XH)− (ξH)η(X)}. (4.7)

By the well-known formula

∇Xτ = 2
∑

i

(∇eiρ)(X, ei)

for any local orthonormal frame field {ei} (i = 1, 2, . . . , 2n + 1) and by
using (4.6), (4.7) and Lemma 4.2, we have

(n + 1){XH − (ξH)η(X)} = n(n + 1)XH.

This says that ξH = 0 and (n− 1)XH = 0. Since n > 1, we see that H is
constant, say c. By applying (4.1), (4.2) and (4.3) in Proposition 3.2, we
obtain (4.4). ¤

Definition 4.4. A complete and simply connected contact Riemannian
manifold of class Q with constant φ-holomorphic sectional curvature is
said to be a contact Riemannian space form.
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So, from the proof for Proposition 3.2 and Theorem 4.3, we have

Theorem 4.5. Let M be a complete and simply connected space

belonging to the class Q. Then M is a contact Riemannian space form if

and only if the curvature tensor R is given by (4.4).

Remark 4.6. From (3.2) and (4.2), it follows that a manifold ∈ Q

satisfies

R(X, Y )ξ = η(Y )(X − h2X)− η(X)(Y − h2Y ) + µ(η(Y )hX − η(X)hY ).

It is easily seen that the class Q coincides with the class of contact (k, µ)-
space if and only if h2 = (k − 1)φ2, k ∈ R. Thus, taking account of
Lemma 4.2, we see that for dimension 3, the class Q coincides with the
class of contact (k, µ)-spaces. But, in higher dimensions, we do not know
yet of an example in Q which is not a contact (k, µ)-space.

Examples of (non-Sasakian) contact Riemannian space forms

(1) All 3-dimensional non-Sasakian contact (k, µ)-spaces have constant
φ-holomorphic sectional curvatures H = −(k + µ). That is, SU(2), the
universal covering space of SL(2,R), the universal covering space of the
group E(2) of rigid motions of Euclidean 2-space and the group space
E(1, 1) of rigid motions of Minkowski 2-space, respectively with a special
left-invariant metric, are contact Riemannian space forms (see [6]).

(2) Tangent sphere bundles T1M(c) (with standard contact Riemann-
ian structure) of n-dimensional spaces of constant curvature c = 2 ± √5
have constant φ-holomorphic sectional H = c2. We know that T1M(c) is
simply connected when n > 2.

(3) By D-homothetic deformations, we can construct more examples
with H > 0, H < 0, or H = 0. More explicitly, for the unit tangent sphere
bundle of a space of constant curvature c,





H > 0, if (−11 + 4
√

6 )/5 < c,

H = 0, if c = (−11 + 4
√

6 )/5,

H < 0, if − 1 < c < (−11 + 4
√

6 )/5.
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For the above (2) and (3), we refer to [9].

We close this section showing the equivalence theorem, the homogene-
ity and the φ-symmetry of the contact Riemannian space forms. First,

Theorem 4.7 (Equivalence theorem). Let (M2n+1; η, g) and

(M2n+1; η′, g′) be two contact Riemannian space forms with the same µ∈R.

Suppose that the eigenvalues and the dimensions of their eigenspaces of

h and h′ are equal to each other. Then they are isometric as contact

Riemannian spaces.

Proof. The theorem follows from the expression (4.4) for the Rie-
mannian curvature tensor and the fomulas (2.4), (3.1) and (4.1), using
similar arguments as in [3] or [13]. ¤

Now, we prove the homogeneity. We define a (1, 2)-tensor field T by

T (X, Y ) = −g(φX + φhX, Y )ξ + η(Y )(φX + φhX)

+ (µ/2)η(X)φY
(4.8)

for vector fields X, Y ([2]). Let ∇̄ be the connection determined by ∇̄ =
∇+ T . Then we easily get

∇̄g = 0, ∇̄ξ = 0, ∇̄η = 0, ∇̄φ = 0. (4.9)

Also, we obtain from (4.1)
∇̄h = 0. (4.10)

Thus, in view of the form (4.4) and (4.8), using (4.9) and (4.10), it follows
easily that

∇̄T = 0 (4.11)
and

∇̄R = 0. (4.12)
At last, together with (4.9), (4.11) and (4.12), by Kiričenko’s generalza-
tion ([8]) of the Ambrose–Singer theorem ([1] or [16]), we have

Theorem 4.8 (Homogeneity). A contact Riemannian space form is

a locally homogeneous contact Riemannian manifold.
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We remark that a Sasakian space form is a naturally reductive ho-
mogeneous space ([7]). Furthermore, together with (2.4), (3.1), (4.1) and
(4.4), and in a similar way as in the proof of Lemma 7 and Theorem 1 in
[2], we obtain

Theorem 4.9 (φ-symmetry). A contact Riemannian space form is lo-

cally φ-symmetric in the strong sense, that is, the characteristic reflections

are local isometries.

For more details about the φ-symmetry in the weak or strong sense,
we refer to [2], [4].
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281–294.

[11] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric
structure, J. Math. Soc. Japan 14 (1962), 249–271.

[12] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12
(1968), 700–717.



A class of contact Riemannian manifolds . . . 211

[13] S. Tanno, Sasakian manifolds with constant φ-holomorphic sectional curvature,
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