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A continuity result on t-Wright-convex functions

By ZYGFRYD KOMINEK (Katowice)

Abstract. Gy. Maksa, K. Nikodem and Zs. Pales have found an example
of a noncontinuous t-Wright-convex function bounded above on the real line.
On the other hand, J. Matkowski and M. Wrébel have proved that every lower
semicontinuous t-Wright-convex function has to be continuous everywhere. We
prove that every t-Wright-convex function continuous at a point is continuous at
each point.

A function f : (a,b) — R is called Wright-convex if the following
condition

[tz + (1 —=t)y)+ (A -tz +ty) < f(x)+ fly), x,y€(ab), (1)

is fulfilled for every ¢ € (0,1). If (1) is satisfied for some ¢ € (0,1) then
f is called t-Wright-convex on the interval (a,b). C. T. NG [6] char-
acterizes Wright-convex functions in the following way: A function f is
Wright-convex iff it is of the form f = a + F, where «a is additive and F
is convex in the usual sense (cf. also [2]). Addressing Matkowski’s prob-
lem, Gy. MaksA, K. NIKODEM and Zs. PALES [4] have constructed a
discontinuous t-Wright-convex function defined on the whole real line R
bounded above on R and Jensen-concave. This shows that the assumption
of the upper boundedneity of a t-Wright-convex function does not imply
its continuity. On the other hand, J. MAaTKOWSKI and M. WROBEL [5]
proved that every lower semicontinuous t-Wright-convex function has to
be continuous. The task is to find another set of sufficient conditions of
the continuity of t-Wright-convex functions. In this note we show that one
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of these is a condition of the continuity at a point. Our proof is based
upon a remark proven by Gy. MAksA, K. NIKODEM and Zs. PALES [4]
and a lemma.

Remark. Let f: (a,b) — R be a t-Wright-convex function. Then the

set
Wy :={A€ (0,1); fis »-Wright-convex}

is dense in the interval (0, 1).

Lemma. Let f : (a,b) — R be a t-Wright-convex function and assume
that f has a limit at a point xy € (a,b). Then
(1) Vaczy (—00< limsup,,_, f(u) < f(r) <liminf, ., f(u) < 00);
Moreover, f is continuous at x.

PROOF. (i). Let us fix an < x and let (u,)pen be an arbitrary

sequence tending to x from the right. Based on the Remark we can choose
a t, € Wy such that

Up — X Up — X
mC < (2)
To— X Ty — Un
Putting
1 1-—t
Up 1= — Uy — n1‘7 Tp = tnSU + (]— - tn)vnv
tn tn

we observe that u, = t,v, + (1 — t,)z. According to (2) one can easily
check that
0<zg—vy <up—2,

whereas the condition u,, — x+ implies that
t, — 0, x, — 29—, Un— x0—.
By virtue of (1) we obtain
flun) + f(zn) < f2) + fon).
Thus

limsup [f(un) + f(xn)] < f(z) + limsup f(vy),

n—o0 n—oo
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and hence
lim sup f(u,) < f(x).

n—oo

Due to the arbitrariness of (u,)n,en we get

limsup f(u) < f(z).

u—x+

If u, tends to z from the left then we choose a t, € Wy fulfilling the
condition

T —u r—u
n <tp < = 3)
T — Uy +To — Up Lo — Un
and we put
1 1—t
Ty = —XT — nun, Un = tntin + (1 — ) 2n.
tn tn

It follows from (3) that
0<5En—$0<$_un>

so that the condition u,, — z implies that ¢, — 0, z,, — x¢+ and v, —
xo—. By virtue of (1)

f(x) + f(on) < flan) + f(un)

and, consequently,

f(z) +liminf f(v,) < liminf [f(x,) + f(un)],

n—oo n—oo

f(z) <liminf f(up),

n—0oo

and

f(z) <liminf f(u).
U—Ir—
The proof of the relevant part in (ii) runs in a similar manner.
Assume that p := f(xg)—limy,_4, f(u) > 0. Then, there exists a d > 0
such that for each v,0 < |zg — v| < § we have

| im f(u) ~ f()] < 3p.

uU—xo
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Take z € (xg — 6, 0), r,v € (z0, 20 + ) and ¢ € Wy such that
xo=tz+(1—t)v, r=(1-1t)z+tv.

Then
2

Flwo)+ Jim f(u) = 5p < (o) + f) < f(2)+ F(2) <2 lim f(u) + p,

which is impossible. If p := lim,_.4, f(u) — f(x0) > 0 then we choose
z,r,v € (x9,0 + 6) and t € Wy such that z = txg + (1 — t)v, and r =
(1 —t)xo + tv. Now

2 lim f(u) = 2p < () + () < flao) + £(0) < fao) + i () + 5p,
and, consequently,
p=lim f(u)— f(zo) <p,

u—xg

which is a contradiction. This ends the proof of the continuity of f at the
point xg.

Now we shall show that if < x¢ then limsup,_,,, f(u) > —oco. Let
m, M and 6 > 0 be chosen so that

u€ (xog—d,xo+9) = m< f(u) <M.
Take a u € (z,x + 0) and choose a ug € (z,u) such that
f(uo) < f(u) = (M —m).

It follows from the density of Wy in (0,1) that there exist t € Wy, v,vg €
(xo — 9,20 + 0) such that u = tug + (1 — t)vg and v = (1 — t)ug + tvo.
By virtue of (1) we get

f(u) + f(v) < fluo) + f(vo)-

Consequently,
fw) +m < f(u) = (M —m)+ M,

which is a contradiction. Therefore

—o00 < limsup f(u).

u—x+
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In a similar way one can prove that
r < x) = lqitgcicriff(u) < 00,
as well as

x> xg = (limsup f(u) > —oo and liminf f(u) < c0).

U—T— u—z+
Thus, the proof of our lemma is finished. O
Now, we are in a position to prove our main theorem.

Theorem. Let f : (a,b) — R be a t-Wright-convex function and
assume that f has a limit at a point. Then, f is continuous and convex.

PrROOF. By our lemma, f has a continuity point xg. We show that f is
Jensen-convex in the interval (a, z¢). For that, take arbitrary x,y € (a, z¢),
r <y, and put z := %ry

Let (un)nen be an arbitrary sequence tending to z from the right. For
n € N we choose a t,, € W; such that

Up — @ Up — &

—— <ty < .
Uy — x + LH* Ty —x

(4)

Define points y, and v, in the following manner:

1 1—-t,
= —U —
Yn £, t

x, Up 1= tpx + (1 — ty)yn.

Then u,, = tpyn + (1 — t,)x. It follows from (4) that
0<yp—y<u,—2z and U < 2,

so that the condition u,, — z+ implies that ¢, — %, Yp — Y+, vy — 2—.
By virtue of (1) we obtain

fun) + fvn) < f(2) + fyn),

and, by our lemma (condition (1)),

limsup [ (wn) + f(va)] < () + limsup f(y,) <

n—o0 n—oo
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< f(a) +limsup f(u) < f(z) + f(y).
u—Y+

Therefore,
limsup f(un) +liminf f(v) < f(2) + f(y).

n—oo

Due to the arbitrariness of the sequence (uy,)nen, We obtain

limsup f(u) +lim inf f(v) < f(2) + f(y). (5)

u—2z+

We shall show that

2f(z) < limsup f(u) + liminf f(v). (6)

u—z+ Lt

For indirect proof of (6), we assume that

f(z) = limsup f(u) > liminf f(v) = f(2) := pa.

Uu—z+

For that, take a p1 € (p2, f(2) — limsup,,_,., f(u)). It follows from our
Lemma that
p2 > 0. (7)

Let us put ¢ := %(pl — p2) > 0. There exists a § > 0 such that
vue(z,z+5)f(u) < f(Z) —p1 and vve(zfts,z)f(v) > f(Z) +p2 — €. (8)

Take a v € (2 — 0, 2) sufficiently close to z such that f(v) < f(2) + p2 + €.
Then, there exist s, r, v and t € Wy fulfilling the following conditions

v<s<r<z<u, s=tut+(l—tjv and r=(1—t)u+ts.
It follows from (1) that
f(s)+ f(r) < fu) + f(v).
Hence and by (8)
2f(2) +2p2 —2e <2f(2) + p2 — p1 +¢,

or, equivalently,
p2 <0,
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which contradicts (7). This proves (6). From (6) and (5) it follows that f
is Jensen-convex in the interval (a, o).

Quite similarly one can show Jensen-convexity of f in the interval
(x0,b). Since f is continuous at g, it is bounded above in a neighbour-
hood of xg and by BERNSTEIN-DOETSCH theorem ( [1], cf also [3]) f is
continuous at each point of (a,b). Moreover, f being t-Wright-convex and
continuous is convex, too. This completes the proof of the theorem. O
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