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Gaussian measures on the affine group:
uniqueness of embedding and supports

By MÁTYÁS BARCZY (Debrecen) and GYULA PAP (Debrecen)

Abstract. It is shown that a Gaussian measure on the affine group can
be embedded only in a uniquely determined Gaussian semigroup. The starting
point of the proof is the fact that a Gaussian Lévy process (i.e., a Lévy process
with vanishing Lévy measure) on the affine group satisfies a certain stochastic
differential equation. Moreover, we will give a complete description of supports
of Gaussian measures on the affine group using Siebert’s support formula.

1. Introduction

A probability measure µ on a locally compact topological group G

is called continuously embeddable if there exists a convolution semigroup
(µt)t>0 of probability measures on G (i.e., µs ∗ µt = µs+t for all s, t > 0,

and limt↓0 µt = µ0 = εe) satisfying µ1 = µ.
For general locally compact topological groups G one does not know

whether the embedding convolution semigroup of a continuously embed-
dable probability measure on G is unique. If (µt)t>0 and (νt)t>0 are convo-
lution semigroups of probability measures on (Rd, +) then it is well-known
that µ1 = ν1 implies µt = νt for all t > 0. The same statement holds for
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locally compact Abelian groups without non-trivial compact subgroups
(cf. Heyer [7, Theorem 3.5.15]). For stable and semi-stable semigroups
on simply connected nilpotent Lie groups see Drisch and Gallardo [2],
Nobel [14] and a detailed discussion by Hazod and Siebert [6, Sec-
tion 2.6]. Neuenschwander [12] studied Poisson semigroups on simply
connected nilpotent Lie groups.

Pap [15] proved that a Gaussian measure on a simply connected nilpo-
tent Lie group has a unique embedding semigroup among Gaussian con-
volution semigroups. We prove a similar result for the two-dimensional
affine group (i.e., the group of proper affine mappings on the real line).
Our method, which is related to the idea of Pap [15], consists of recursively
calculating the first and second moments. In order to prove the uniqueness
of embedding we consider a Gaussian Lévy process (ξ(t))t>0 in the affine
group related to a Gaussian semigroup, and we show that (ξ(t))t>0 satisfies
a certain stochastic differential equation (SDE). The question about the
existence of a non-Gaussian embedding semigroup of a Gaussian measure
remains still open. In the special case of simply connected step 2-nilpotent
Lie groups Neuenschwander [13] showed that a Gaussian measure does
not admit a non-Gaussian embedding semigroup.

We will also investigate the support of µt for t > 0 where (µt)t>0 forms
a Gaussian convolution semigroup on the affine group. Siebert [17] has
shown that given a Gaussian semigroup (µt)t>0 on a connected Lie group
G, either the measures µt are absolutely continuous with respect to the
Haar measure on G for all t > 0, or the measures µt are singular with
respect to the Haar measure on G for all t > 0. In the first case we say
that (µt)t>0 is an absolutely continuous semigroup on G, otherwise it is
called singular. For any absolutely continuous Gaussian semigroup (µt)t>0

on a connected Abelian Lie group G, we have supp(µt) = G for all t > 0,
where supp(µ) denotes the support of the measure µ. McCrudden [10]
showed that for any absolutely continuous Gaussian semigroup (µt)t>0 on
any connected nilpotent Lie group G, we have supp(µt) = G for all t > 0.
But in the solvable case the situation becomes more complicated. Siebert

[17] has shown that on the affine group there exists an absolutely contin-
uous Gaussian semigroup (µt)t>0 with supp(µt) 6= G for every t > 0. We
will give a complete description of supports for Gaussian semigroups on
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the affine group using Siebert’s support formula. See further investiga-
tions on other Lie groups by McCrudden [9], [10], [11], Kelly-Lyth

and McCrudden [8].

2. Gaussian Lévy processes

A Lévy process (ξ(t))t>0 in a locally compact topological group G is
a stochastically continuous process with stationary independent left in-
crements such that ξ(0) = e, where e denotes the unit element of G.
A Gaussian Lévy process (it can also be called a Brownian motion) is a
Lévy process with vanishing Lévy measure. For Lévy processes in locally
compact topological groups see, e.g. Heyer [7].

Roynette [16] gave a recursive formula for constructing Gaussian
Lévy processes in an arbitrary nilpotent Lie group by the help of a cor-
responding Gaussian Lévy process in the corresponding Lie algebra, that
is, by some independent Wiener processes in R. The formula involves Itô
integrals and reflects the group law. In Feinsilver and Schott [3], [4]
one can find an operator approach (applicable for other Lie groups and
using limit theorems) in order to obtain similar explicit formulas. Apple-

baum and Kunita [1] studied Lévy processes (ξ(t))t>0 with values in a
connected Lie group G. They have shown that for all twice continuously
differentiable function f : G → R the process (f(ξ(t)))t>0 satisfies a sto-
chastic differential equation connected to the infinitesimal generator of the
process (ξ(t))t>0.

In case of the affine group it turns out that a Gaussian Lévy process
(ξ(t))t>0 can be constructed by the help of one standard Wiener process, or
two independent standard Wiener processes. The formula involves again
Itô integrals and reflects the group law as in the case of nilpotent Lie
groups (see, e.g., Roynette [16]).

In what follows let G be the affine group. The group G can be realized
as the matrix group

G =
{(

a b

0 1

)
: a > 0, b ∈ R

}
.

Obviously G is a simply connected solvable Lie group.
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The Lie algebra G of G can be realized as the matrix algebra

G =
{(

α β

0 0

)
: α, β ∈ R

}
.

Consider the basis {e1, e2} of G defined by

e1 :=
(

1 0
0 0

)
, e2 :=

(
0 1
0 0

)
.

Then we have the commutation relation [e1, e2] = e2.
Lévy processes with values in a Lie group can be given by their in-

finitesimal generators containing left invariant differential operators. If
f : G → R is continuously differentiable then, for every X ∈ G, we can
introduce the left invariant differential operator X̃ defined by

X̃f(g) := lim
t→0

f(g exp(tX))− f(g)
t

, g ∈ G.

A Lévy process (ξ(t))t>0 is a Gaussian Lévy process in G if and only if its
infinitesimal generator admits the form

Ñ =
2∑

i=1

aiẽi +
1
2

2∑

i,j=1

bi,j ẽiẽj , (2.1)

where a1, a2 ∈ R and B = (bi,j)16i,j62 is a real symmetric positive semi-
definite matrix. The infinitesimal generator Ñ can be written in the form

Ñ = Ỹ +
1
2

r∑

k=1

X̃2
k , (2.2)

where

Ỹ =
2∑

i=1

aiẽi, X̃j =
2∑

i=1

σi,j ẽi, 1 6 j 6 r 6 2,

where Σ = (σi,j) is a 2 × r matrix such that B = Σ · Σ> and rankΣ =
rankB = r.

Theorem 2.3. Let (ξ(t))t>0 be a Gaussian Lévy process in the affine

group G with infinitesimal generator (2.1). Then

ξ(t) =


eZ1(t)

∫ t

0
eZ1(s) d(Z2(s) + b1,2s/2)

0 1


 , t > 0,
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where

Zi(t) = ait +
r∑

j=1

σi,jWj(t), i = 1, 2,

and W1(t)t>0 and W2(t)t>0 are independent standard Wiener processes.

Proof. Applying Theorem 3.1 in Applebaum and Kunita [1],
(ξ(t))t>0 can be represented as a solution of the SDE

ξ(t) = I +
2∑

i=1

∫ t

0
aiξ(s)ei ds +

1
2

2∑

i,j=1

∫ t

0
bi,jξ(s)eiej ds

+
2∑

i=1

∫ t

0
ξ(s)ei dBi(s),

where I is the 2×2 identity matrix, and B(t) = (B1(t), B2(t)) is a Gaussian
Lévy process in R2 with zero mean and covariances cov(Bi(t), Bj(t)) =
tbi,j , 1 6 i, j 6 2.

Writing ξ(t) in the form

ξ(t) =
(

ξ1(t) ξ2(t)
0 1

)
,

and using e2
1 = e1, e2

2 = 0, e1e2 = e2, e2e1 = 0 we obtain the SDE

dξ1(t) =
(

a1 +
b1,1

2

)
ξ1(t) dt + ξ1(t) dB1(t),

dξ2(t) =
(

a2 +
b1,2

2

)
ξ1(t) dt + ξ1(t) dB2(t).

(2.4)

Clearly B1(t) =
∑r

j=1 σ1,jWj(t) and B2(t) =
∑r

j=1 σ2,jWj(t), where
W1(t)t>0 and W2(t)t>0 are independent standard Wiener processes. By a
simple application of Itô’s formula we obtain

ξ1(t) = eZ1(t).

Moreover

ξ2(t) =
∫ t

0
ξ1(s) d

((
a2 +

b1,2

2

)
s +

r∑

j=1

σ2,jWj(s)
)
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=
∫ t

0
eZ1(s) d(Z2(s) + b1,2s/2).

Hence the assertion. ¤

Remark 2.5. The process (Z1(t), Z2(t))t>0 is a Gaussian Lévy process
in R2 with infinitesimal generator

2∑

i=1

ai∂i +
1
2

2∑

i, j=1

bi,j∂i∂j ,

i.e., replacing in (2.1) the differential operators ẽ1 and ẽ2 by ∂1 and ∂2,
respectively.

3. Uniqueness of embedding

Theorem 3.1. Let (µt)t>0 and (νt)t>0 be Gaussian convolution semi-

groups on the affine group. If µ1 = ν1 then we have µt = νt for all t > 0.

In other words, a Gaussian measure on the affine group can be embedded

only in a uniquely determined Gaussian semigroup.

Proof. It is sufficient to show that by the help of the measure µ1

we can construct the whole Gaussian semigroup (µt)t>0. A convolution
semigroup is uniquely determined by its infinitesimal generator, hence it
is sufficient to construct the infinitesimal generator of (µt)t>0. Consider
a Gaussian Lévy process (ξ(t))t>0 which corresponds to (µt)t>0. We will
show that the distribution of ξ(1) uniquely determines the parameters
a1, a2, b1,1, b1,2 and b2,2 of the infinitesimal generator (2.1). It turns out
that the knowledge of the expectation vector and covariance matrix of ξ(1)
uniquely defines these parameters.

First we calculate the expectation of ξ(t). Taking the expectation of
the integrated forms of the stochastic differential equations (2.4) we obtain

Eξ1(t) = 1 +
(

a1 +
b1,1

2

) ∫ t

0
Eξ1(s) ds,

Eξ2(t) =
(

a2 +
b1,2

2

)∫ t

0
Eξ1(s) ds.
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It follows that

Eξ1(t) = e

�
a1+

b1,1
2

�
t
, (3.2)

Eξ2(t) =
(

a2 +
b1,2

2

) ∫ t

0
e

�
a1+

b1,1
2

�
s
ds. (3.3)

Using Itô’s formula we have the following stochastic differential equations

dξ2
1(t) = 2ξ1(t) dξ1(t) + d[ξ1, ξ1]t,

dξ2
2(t) = 2ξ2(t) dξ2(t) + d[ξ2, ξ2]t,

d(ξ1(t)ξ2(t)) = ξ2(t) dξ1(t) + ξ1(t) dξ2(t) + d[ξ1, ξ2]t,

where [ . , . ]t denotes the cross quadratic variation of continuous semi-
martingales.

Taking into account (2.4) and the facts that Bi(t) =
∑r

j=1 σi,jWj(t),
i = 1, 2 and B = ΣΣ> we obtain

dξ2
1(t) = 2ξ1(t) dξ1(t) + b1,1ξ

2
1(t) dt,

dξ2
2(t) = 2ξ2(t) dξ2(t) + b2,2ξ

2
1(t) dt,

d(ξ1(t)ξ2(t)) = ξ2(t) dξ1(t) + ξ1(t) dξ2(t) + b1,2ξ
2
1(t) dt.

Taking the expectation of the integrated forms of these equations we get

Eξ2
1(t) = 1 + 2 (a1 + b1,1)

∫ t

0
Eξ2

1(s) ds,

Eξ2
2(t) = b2,2

∫ t

0
Eξ2

1(s) ds + (2a2 + b1,2)
∫ t

0
E(ξ1(s)ξ2(s)) ds,

E(ξ1(t)ξ2(t)) =
(

a2 +
3
2
b1,2

) ∫ t

0
Eξ2

1(s) ds

+
(

a1 +
b1,1

2

) ∫ t

0
E(ξ1(s)ξ2(s)) ds.

It can be easily checked that the unique solutions of these equations are
the following

Eξ2
1(t) = e2(a1+b1,1)t , (3.4)
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E(ξ1(t)ξ2(t)) =
(

a2 +
3
2
b1,2

)
e

�
a1+

b1,1
2

�
t
∫ t

0
e(a1+ 3

2
b1,1)s ds, (3.5)

Eξ2
2(t) = c

∫ t

0
e(a1+

b1,1
2

)s

(∫ s

0
e(a1+ 3

2
b1,1)u du

)
ds

+ b2,2

∫ t

0
e2(a1+b1,1)s ds, (3.6)

where c = (2a2 + b1,2)
(
a2 + 3

2b1,2

)
. Using (3.2) and (3.4) with t = 1 we

have




a1 +
b1,1

2
= log Eξ1(1),

2(a1 + b1,1) = log Eξ2
1(1).

This system of linear equations has a unique solution for a1 and b1,1. Sub-
stituting a1 and b1,1 into (3.3) and (3.5) with t = 1 we obtain a system of
linear equations for a2 and b1,2 which has again a unique solution. Equation
(3.6) yields that b2,2 is unique, too. So the infinitesimal generator of the
Gaussian convolution semigroup (µt)t>0 is uniquely determined by µ1. ¤

4. Supports of Gaussian measures

Let (µt)t>0 be a Gaussian semigroup on the affine group G with infini-
tesimal generator Ñ . Siebert [17] showed that according to the structure
of Ñ we can distinguish four different types of Gaussian semigroups:

(i) Ñ = Ỹ + 1
2(X̃2

1 + X̃2
2 ) with X1 and X2 linearly independent. Then the

semigroup is absolutely continuous, it has a strictly positive analytic
density and supp(µt) = G for all t > 0. Moreover rank(B) = 2.

(ii) Ñ = Ỹ + 1
2X̃2

1 with Y and X1 linearly independent and [X1, e2] 6= 0.
Then the semigroup is absolutely continuous. Moreover rank(B) = 1.

(iii) Ñ = Ỹ + 1
2X̃2

1 with Y and X1 linearly independent and [X1, e2] = 0.
Then the semigroup is singular. Moreover rank(B) = 1.

(iv) Ñ = Ỹ + 1
2X̃2

1 with Y and X1 linearly dependent. Then the semigroup
is singular and is supported by the proper closed subgroup exp (RX1).
Moreover rank(B) = 1.
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Our aim is to determine the support of Gaussian semigroups of type
(ii) and (iii). In special cases (when Ñ = ẽ2+ ẽ2

1 and Ñ = ẽ1+ ẽ2
2 ) Siebert

[17] has already described it.
Let M denote the Lie subalgebra generated by {Xi : 1 6 i 6 r}. We

will use Siebert’s support formula

supp(µt) =
∞⋃

n=1

(
M exp

tY

n

)n
for all t > 0,

where M is the analytic subgroup of G corresponding to M. (See Siebert

[17].)

Theorem 4.1. Let (µt)t>0 be a Gaussian semigroup on the affine

group G with infinitesimal generator Ñ .

(a) If Ñ is of type (ii) then for all t > 0, he measure µt is supported by





{(
a b

0 1

)
: a > 0, b > b2,1

b1,1
(a− 1)

}
if a2b1,1 − a1b2,1 > 0,

{(
a b

0 1

)
: a > 0, b 6 b2,1

b1,1
(a− 1)

}
if a2b1,1 − a1b2,1 < 0.

(b) If Ñ is of type (iii) then the measure µt is supported by

exp(ta1e1) exp(Re2) for all t > 0.

Proof. In both cases we have r = 1 and Ñ = Ỹ + 1
2X̃2

1 , where
Y = a1e1 + a2e2 and X1 = σ1,1e1 + σ2,1e2.

(a) Now σ1,1e2 = [X1, e2] 6= 0, and Y and X1 are linearly independent,
hence a1σ2,1 − a2σ1,1 6= 0, which implies a1b2,1 − a2b1,1 6= 0.

First consider the case a1 = 0. By induction,

(
α β

0 0

)k

=
(

αk αk−1β

0 0

)
, k = 1, 2, . . . ,
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hence

exp
{(

α β

0 0

)}
=






eα β · eα − 1

α
0 1


 , for α 6= 0,

(
1 β

0 1

)
, for α = 0.

Using this formula it can be easily checked by induction that the elements
of the set

(
M exp tY

n

)n have the form S = (si,j)16i,j62, where




s1,1 = e(α1+···+αn)σ1,1 ,

s1,2 =
t

n
a2e

(α1+···+αn)σ1,1 +
σ2,1

σ1,1

(
e(α1+···+αn)σ1,1 − 1

)

+
t

n
a2

(
eα1σ1,1 + · · ·+ e(α1+···+αn−1)σ1,1

)
,

s2,1 = 0,

s2,2 = 1,

and α1, . . . , αn ∈ R, n ∈ N can be arbitrary. The term eα1σ1,1 + · · · +
e(α1+···+αn−1)σ1,1 attends every positive number. Hence s1,2 > t

na2s1,1 +
σ2,1

σ1,1
(s1,1 − 1) if a2 > 0, and s1,2 6 t

na2s1,1 + σ2,1

σ1,1
(s1,1 − 1) if a2 < 0. Using

Siebert’s supports formula and the facts that σ2,1

σ1,1
= b2,1

b1,1
and b1,1 > 0 we

obtain the assertion.
If a1 6= 0 then again by induction we obtain that the elements of the

set
(
M exp tY

n

)n have the form S = (si,j)16i,j62, where




s1,1 = e(α1+···+αn)σ1,1+ta1 ,

s1,2 =

(
a2

1− e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n

)
e(α1+···+αn)σ1,1+ta1 − σ2,1

σ1,1

+
eta1/n − 1

a1

(
a2 − σ2,1

σ1,1
a1

)

× (
eα1σ1,1 + · · ·+ e(α1+···+αn−1)σ1,1+(n−2)ta1/n

)
,

s2,1 = 0,

s2,2 = 1,

and α1, . . . , αn ∈ R, n ∈ N can be arbitrary. The term eα1σ1,1 + · · · +
e(α1+···+αn−1)σ1,1+(n−2)ta1/n attends every positive number. Using the fact
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that eta1/n−1
a1

> 0 we have

s1,2 >
(

a2
1− e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n

)
s1,1 − σ2,1

σ1,1
if a2b1,1 − a1b2,1 > 0,

s1,2 6
(

a2
1− e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n

)
s1,1 − σ2,1

σ1,1
if a2b1,1 − a1b2,1 < 0.

Since

a2
1− e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n >

σ2,1

σ1,1
if a2b1,1 − a1b2,1 > 0,

a2
1− e−ta1/n

a1
+

σ2,1

σ1,1
e−ta1/n <

σ2,1

σ1,1
if a2b1,1 − a1b2,1 < 0,

and

lim
n→∞

eta1/n − 1
a1

= 0,

we get the assertion.

(b) Now σ1,1e2 = [X1, e2] = 0. Moreover Y and X1 are linearly inde-
pendent, hence a1σ2,1− a2σ1,1 6= 0, which implies a1 6= 0. The elements of
the set

(
M exp tY

n

)n have the form
(

eta1
a2

a1
(eta1− 1)+σ2,1

(
α1+α2e

ta1/n+ · · ·+ (α1+ . . .+αn)e(n−1)a1t/n
)

0 1

)
,

where α1, . . . , αn ∈ R. Using Siebert’s support formula we get

supp(µt) =
{(

eta1 β

0 1

)
: β ∈ R

}
for all t > 0,

that is, supp(µt)= exp(ta1e1 + Re2)= exp(ta1e1) exp(Re2) for all t > 0.
¤

Remark 4.2. In case (ii) the semigroup (µt)t>0 is absolutely continuous
and supp(µt) is the same closed subsemigroup of G for all t > 0. In case
(iii) the semigroup (µt)t>0 is singular and supp(µt) is a proper coset of the
same closed normal subgroup exp(Re2) for all t > 0.
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Remark 4.3. Let (ξt)t>0 be the Gaussian Lévy process in the affine
group G with infinitesimal generator Ñ of type (iii), i.e., Ñ = a1ẽ1+a2ẽ2+
1
2σ2

2,1ẽ
2
2, where a1 6= 0 and σ2,1 6= 0. By Theorem 4.1, the distribution of

ξ(t) is singular for all t > 0. Since a1 6= 0, the distribution of ξ(t) is not
symmetric for all t > 0. But

ξ(t) = η

(
e2a1t − 1

2a1

)
x(t), t > 0,

where

x(t) := exp(a1te1 + a2te2) =

(
ea1t a2

ea1t−1
a1

0 1

)
,

and (η(t))t>0 is a symmetric Gaussian Lévy process with infinitesimal
generator 1

2σ2
2,1ẽ

2
2. Indeed, by Theorem 2.3

ξ(t) =
(

ea1t
∫ t
0 ea1s d(a2s + σ2,1W (s))

0 1

)
,

η(t) =

(
1 σ2,1W̃ (t)
0 1

)
, t > 0,

where (W (t))t>0 and (W̃ (t))t>0 are standard Wiener processes. Clearly

η

(
e2a1t − 1

2a1

)
x(t) =

(
ea1t a2

ea1t−1
a1

+ σ2,1W̃
(

e2a1t−1
2a1

)

0 1

)
, t > 0.

Both processes
(∫ t

0
ea1s d(a2s + σ2,1W (s))

)

t>0

,

(
a2

ea1t − 1
a1

+ σ2,1W̃

(
e2a1t − 1

2a1

))

t>0

are processes with independent increments in R starting from 0 and their
increments on the interval [s, t] ⊂ R+ have a normal distribution with
mean a2

ea1t−ea1s

a1
and variance σ2

2,1
e2a1t−e2a1s

2a1
, hence the assertion. The

process (η(t))t>0 can be considered as the symmetric counterpart of pro-
cess (ξ(t))t>0. In fact (x(t))t>0 is a deterministic Lévy process on the
affine group G, which can be considered as the shift part of the process
(ξ(t))t>0. We note that using Totter’s formula of Hazod [5], Siebert [17]
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showed that the distribution of ξ(t) and η
(

e2a1t−1
2a1

)
x(t) coincide for all

t > 0 in the special case a1 = 1, a2 = 0 and σ2,1 = 2.
Moreover, it can be checked that if the Gaussian Lévy process (ξ(t))t>0

is of type different from (iii) then the decomposition ξ(t) = η
(
c(t)

)
x(t),

t > 0 does not hold with any function c : R+ → R+.
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