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Steinhaus property for products of ideals

By MAREK BALCERZAK (L6d%) and ELZBIETA KOTLICKA (Léd%)

Abstract. Let M and N stand for the ideals of meager sets and of null sets
in R, respectively. We prove that, for any Borel sets A, B in R? which both are
not in M@N (or N@M), the set A+B = {a+b:a € A, b € B} has the nonempty
interior. Some general version of this theorem for B = — A is also considered.

0. Introduction

STEINHAUS [29] proved that, for each Lebesgue measurable set A C R
of positive measure, the set A — A of all differences x — y with z,y € A,
contains a neighbourhood of 0. The analogous result for a linear set of
the second category with the Baire property was obtained by PICCARD
[27]. The both results have been extended in various directions by several
authors. (See e.g. [19].) The scheme given in the Steinhaus theorem can
be formulated as the respective property of a pair consisting of an alge-
bra and an ideal of sets in R (or, more generally, in a topological group).
Other examples of pairs with the Steinhaus property and their applica-
tions to functional equations can be found in [6]. The Steinhaus property
connected with invariant extensions of Lebesgue measure was investigated
by KHARAZISHVILI [15, pp. 123-132].

Let M and N stand, respectively, for the o-ideals of meager sets and
of null sets in R. Products M ® N and N ® M (which will be defined in
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Section 1) form o-ideals of sets in R?, which have been studied in several
papers [21], [22], [11], [7], [8], [9], [10], [2], [4]. In [7], a weak version of
the Steinhaus property for M ® N and N ® M assiociated with the o-
algebra of Borel sets in R?, was considered. Namely, the authors of [7]
were interested in the case when there exists a countable set W C R? such
that (A — A)NW # () for each Borel set A ¢ M@ N (or A ¢ N @ M).
From the theorems of Steinhaus and Piccard it easily follows that one can
take as W the product Q? of the rationals. The aim of our paper is to
prove a general version of the Steinhaus property for M ® N and N @ M.
Theorems 4 and 5 are our main results. In Section 1 we use a technique
which turned out fruitful in [11], [9] and [2]. In Section 2 we follow some
ideas of [16] and [4].

1. Very strong Steinhaus property

We use standard notation. Let N = {1,2,...}. By P(X) we denote
the power set of X. Let (G,+,0) be an Abelian topological group. For
A, B C G and z € G, we denote

Atz={atz:ac A}, —-A={-a:ac A},
A+tB={atb:ac A, be B}.

We say that F C P(G) is invariant if A+ 2z € F for all A€ F and x € G.
Let ¥ and J be invariant families and let they form an algebra and an
ideal of subsets of G, respectively. We say that (3,J) has the Steinhaus
property (in short SP) if A — A contains a neighbourhood of 0, for each
A € ¥\ J. In the sequel, we shall use, as X, the algebra B = B(G) of Borel
sets in G. Observe that, for G = R, the pair (B,N) has SP if and only
if (X,N) has SP where 3 stands for the algebra of Lebesgue measurable
sets. The analogous statement holds in the category case. By that reason,
we attribute the Steinhaus property to an ideal J regardless of an algebra,
but this will mean that (B,J) has SP.

It is clear that for A C G we have

A-A={zeG:(A+z)NA#0}.
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Now, we shall graduate the strength of the Steinhaus-type properties for
a given ideal. Denote by Nb(0) the family of all neighbourhoods of 0.

An ideal 3 C P(G) is called proper if {@} # J # P(G). We say that an
invariant proper ideal 3 C P(G) possesses:

(a) the Steinhaus property, if

(VA€eB\J) BUEeND0) Uc{zeG:(A+z)NA#D};
(b) the strong Steinhaus property, if

(VAEeB\I) U ENBO0) UcC{zecG: (A+z)NAg¢I};

(c) the very strong Steinhaus property, if there is a countable family
{Fn}nen such that B\J = J,, oy I and

(VneN) (3U e Nb(0)) (VA,BeF,) UC{reG: (A+z)NB ¢TI}

we then say that the very strong Steinhaus property for J is realized by the
family {gjn}neN~

The above properties will be written in short as SP, SSP and VSSP.
Clearly VSSP — SSP = SP. The family of all countable subsets
of R serves as a simple example of a o-ideal without SP. Namely, it suffices
to consider a nowhere dense perfect set P C R such that P — P is nowhere
dense. (Seee.g. [30].) Several examples of ideals without SP can be derived
from [3, Section 3].

Theorem 1.

(I) [25] Assume that there exists a countable base {Up, }nen of open neigh-
bourhoods of 0 in G. Then SP <= SSP for each invariant proper
o-ideal I C P(G).

(IT) [25] There is an invariant proper ideal 3 C P(R) which witnesses that
SP = SSP.

(ITI) There is a Banach space in which the ideal of meager sets witnesses
that SSP + VSSP.

PRroOF. I) It suffices to prove SP = SSP. Suppose that J does not
have SSP. So, there is an A € B\ J such that for each n € N there is an
ry, € Uy with (A+z,)NA € J. Put Ag = A\U,,cn(A+2,). Thus Ag € B\J



238 Marek Balcerzak and Elzbieta Kotlicka

and (Ao +z,) N Ay =0 for every n. Hence U ¢ {z € G: (A+z)NA # 0}
for each U € Nb(0). This shows that J does not have SP.

(IT) Let J denote the ideal of all sets of the form AU B where A € N
and B is nowhere dense in R. Then SP for J follows from SP for N. Let
{Un }nen be a fixed countable base of open sets in R. Define nowhere dense
perfect sets Py, k € N, as follows. If j € N is given and P;, ¢ < j, are
chosen, pick a nowhere dense perfect set P; of positive measure, with the
diameter less than 1/(2j), and such that

rcu\N U (Bii).

1<j n<i+j

Then B = ey Pr € B\ J, and

(B—i-l) NBC U <H+1> NP;eJ foreachneN.

" iti<n "

Hence U ¢ {x € R: (B+z) N B € J} for each U € Nb(0). This shows
that J does not have SSP.

(ITI) Let J stand for the ideal of meager sets in the Banach space X
of all bounded functions on [0, 1], endowed with the supremum norm. Fix
an uncountable family F of pairwise disjoint balls in X. Then ¥ C B\ J.
Suppose that {F,},ey fulfils the statement of VSSP. Thus we can find
an ucountable F,. This yields a contradiction since A N B # () for any
A,B € F,, and AN B =  for any distinct A, B € F. It is not hard to
check that J possesses SSP. (See e.g. [28, Theorem 3.5.12].) O

Immediatelly from the definitions we obtain the following:

Proposition 1. If proper invariant ideals J,d C P(G) possess SP (re-
spectively, SSP, VSSP) then JN{J possesses SP (respectively, SSP, VSSP).
Moreover, if VSSP for J and J is realized by {F,}nen and {Gy }nen, then
VSSP for 3N J is realized by {Fy, }nen U {SGn }nen-

Now, we are going to show that M and N have VSSP. Then we shall
obtain a general result which implies that M ® N and N ® M have VSSP
and consequently, they have SP.

Lebesgue measure on R will be denoted by p. Let {I,},en stand for
the family of all bounded open intervals with rational endpoints.
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Theorem 2. The ideal M has VSSP realized by the family {F,}nen

where

Fo={Ae€B:I,\AeM} forneN.

PROOF. Clearly B\M = |J,,cy Fn- Fixann € Nand put U = I, — I,.
Then U is an open interval and

U={zeR:p+a)NI, #0}={zeR: (I, +z)NI, ¢ M}.

Assume that A, B € ¥, and x € U. Thus

(A+2)NB D ((I,NA)+x)N(I,NB)
D (Un\ (In\ A)) +2) 0 (In \ (In \ B))
= (L +2) 0V I\ (((In \ A) +2) U (In \ B)).
Since (I, +x)N 1, ¢ M and I, \ 4, I, \ B € M, we have (A+2)NB ¢ M
as desired. ]

Theorem 3. The ideal N has VSSP realized by the family {S,}nen
where

2
S, = {A €B:u(ANI,) > 3“(1”)} for n € N.

PROOF. Let us show that B\N = | J,,cy Gn- Inclusion “D” is obvious.
To prove inclusion “C” consider an A € B\ N. Thus there exists an h > 0
such that u(ANK)/u(K) > 5/6 where K = (a—h,a+h). Pickan I, C K
such that (K \ I,,) < p(K)/6. We have

AN L)/ u(In) = (W(ANK) = (AN (K \ In))) /(1)

2 (WANK) = p(K\ In))/u(K) >

Hence A € G,,.
Now, fix an n € N and put U = (—u(1,)/4, u(I,)/4). Tt easily follows
that

U={zeR:ull,NnI,+z)) >3u(l,)/4}.
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Assume that A, B € §,, and z € U. Thus
w(A4+z)NB) > pu((I,NnA)+z)n (I,NB))
u((In +2) NI\ (1o \ A) +2) U (In \ B)))
p((In + ) N In) — p(In \ A) — p(In \ B)
> 3#( n)/4 = p(ln)/3 — pu(ln)/3 > 0. O

Now, from Proposition 1 and Theorems 2, 3 we deduce

(Ln
(Zn

Corollary 1. The ideal M NN has VSSP.

Assume that Gq and Go are topological groups, and let J and J be
invariant proper ideals of sets in Gy and Go, respectively. For an A C
G1 x Gg we put

A)={z€G1: A, ¢ 3}

where Ay = {y € Ga : (z,y) € A}, x € G;. We define
I®d={ACG; xGy: A(J) €7}

It is easy to check that J ® J is an invariant proper ideal of sets in the
group G; x Go. Moreover, if J and J are o-ideals, so is J ® J.
Now, we are ready to formulate our main result:

Theorem 4. Assume that J and J are proper invariant ideals of sets
in R, and J is moreover a o-ideal. Assume also the following conditions:
(1) J has VSSP realized by a family {F, }nen,

(2) J has VSSP realized by a family {Gm, }men,
(3) VA€ BR?))(VmeN){zeR: A, €G,} € BR).
Then J ® J has VSSP realized by the family {Hn}m nen where

Hom ={A€BR?) : {z €R: A, € G} € T}
for m,n € N.

PROOF. For brevity we write B(R) = B and B(R?) = B2. First, we
shall prove that

B\ (I2d) = |J Hnn (4)

m,neN
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So, let A € B2\ (J®J). Since A € B2, we have A, € B for each x € R.
(See e.g. [28, 3.1.20].) Hence A(J) = {xr € R: A, € B\ J}. Thus by (2)
we have

A@) = |J{r eR: 4, € Gn}. (5)

meN

From A ¢ J® J it follows that A(J) ¢ J. Since J is a o-ideal, by (5) there
exists an m € N such that {x € R: A, € G,,} ¢ J. Now, by (3) and (1)
we can find an n € N such that {z e R: A, € §,,} € F,,. Consequently,
A€ Hpn.

Now, let A € H,,,, for some m,n € N. Hence

A@) d{zeR: A, €G,} €F, CB\IJ

and thus A ¢ J® J. So (4) has been proved.
The proof will be finished, if we show the condition

(Vm,n € N)(3W € Nb(0,0))(VA, B € Hpp)

W C {(z,y) eR*: (A+ (z,y))NB ¢TI} (6)

Fix any m,n € N. By (1) and (2) we deduce the existence of sets U,V €
Nb(0) such that
VC,C'"eF,)UcC{zeR: (C+z)nC" ¢}, (7)
(VD,D'e€§G)VCc{zeR: (D+z)nD" ¢J}. (8)
Define W = U x V. Let A, B € Hyy. Then A, B given by
A={zeR:4,€SG,}, B={zcR:B, €5}
are both in F,. Let (x,y) € W, that is z € U and y € V. Observe that
(A+z)NBC{scR:(As_y+y)NBs &7} (9)

Indeed, let s € (Z%— x) NB. Then s—x € A and s € B. Hence As ., Bs €
Gm. Now from y € V and (8) we obtain (As—, +y) N Bs ¢ J.

We know that A,B € ¥, and z € U, so from (7) it follows that
(A+z)N B ¢J. Thus by (9) we have

{seR:(Asa+y)NBs ¢} ¢ 7. (10)
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To finish the proof of (6) we have to show that ((A+ (x,y)) N B)(d) ¢ J.
Observe that

((A+(z,9) N B)(d) ={s € R: (As—z +y) N Bs ¢ I}
Thus the assertion follows from (10). O

Remark 1. If condition (1) in Theorem 4 is replaced by “J has SSP”
and the remaining assumptions are unchanged then the assertion will be
“J®J has SSP”. Let us sketch the proof. Let A € B2\ (J®J). We can find
an n € N such that B:={zx € R: A, € G,,,} ¢ J. Pick U,V € Nb(0) such
that U C{z e R: (B+ax)NB¢JtandV C{yeR: (A, +y)NAy ¢ 3}
for all z, 2’ € B (note that A, A, € G,,). Then

UxV c{(z,y) €R?: (A+ (z,y)NA¢ITDJ}.
Indeed, if (z,y) € U x V, we have
(B+z)NBC{seR: (Asp+y)NAs; ¢ I} = ((A+ (z,y)) N A)(I).

Since (B + ) N B ¢ J, the proof is finished.

Another version of Theorem 4 with the phrases “J has SP” and “J®J
has SP” also works, with a similar demonstration.

Remark 2. Theorem 4 and its versions given in Remark 1 remain valid
if R is replaced, respectively, by Abelian topological groups Gy and Go.

Remark 3. Montgomery [24] proved that, for any Borel set A C R?
and r > 0, the sets {x € R: A, ¢ M} and {z € R: u(A;) > r} are Borel.
Consequently, if I is an interval, then the set

{zeR: I\A, e M}=R\{zeR: (Rx1I)\A),¢M}
is Borel. Similarly, the set
{zeR:pINA)>r}={zeR:u(RxI)\ A, >r}

is Borel. (See also [14, 16.1, 22.22, 22.25].) Hence, for any member of the
families {Fp, }neny and {9, }nen from Theorems 2 and 3, condition (3) in
Theorem 4 is fulfilled.
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Now, using Theorems 2, 3, 4 together with Remark 3 and Proposition 1
we conclude

Corollary 2. M@ N, N@M and M@ N) N (N ® M) have VSSP.

Remark 4. Note that the ideals M ® M and N ® N are greater than
the ideals of meager sets and of null sets in R?, respectively. (See [26].)
We shall obtain the respective equalities, if we reduce M ® M and N @ N
to M@M and N®N where

Id={ACR*: 3BcBR*)N(I®J) AcC B}

Analogously, we can consider M@N and N®M instead of M@N and NoM.

The reduced products seem more natural in some contexts. However, since
BR*)\ (I2d) = B[R\ ([I®J),

there is no difference which kind of products we use to investigate the
Steinhaus-type properties. Sometimes it is convenient to associate with
J ® J the smallest o-algebra ¥ containing B(R?)U(J® d). (See [2].) Clearly,
each set from ¥\ (J®J) contains a set from B(R?)\ (I ® J).

The Steinhaus property has important applications in functional equa-
tions theory. For instance, it leads to a simple proof of the fact that an
additive function bounded on a measurable set of positive measure is con-
tinuous (the Ostrowski theorem; [20, p. 210]). A similar fact holds in the
Baire category case [20, p. 210]. Moreover, there is a general theorem [20,
Theoremm 2, p. 240] from which, together with SP for M@ N and N @ M,
we conclude the following

Corollary 3. Let I =M ®N orJ = N®M, and let T € B(R?) \ J.
Then every additive function f: R? — R bounded on T is continuous.

In turn, from Corollary 3 and Remark 4 we derive the next result, by
the use of an argument similar to that in [20, p. 218] or [16, p. 146].

Corollary 4. Let I = M®N or I = N®M, and let ¥ denote the
smallest o-algebra containing B(R?) UJ. Let f : R> — R be an additive
function such that f|P is Y-measurable for some P € ¥\ J. Then f is
continuous.
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2. Extended Steinhaus property

Fix an Abelian topological group G and an invariant proper ideal
J C P(G). Denote by int(A) the interior of a set A C G. Note that if
VSSP for J is realized by {Fy, }nen, then int(B — A) # 0 for all A,B € &,
and for each n € N. It is natural to ask whether int(B — A) # ( for
all A,B € B\ J. The answer is affirmative for ] = M and J = N. The
respective results are well known and their various generalizations were
studied in several papers. (See [5], [18], [19], [23], [12], [13].) We are going
to establish this kind of Steinhaus property for M ® N and N ® M. We
shall follow the method used in [16, Theoremm 2, p. 115]. First let us
connect our investigations with the results of the previous section.

We say that an invariant proper ideal J C P(G) possesses:

(a) the extended Steinhaus property, if

(VA,Be B\J) int({x € G: (A+x)NB #0}) #0;
(b) the extended strong Steinhaus property, if

(VA,Be B\J) int({x e G: (A+x)NB ¢7I}) #0.

Condition (a) states exactly that int(B — A) # ) for all A,B € B\ J.
The properties given in (a) and (b) will be written in short as ESP and
ESSP. Clearly ESP — SP, ESSP — SSP and ESSP — ESP. The
following proposition shows how to obtain ESP or ESSP when SP or SSP
holds.

Proposition 2. For an invariant proper ideal I C P(G) satisfying the
condition:

(VA,BeB\7)(3z€G) (A+z2)NnB¢7, (11)
we have SP <= ESP and SSP <= ESSP.

ProoFr. We shall prove SSP = ESSP; the argument for SP —
ESP is analogous. Let A,B € B\J. Pick a z € G as in (11) and put
Z = (A+ z)N B. By SSP we have

U=int({x eG: (Z4+2)NZ &7T})#0.



Steinhaus property for products of ideals 245

Observe that
U+zCc{yeG:(Z+y—2)NnZ¢Jyc{yeG:(A+y)NB¢7T}.
Hence int({y € G: (A+y) N B ¢ J}) # 0. O

Remark 5. T. NATKANIEC [25] observed that the following version of
Theorem 1(I) holds. If G has a countable base of open sets then ESP <=
ESSP for each proper invariant o-ideal J C P(G). Indeed, suppose that J
does not have ESSP. Thus there are sets A, B € B\ J such that int({z €
G:(A+z)NB ¢ 7J}) = 0. If {Up}nen is a base of open sets in G,
then for each n € N, pick an z,, € U, with (A+ x,) N B € J. Thus
By =B\ U,en(A+x,) € B\J and (A +x,) N By = 0 for every n. Hence
int({zx € G: (A+x)N By # 0}) = 0 which shows that J does not have
ESP.

Theorem 5. M @ N and N @ M have ESSP.

PROOF. Let J = M ®@ N (the case of N ® M is analogous). By virtue
of Corollary 2 it suffices to check condition (11) in Proposition 2 for J. To
this aim we use the notion of a J-density point considered in [4]. Let p(E)
denote the set of J-density points of a set E from the o-algebra generated
by B(R?) U (M®N). In [4], it is proved that ¢ has usual properties of
the lower density operator (cf. [26, Chap. 22]). Let A, B be Borel sets in
R? that are not in J. Pick a € p(A),b € p(B) and put z = b — a. Now,
a € p(A) implies b € p(A)+2z = p(A+=2), and thus b € p(A+2)Np(B) =
©((A+z)N B). Hence (A+2)N B ¢ J. O

An ideal J C P(G) is called symmetric if —A € J whenever A € J.
Obviously, if J is symmetric, then ESP for J is equivalent to

(VA,B € B\J) int(A+ B) # 0.
Observe that if ideals J,J C P(G) are symmetric, so is J ® J. Thus from
Theorem 5 it immediately results the following corollary.

Corollary 5. For arbitrary Borel sets A, B in R? which both are not
in M®N (or N® M), the set A+ B has nonempty interior.

Let us finish with the observation that (M ® N) N (N ® M) does not
possess the extended Steinhaus property. This will follow from the known
general scheme.
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We say that ideals J,d C P(G) are Borel orthogonal if there is a Borel
set A € J such that G\ A € J. For D C G, we say that an ideal J is
D-additive if A+ D € J whenever A € J. Clearly, if J is an invariant
o-ideal then J is D-additive for each countable set D C G.

Proposition 3 (cf. [1], [17]). Assume that 3,J C P(G) are Borel
orthogonal proper ideals. Let additionally, J be invariant, symmetric and
D-additive for some countable dense subgroup D of G. Then there are
Borel sets A, B ¢ INg such that A+B = A—B = B—A and int(A+B) = 0.

PROOF. Let C' C G be a Borel set such that C € J and G\ C € §.
Put B=(D-C)U(D+C). Then B€J, —B = B, and for A = G\ B we
have A€ J, —A=A. Hence A+ B=A—-B=B—A. Since AUB =G,
we infer that A, B ¢ JNJ. Moreover, A— B C G\ D by the definition
of B. Since D is dense, we have int(A — B) = (). O

Proposition 3 applies to M and N and to Q, the additive group of
rationals in R. (See [1], [17]). Observe that it also applies to M ® N,
N ®M and Q? in R%2. Namely, if C, E are disjoint Borel sets such that
CeM, EeNand CUE =R (cf. [26]), then C x R € M ® N and
E xR € N M. Thus we may formulate the following result which
contrasts with Corollary 2.

Corollary 6. There are Borel sets A, B C R? which both are not in
(MON)N(N®M), and such that A+ B=A—B =B—A, int(A+B) = 0.

As we have seen, the ideals M NN and (M @ N) N (N ® M) witness
that ESP can be false even while VSSP is true. Consequently, condition
(11) in Proposition 2 is not fulfilled by these ideals.
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