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On a characterization of infinite cyclic groups

By CZESÃLAW BAGIŃSKI (BiaÃlystok) and JAN KREMPA (Warszawa)

Abstract. In a paper on representation theory of algebras a characterization
of infinite cyclic group was given. We provide a simpler proof of this characteri-
zation and some related results.

In [2] the following result was proved:

Theorem 1. Let G be a torsion-free finitely generated group. G is

cyclic if and only if G satisfies the following two conditions:

(a) for any nontrivial subgroup H of G the index |NG(H) : H| is finite,

(b) for any two cyclic subgroups H1, H2 of G the intersection H1 ∩H2 is

a nontrivial subgroup of G.

This theorem was crucial for the proof of the main result of [2], con-
cerning representation theory of algebras. The proof given on pages 138–
141 of [2], depends on cohomological arguments. Here we give two proofs
obtained by elementary methods. The first one is based on the well known
classical result due to I. Schur.

Lemma 1. If the center Z(G) of a group G has finite index in G, then

its commutator subgroup G′ is finite.

Mathematics Subject Classification: Primary 20E25; Secondary 20E15.
Key words and phrases: cyclic group, finitely generated group, torsion-free group.
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An easy combinatorial proof of the lemma can be found in [7] (Lem-
ma 2.1, p. 4). Other proofs are available for instance in [4] (Theorem 1.4,
p. 49) or [8] (Theorem 10.1.4, p. 287).

The second proof of Theorem 1 is also based on elementary group
theory. We will use the following well known lemma due to Miller and
Moreno.

Lemma 2. If every proper subgroup of a finite group G is abelian,

then G is solvable.

The proof of this lemma one can find, for example, either in the intro-
ductory part of [6] (Theorem 6.3, p. 62) or in [5] (Exercise 6, p. 14).

So both proofs are essentially different than that given in [2] (we prove
only the part ⇐ because the part ⇒ is obvious). Our notation and termi-
nology is standard, as for example in [3], [8].

In both proofs we shall apply the following lemma, almost proved on
page 141 in [2].

Lemma 3. If G satisfies the conditions (a) and (b) of Theorem 1,
then the center Z(G) of G has finite index in G.

Proof. Let G = 〈x1, . . . , xn〉. By (b) the intersection 〈x1〉 ∩ 〈x2〉 ∩
· · · ∩ 〈xn〉 is a nontrivial cyclic subgroup. Let c be its generator. Since c is
a power of each xi, it commutes with each xi and then it commutes with
all elements of G that is c is a central element. Now by (a) |G : 〈c〉| is finite
because G = NG(〈c〉). Since |G : Z(G)| 6 |G : 〈c〉|, the lemma follows. ¤

The first proof of the theorem. By Lemma 3 we know that [G :
Z(G)] < ∞. Thus, by Lemma 1 the commutator subgroup G′ of G is finite.
But G is torsion-free, so G′ is trivial and then G is abelian. Hence by the
structure theorem for finitely generated abelian groups G is cyclic. ¤

The second proof of the theorem. It follows from Lemma 3
that |G : C| < ∞ where C ⊆ Z(G) is a cyclic subgroup. We proceed
by induction on |G : C|. If |G : C| is prime, then obviously G is abelian
and consequently it is cyclic. So by the induction hypothesis we may as-
sume that every proper subgroup H of G such that C 6 H is cyclic. Hence
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in the finite group G = G/Z(G) all proper subgroups are cyclic. Thus by
Lemma 2 the group G is solvable. The group G, being solvable, contains
a maximal normal subgroup M of prime index, say q. Its preimage M is,
by induction assumption, cyclic and normal in G.

Let M = 〈m〉, and let k 6= 0 be such that mk = z ∈ Z(G). If g ∈ G\M
then obviously, as on page 138 of [2], g−1mg = ms for some integer s, since
M E G. Thus z = g−1zg = g−1(mk)g = (g−1mg)k = msk = zs, which
implies s = 1 and so mg = gm. Therefore M ⊆ Z(G) and G is abelian
because the factor group G/Z(G) is cyclic. Hence G is cyclic. ¤

The above considerations give an opportunity to discuss some mod-
ifications of the assumptions of Theorem 1. In particular the following
version of condition (a) can be considered:

(a’) for any nontrivial cyclic subgroup C of G the index |NG(C) : C|
is finite.

Notice that, if C ⊆ G is a cyclic subgroup then C ⊆ ZG(C) ⊆ NG(C)
and |NG(C) : ZG(C)| < ∞, because Aut(C) is a finite group. Hence, in
the condition (a’) one can replace NG(C) by ZG(C). We also have the
following immediate observation:

Lemma 4. If a group G satisfies the condition (a) or (b) of Theorem 1

or the condition (a’) then every subgroup of G satisfies the same condition.

Now we have the following slightly stronger version of Theorem 1

Theorem 2. Let G be a torsion-free group. G is cyclic if and only

if G satisfies the conditions (a’) and (b).

Proof. ⇐ Let H ⊆ G be a finitely generated subgroup. Then in
view of Lemma 4 H satisfies the same condition. Hence, by the proof of
Theorem 1 we know, that H is cyclic. It means that G is locally cyclic
and hence abelian. Now if 1 6= C is a cyclic subgroup of G then C is of
finite index in G. Hence G is cyclic, by previous theorem. ¤

If G is torsion-free abelian, then we already used that the Theorem 1
follows immediately from (a’) or (b) and from the structure theorem for
finitely generated abelian groups. The following generalization is true:
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Proposition 1. Let G be a torsion-free finitely generated solvable

group. If G satisfies the condition either (a’) or (b) then G is cyclic.

Proof. Let A be a maximal abelian normal subgroup of G.
If G satisfies (a’) then, by Lemma 4, every cyclic subgroup of A has

finite index in A and hence, since A is torsion-free, it follows that A must be
cyclic. Moreover, again by (a’) |G : A| < ∞, so G satisfies the assumption
(b) which gives G cyclic by Theorem 1.

Suppose now that G satisfies the assumption (b) only. Thus A must be
locally cyclic. Let g ∈ G \A be an arbitrary element. Since 〈g〉 ∩A 6= {e},
g induces an automorphism of finite order on A. But it is known ([3]) that
the only nontrivial automorphism of finite order of a locally cyclic torsion-
free group is of the form a −→ a−1. Therefore using the same arguments
as in the end of the second proof of Theorem 1 we obtain that G = A.
Hence G is cyclic because it is finitely generated. ¤

Using Lemma 4 we immediately obtain

Corollary 1. Let G be a torsion-free locally solvable group. If G

satisfies the condition (a’) then G is cyclic. If G satisfies the condition (b)
then G is locally cyclic.

In the proof of the above proposition we have not used the assumption
that G is solvable in full generality. In fact we showed that

Corollary 2. Let G be a torsion-free group and let A be a maximal

abelian subgroup of G. If G satisfies the condition (a’) then A is cyclic;

If G satisfies the condition (b) then A is locally cyclic. In both cases

NG(A) = A.

Remark 1. In [1] there was constructed a nonabelian finitely generated
non-torsion group G, which is torsion-by-cyclic. Obviously this group sat-
isfies the condition (b), hence it is torsion-free, and does not satisfy the
condition (a) and even (a’). See also Theorems 31.3 and 31.4 of [6].

Remark 2. In Theorem 28.3 of [6] there is constructed a 2-generated
torsion-free simple group G such that every proper subgroup of G is cyclic
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and every two maximal subgroups have trivial intersection. It is clear that
this group satisfies the condition (a) and does not satisfy the condition (b).

Remark 3. If F is a (finitely generated) free nonabelian group then it
is torsion-free, satisfies the condition (a’) (but not (a)), and certainly does
not satisfy the condition (b).

Remark 4. Let G be finitely generated and suppose that G satisfies
the conditions (a) and (b). If we suppose G to contain torsion elements,
then by (b), G must be a p-group having exactly one subgroup of order p.
Because this subgroup is cyclic and normal then, by (a), G is finite and, as
it is well known, G is either a cyclic p-group or a generalized quaternion
group Q2n for some n > 3.

On the other hand, for each sufficiently large prime p Ol’shanskii

constructed an infinite p-group G(p) whose subgroups are cyclic of or-
der p. This group satisfies (a) and does not satisfy (b). The group G(p)
can be extended to a p-group containing exactly one subgroup of order p

and whose every subgroup is cyclic ([6], Theorem 31.8). Obviously this
extension satisfies (b) and beside the unique subgroup of order p all sub-
groups satisfy (a).
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