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Controllability of semilinear stochastic evolution equations
with time delays

By P. BALASUBRAMANIAM (Gandhigram) and J. P. DAUER (Chattanooga)

Abstract. Controllability of semilinear stochastic evolution equations with
time delays is studied by using Caratheodory successive approximate solutions.

1. Introduction

Fixed point techniques are widely used for analyzing the controllabil-
ity of nonlinear systems in finite and infinite dimensional Banach spaces.
Anichini [2], Dauer [7] and Dauer et al. [9] studied the controllability
of classical nonlinear systems by means of Schaefer’s theorem, Fan’s the-
orem, and Leray–Schauder’s theorem, respectively. Several authors have
used semigroup theory to extend classical finite dimensional controllability
results to infinite dimensional spaces for evolution equations with bounded
and unbounded operators in Banach spaces (see [4], [8]).

Semigroup theory gives a unified treatment of a wide class of stochastic
parabolic, hyperbolic and functional differential equations, and much ef-
fort has been devoted to the study of the controllability of such evolution
equations (see, [16]). Stochastic control theory is a stochastic general-
ization of classical control theory, and controllability of linear stochastic
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systems has been one of the well-known problems discussed in the litera-
tures [3], [18], [19]. Recently the controllability of linear stochastic systems
has been extended to semilinear stochastic evolution equations in Hilbert
space where the semilinear term depends on the probability distribution
µ(t) (see, [5]). If the nonlinear term does not depend on µ(t), then the
process determined is a standard Markov process and there are numerous
papers in the literature discussing the stability of such stochastic equations
in Hilbert spaces (for details see [1], [10], [12]).

As an example of such a control system, consider a stochastic model
for drug distribution in a closed biological system with a simplified heart,
one organ or capillary bed, and recirculation of the blood with a constant
rate of flow. Here the heart is considered as a mixing chamber of constant
volume as described in [17]. Drug concentration in the plasma in given
areas of the system is assumed to be a random function of time. Assume
that for t ≥ 0, x1(s, t;w) is the concentration at time t in moles per unit
volume at points in the capillary w ∈ Ω. Here Ω is the supporting set of a
complete probability measure space (Ω, A, P ) with A being the σ-algebra
and P is the probability measure.

The heart is considered to be a mixing chamber of constant volume V

given by

V =
Ve

ln(1 + Ve/Vr)
,

where Vr is the residual volume in the heart and Ve is the injection volume.
It is assumed that an initial injection is given at the entrance of the heart
resulting in a concentration x(t), 0 ≤ t ≤ t1, of the drug in plasma entering
the heart, where t1 is the duration of injection.

Let the time required for the blood to flow from the heart exit to
the entrance of the organ be t > 0, and also let t be the time required
for blood to flow from the exit of the organ to the heart entrance. Drug
concentration in the plasma leaving the heart x(t;w) satisfies the integral
equation (see [6])

x(t; w) = G(t) +
∫ t

0
K(s, x(s;w);w)ds,
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where

G(t) =
∫ T (t)

0

C

V
x(s)ds, T (t) =

{
t, 0 ≤ t ≤ t1,

t1, t ≥ t1,

K(s, x(s; w);w) =
−C

V
x(s;w)− x1(l, s− t; w),

and x1(l, s; w) = 0 if s < 0. Here C is the constant volume flow rate of
plasma in the capillary bed and x1(l, s; w) is the drug concentration in the
plasma leaving the organ at time s. The mild solutions are in the form of
stochastic integral equations.

The objective of this paper is to derive the controllability conditions of
the semilinear stochastic evolution equation with dealys in Hilbert space.
The Caratheodory successive approximate solution is employed to get the
suitable controllability conditions. The considered system is an abstract
formulation of a stochastic partial differential equation (see [14]).

2. Preliminaries

Consider a class of delay stochastic evolution equations

dx(t) =
[
Ax(t) + (Bu)(t) + f(x(t), x(t− τ(t)))

]
dt

+ g(x(t), x(t− τ(t)))dw(t), t ∈ J = [0, T ], (2.1)

x(t) = φ(t), −r ≤ t ≤ 0, (2.2)

where A generally unbounded, generates a strongly continuous semigroup
{ S(t), t ≥ 0 } of bounded linear operators over a separable (real) Hilbert
space H with inner product 〈· , ·〉 and norm ‖ · ‖. The state x(·) takes the
values in the Hilbert space H, the control function u(·) is the stochastic
process defined in a Hilbert space U of admissible control functions. B is
a bounded linear operator from U into H. The functions f(x, y) and
g(x, y) are bounded nonlinear functions satisfying certain given Lipschitz
conditions and linear growth conditions and w(·) is a Hilbert space valued
Q-Wiener process. Let K be another separable (real) Hilbert space and
w(t), t ≥ 0, be a K-valued Wiener process with mean zero and covariance
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operator Q, with trQ < ∞ (tr denotes the trace of the operator), defined
by

E〈w(t), g〉 〈w(s), h〉 = (t ∧ s)〈Qg, h〉,

for every g, h ∈ K. Here 〈· , ·〉 denotes the inner product on the space K.
Let KQ ⊂ K be the closure of Q1/2K with respect to the norm ‖ · ‖Q

defined by

‖Q 1
2 k‖2

Q = 〈Q 1
2 k, Q

1
2 k〉Q = 〈k, k〉, k ∈ K.

Assume V ⊂ H be a densely imbedding Banach subspace, and suppose
that A : V → V ∗, the dual of V , is bounded.

For the existence of mild solution of (2.1)–(2.2) assume the following
three conditions on f , g, A, and µ:

i) f : H ×H → H and g : H ×H → L(KQ,H), the space of all linear
bounded operators from KQ into H, are two measurable mappings
and there exists a positive constant L such that

‖f(x, y)‖ ∨ ‖g(x, y)‖ ≤ L(1 + ‖x‖+ ‖y‖), for every x, y ∈ H, and

‖f(x, y)− f(x∗, y∗)‖ ∨ ‖g(x, y)− g(x∗, y∗)‖
≤ L(‖x− x∗‖+ ‖y − y∗‖), for all x, y, x∗, y∗ ∈ H.

ii) A : V → V ∗ is coercive such that it generates an analytic semigroup
{St, t ≥ 0} on H.

iii) For arbitrarily given T > 0, there exist constants θ = θ(T ) > 0 and
K(T ) > 0 such that for any sufficiently large positive integer n

µ

{
t : 0 < τ(t) <

1
n

, 0 ≤ t ≤ T

}
≤ K(T )

nθ
,

where µ is the Lebesgue measure on R+.

Let τ(·) be a continuous non-negative function on R+ and define

r = sup{τ(t)− t : t ≥ 0} < ∞.

Let M2([−r, 0],H) denote the family of all continuous H-valued stochastic
processes φ(t),−r ≤ t ≤ 0 are all =0 measurable and

sup
−r≤t≤0

{E‖φ(t)‖2, −r ≤ t ≤ 0} < ∞.
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Then for any T > 0, an H-valued stochastic process x(t), t ∈ [−r, T ],
defined on some given probability space (Ω,=,=t,P) has the following
mild solution (see, Liu [13]), where x(·) adapted to =t, is measurable and
almost surely

∫ T
0 ‖x(s)‖2ds < ∞,

x(t) = Stφ(0) +
∫ t

0
St−η[(Bu)(η) + f(x(η), (η − τ(η)))]dη

+
∫ t

0
St−ηg(x(η), x(η − τ(η)))dw(η), t ∈ J a. e.,

x(t) = φ(t), −r ≤ t ≤ 0.

Definition 2.1. The stochastic evolution equation (2.1)–(2.2) is said to
be controllable on the interval J , if for every continuous initial H-valued
stochastic process φ defined on [−r, 0], there exists a stochatic control pro-
cess u ∈ U which is adapted to the filtration {=t}t≥0 such that the solution
x(·) of (2.1)–(2.2) satisfies x(T ) = x1, where x1 and T are preassigned ter-
minal state and time, respectively.

3. Main result

Theorem 3.1. Suppose that the conditions (i)–(iii) hold and the lin-

ear operator W from U into H defined by

Wu =
∫ T

0
ST−sBu(s)ds

has an invertible operator W−1 defined on H \KerW (see [11]). In addi-

tion, suppose there exist positive constants N1, N2 such that

‖B‖2 ≤ N1 and ‖W−1‖2 ≤ N2.

Then the system (2.1)–(2.2) is controllable on J .

Proof. Using the above hypothesis define the control

u(t) = W−1

{
x1 − ST φ(0)−

∫ T

0
ST−ηf(x(η), x(η − τ(η)))dη
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−
∫ T

0
ST−ηg(x(η), x(η − τ(η)))dw(η)

}
(t).

Now it is shown that, when using this control, the operator defined by

(Φx)(t) = Stφ(0) +
∫ t

0
St−θBW−1

{
x1 − ST φ(0)

−
∫ T

0
ST−ηf(x(η), x(η − τ(η)))dη

−
∫ T

0
ST−ηg(x(η), x(η − τ(η)))dw(η)

}
(θ)dθ

+
∫ t

0
St−ηf(x(η), x(η − τ(η)))dη

+
∫ t

0
St−ηg(x(η), x(η − τ(η)))dw(η), for t ∈ J,

has a convergent solution (see [13]). Clearly (Φx)(0) = φ(0), which means
that the control u(·) steers the semilinear evolution equation from the ini-
tial state φ to x1 in time T provided a convergent solution of the nonlinear
operator Φ can be obtained.

It is enough to prove the existence of the solution by using the Cara-
theodory approximate solution which is defined as follows. Fix T > 0, for
arbitrary, ν ≥ 1, φ(.) ∈ C([−r, T ], H) and all n ≥ 2

r , define

Φxn(t) = φ(t), −r ≤ t ≤ 0,

Φxn(t) = Sn
t φ(0) +

∫ t

0
1Dc

n
(θ)Sn

t−θBW−1

{
x1 − Sn

T φ(0)

−
∫ T

0
Sn

T−ηf

(
xn

(
η − 1

nν

)
, xn(η − τ(η))

)
dη

−
∫ T

0
Sn

T−ηg

(
xn

(
η − 1

nν

)
, xn(η − τ(η))

)
dw(η)

}
(θ)dθ

+
∫ t

0
1Dn(θ)Sn

t−θBW−1

{
x1 − Sn

T φ(0)

−
∫ T

0
Sn

T−ηf

(
xn

(
η − 1

nν

)
, xn

(
η − τ(η)− 1

nν

))
dη
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−
∫ T

0
Sn

T−ηg

(
xn

(
η − 1

nν

)
, xn

(
η − τ(η)− 1

nν

))
dw(η)

}
(θ)dθ

+
∫ t

0
1Dc

n
(η)Sn

t−ηf

(
xn

(
η − 1

nν

)
, xn(η − τ(η))

)
dη

+
∫ t

0
1Dc

n
(η)Sn

t−ηg

(
xn

(
η − 1

nν

)
, xn(η − τ(η))

)
dw(η)

+
∫ t

0
1Dn(η)Sn

t−ηf

(
xn

(
η − 1

nν

)
, xn

(
η − τ(η)− 1

nν

))
dη

+
∫ t

0
1Dn(η)Sn

t−ηg

(
xn

(
η − 1

nν
), xn

(
η − τ(η)− 1

nν

))
dw(η),

where Sn
t−η = St−η+ 1

nν
, Dn = {t : τ(t) < 1

nν , for 0 ≤ t ≤ T} and Dc
n =

[0, T ]−Dn. Here 1Dn denotes the indicator function on the set Dn ⊂ R+.
Here Φxn(t) can be determined by stepwise iterated Ito integrals over
the intervals [0, 1

nν ], [ 1
nν , 2

nν ], . . . , etc. Let C(J ; H) denote the space of
H-valued continuous functions on J with the usual supremum norm.

It will be shown the sequence {Φxn(t)} of approximate solutions con-
verges a.s. in the space C(J ; H) to the mild solution x(·) of equation (2.1)–
(2.2). Under the assumption of priori boundedness of E( sup

0≤s≤η
‖xn(s)‖2) <

C(T ), it follows that

E‖Φxn(t)‖2 = ‖φ(t)‖2, −r ≤ t ≤ 0,

E‖Φxn(t)‖2 ≤ ‖Sn
t φ(0)‖2 +

∫ t

0

∥∥∥∥1Dc
n
(θ)Sn

t−θBW−1

{
x1 − Sn

T φ(0)

−
∫ T

0
Sn

T−ηf

(
xn

(
η − 1

nν

)
, xn(η − τ(η))

)
dη

−
∫ T

0
Sn

T−ηg

(
xn

(
η − 1

nν

)
, xn(η − τ(η))

)
dw(η)

}
(θ)

∥∥∥∥
2

dθ

+
∫ t

0

∥∥∥∥1Dn(θ)Sn
t−θBW−1

{
x1 − Sn

T φ(0)

−
∫ T

0
Sn

T−ηf

(
xn

(
η − 1

nν

)
, xn

(
η − τ(η)− 1

nν

))
dη

−
∫ T

0
Sn

T−ηg

(
xn

(
η − 1

nν

)
, xn(η − τ(η)− 1

nν
)
)

dw(η)
}

(θ)
∥∥∥∥

2

dθ
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+
∫ t

0

∥∥∥∥1Dc
n
(η)Sn

t−ηf

(
xn

(
η − 1

nν

)
, xn

(
η − τ(η)

))∥∥∥∥
2

dη

+
∫ t

0

∥∥∥∥1Dc
n

(
η)Sn

t−ηg

(
xn

(
η − 1

nν

)
, xn(η − τ(η))

)
dw(η)

∥∥∥∥
2

+
∫ t

0

∥∥∥∥1Dn(η)Sn
t−ηf

(
xn

(
η − 1

nν

)
, xn

(
η − τ(η)− 1

nν

))∥∥∥∥
2

dη

+
∫ t

0

∥∥∥∥1Dn(η)Sn
t−ηg

(
xn

(
η − 1

nν

)
, xn

(
η − τ(η)− 1

nν

))
dw(η)

∥∥∥∥
2

≤ C ′
1(T ) + N1N2C

′
2(T )

∫ t

0
1Dc

n
(θ)

{
‖x1‖+ C ′

1(T )

+ 2C ′
2(T )T

[
1 + E

∥∥∥∥xn

(
η − 1

nν

)∥∥∥∥
2

+ E

∥∥∥∥xn(η − τ(η))
∥∥∥∥

2]}
(θ)dθ

+ N1N2C
′
2(T )

∫ t

0
1Dn(θ)

{
‖x1‖+ C ′

1(T )

+ 2C ′
2(T )T

[
1+ E

∥∥∥∥xn

(
η− 1

nν

)∥∥∥∥
2

+E

∥∥∥∥xn

(
η − τ(η)− 1

nν

)∥∥∥∥
2]}

(θ)dθ

+ C ′
2(T )

∫ t

0
1Dc

n
(η)

{
1+ E

∥∥∥∥xn

(
η − 1

nν

)∥∥∥∥
2

+E

∥∥∥∥xn(η − τ(η))
∥∥∥∥

2
}

dη

+C ′
2(T )

∫ t

0
1Dn(η)

{
1+E

∥∥∥∥xn

(
η− 1

nν

)∥∥∥∥
2

+E

∥∥∥∥xn

(
η− τ(η)− 1

nν

)∥∥∥∥
2
}

dη

≤ C ′
1(T ) + 2C ′

2(T )T + C ′′
2 (T )

∫ t

0
E

∥∥∥∥xn

(
η − 1

nν

)∥∥∥∥
2

dη

+ C ′′
2 (T )

∫ t

0
1Dc

n
(η)E

∥∥∥∥xn(η − τ(η))
∥∥2

dη

+ C ′
2(T )

∫ t

0
1Dc

n
(η)

{
1 + E

∥∥∥∥xn

(
η − 1

nν

)∥∥∥∥
2

+ E

∥∥∥∥xn(η − τ(η))
∥∥∥∥

2}
dη

+ C ′′
2 (T )

∫ t

0
1Dn(η)E

∥∥∥∥xn(η − τ(η))
∥∥∥∥

2

dη

+C ′
2(T )

∫ t

0
1Dn(η)

{
1+ E

∥∥∥∥xn

(
η− 1

nν

)∥∥∥∥
2

+E

∥∥∥∥xn

(
η− τ(η)− 1

nν

)∥∥∥∥
2}

dη
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+ C ′′
2 (T )

∫ t

0
1Dn(η)E

∥∥∥∥xn

(
η − τ(η)− 1

nν

)∥∥∥∥
2

dη

≤ C ′
3(T ) + C ′

4(T )
∫ t

0
E

∥∥∥∥xn(η)
∥∥∥∥

2

dη

+ C ′
5(T )

{
µ(Dc

n) +
∫ t

0
1Dc

n
(η) sup

0≤s≤η
E(‖xn(s)‖2)dη

}

+ C ′
6(T )

{
µ(Dn) +

∫ t

0
1Dn(η) sup

0≤s≤η
E

(‖xn(s)‖2
)
dη

}

≤ C ′′′
1 (T ) + C ′′′

2 (T )
∫ t

0
E

(
sup

0≤s≤η
‖xn(s)‖2

)
dη

≤ C1(T ).

Further, a known estimate (see Pazy [15, p. 74]) implies for any 0 < α < 1,

E‖Φxn(t)− Φxn(s)‖2 ≤ C2(α, T )(t− s)α + C3(T )(t− s),

0 ≤ s ≤ t ≤ T.
(3.1)

Next it is shown that Φxn(t) converges to a limit in L2(Ω,H) for each
t ∈ J . To do so let m > n ≥ 2/r and note that ‖S(t)‖ ≤ M exp(wT ) for
all t ∈ J , then conditions (i)–(iii) imply that there exist positive constants
M1(T ),M ′

2(T ),M2(T ), . . . , M10(T ) such that

E
(

sup
0≤η≤T

‖Φxm(s)− Φxn(s)‖2
)

≤ 4M1(T )µ(Dn −Dm) + 4M ′
2(T )

∫ t

0
E‖xm(η)− xn(η)‖2dη

+ 4
{

M5(T )T
(

1
nν

− 1
mν

)
+ M6(α, T )T

(
1
nν

− 1
mν

)α}

+ 4M2(T )
∫ t

0
sup

0≤s≤T
E‖xm(s)− xn(s)‖2dη

+ 4M3(T )
∫ t

0
E‖xm(η)− xn(η)‖2dη

+ 4
{

M5(T )T
(

1
nν

− 1
mν

)
+ M6(α, T )T

(
1
nν

− 1
mν

)α}
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≤
{

M1(T )µ(Dn −Dm) + M8(T )T
(

1
nν

− 1
mν

)

+M9(α, T )T
(

1
nν

− 1
mν

)α}

×M10(T )
∫ T

0
sup

0≤s≤T
E‖xm(s)− xn(s)‖2dη. (3.2)

Noting that µ(Dn−Dm) → 0 as n,m →∞, it follows that {Φxn(t)} is
Cauchy sequence in L2(Ω, C(J ; H)). Denote this limit in L2(Ω, C(J ;H))
by x(·). A Borel–Cantelli argument easily gives that there exists a subse-
quence, say {Φxmi(t)}, which converges to x(t) uniformly in t ∈ J almost
surely. Therefore, x(·) is a {=t}-adapted continuous H-valued process.
Moreover, letting n →∞ in (3.2) it follows that

E
(

sup
0≤s≤T

‖x(s)− Φxn(s)‖2
)

≤ C4(T )
{[

1
nν

+
1

nαν

]
+ µ

[
t : 0 < τ(t) <

1
nν

, t ∈ J

]}
→ 0.

Now letting n → ∞ in (3.1), the conclusion is immediately obtained.
¤

4. Example

Consider a stochastic Burgers-type equation with constant time delay
(that is δ(t) = 2h > 0).

dYt(ξ)
dt

= ν
∂2Yt(ξ)

∂ξ2
+

1
2

∂Y 2
t (ξ)
∂ξ

+ Yt−2h(ξ) + (Bu)(t)

+ 2t3e−ηλ0t dwt(ξ)
dt

, t ≥ 0, ξ ∈ [0, 1], (4.1)

Yt(0) = Yt(1) = 0, t > 0, (4.2)

Yt(ξ) = φ(t, ξ), t ∈ [−2h, 0], ξ ∈ [0, 1]. (4.3)

Here ν > 0 and φ(t, ξ) : [−2h, 0] × Ω → X = L2[0, 1] is a suitable =0-
measurable process. Assume the following three conditions:
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(1) Let domA = H2(0, 1) ∩ H1
0 (0, 1) and (Aψ)ξ = ν ∂2Yt(ξ)

∂ξ2 , ψ ∈ domA,
and let B be a bounded linear operator from the control space U =
L2(0, 1) into a Hilbert space H satisfying the hypothesis stated in the
Theorem 3.1.

(2) Define the functions

f(Yt(ξ), Yt−2h(ξ)) =
1
2

∂Y 2
t (ξ)
∂ξ

+ Yt−2h(ξ),

g(Yt(ξ), Yt−2h(ξ)) = 2t3e−ηλ0t.

(3) Let wt(ξ) is a Wiener process with a bounded, continuous covariance
q(ξ, ζ), namely, there exists a constant c > 0 such that |q(ξ, ζ)| ≤ c,
and further denote

λ0 = inf
y∈D(A)

|∇y(ξ)|2
|y(ξ)|2 .

Then system (4.1)–(4.3) has an abstract formulation as the following semi-
linear delay stochastic equation in a Hilbert space H

dx(t) =
[
Ax(t) + (Bu)(t) + f(x(t), x(t− τ(t)))

]
dt

+ g(x(t), x(t− τ(t)))
dw(t)

dt
, t ∈ J = [0, T ], (4.4)

x(t) = φ(t), −2h ≤ t ≤ 0, (4.5)

where the linear operator A is the infinitesimal generator of a strongly
continuous semigroup eAt, t ≥ 0, in H. Thus (4.4)–(4.5) has a unique
solution (see [14]). All the conditions of Theorem 3.1 are satisfied, and it
follows that system (4.1)–(4.3) is completely controllable on J .
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