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Abstract. We look for solutions (f, g) of equation (1) on R in the case where
f is locally integrable and g is continuous at the origin. In particular, among solu-
tions exponential functions show up. The study is motivated by E. Wachnicki’s
paper [7] dealing with an integral mean value theorem.

1. Introduction

We consider the functional equation

af(x) + bf(y) = f(ax + by)g(y − x), x, y ∈ R, (1)

where a, b are some positive reals, f : R → R, g : R → R, are unknown
functions.

On putting a = b = 1
2 in (1) we arrive at

f(x) + f(y) = 2f

(
x + y

2

)
g(y − x), x, y ∈ R, (2)
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which has appeared in E. Wachnicki’s paper [7] in connection with an
integral mean value theorem. Equation (2) reduces to Wilson’s one which
is dealt with in J. Aczél’s monograph [1, pp. 165–171], cf. also [6]. Results
on other generalization of (2) are found in [8].

In this paper we shall determine (in Sections 5–7) the solutions (f, g)
of equation (1) belonging to the class F × G of functions, where

F := {f : R→ R, f 6= 0 and f is integrable on R},
and

G := {g : R→ R, g is continuous at the origin}.

2. Preliminaries

Let us first observe that, putting x = y in (1), we get

(a + b)f(x) = g(0)f((a + b)x), x ∈ R, (3)

whence f(0)(a + b − g(0)) = 0. In the case where g(0) 6= 0 equation (3)
becomes the simple Schröder’s functional equation (for x ∈ R)

f(px) = qf(x), (4)

where p = a + b, q = (a + b)/g(0).
The following facts on solutions of (4) are either found in [2] or they

can be easily derived from the theory of the Schröder equation presented
in [3], cf. also [5] (in particular, Theorem 6.1, p. 137 in [3]).

Lemma 1. Let I be an interval containing zero and assume that

0 < p < 1. (P)

(A) If |q| > 1 then the only solution f : I → R of (4) which is

continuous at zero is the zero function, f(x) = 0 for x ∈ I.

(B) If

q = p, (5)

then every C1-solution of (4) in I is given by

f(x) = αx, x ∈ I, (6)

where α ∈ R is a constant.
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In the case where g(x) = 1 for x ∈ R, equation (1) takes the form

af(x) + bf(y) = f(ax + by), x, y ∈ R, (7)

which is a special case of the equation considered in M. Kuczma’s mono-
graph [4]. From the Theorem 13.10.2 found there on p. 341 we obtain the
following.

Proposition. If a non-constant (Lebesgue) measurable function f :
R→ R fulfils equation (7) then there exist real numbers α 6= 0 and β such

that

f(x) = αx + β, x ∈ R,

and β = 0 when a + b 6= 1.

3. Case a + b 6= 1, constant solution f

We start with listing the cases in which f satisfying (1) is necessarily
the constant function. If the constant is zero, then (1) is satisfied by any
function g. We assume that

(I) p := a + b 6= 1 (a > 0, b > 0).

Theorem 1. Assume (I). The solutions (f, g) of equation (1), defined

on R, are the following:

(i) If g(0) = 0, then

f(x) = 0, x ∈ R, g : R→ R is an arbitary function. (8)

(ii) If g(0) = p and f is continuous at zero, then either c := f(0) 6= 0
and

f(x) = c, g(x) = p, x ∈ R,

or c = 0 and (8) holds.

(iii) If 0 < |g(0)| < p < 1 or |g(0)| > p > 1, and f is continuous at

zero, then (8) holds.

Proof. According to the introductory remark in Section 2 we may
concentrate on determining f satisfying (3).
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(i) From (3) (which now reads pf(x) = 0 for x ∈ R) we get f = 0.

(ii) Equation (3) (now f(x) = f(px)) yields

f(x) = f(pnx), n ∈ N, x ∈ R. (9)

Thus, if 0 < p < 1 and f is continuous at zero, on letting n → ∞, we
get f(x) = f(0) =: c for x ∈ R. Hence (1) and (I) yield cp = cg(y − x),
x, y ∈ R. We see that g(t) = p for t ∈ R if c 6= 0, whereas g is arbitrary if
c = 0. In the case where p > 1 we rewrite (9) in the form

f(p−nx) = f(x), n ∈ N, x ∈ R,

and argue as above to get the same conclusion. The assertions of (ii) are
proved.

(iii) In view of (3), f satisfies in R equation (4) with q := p/g(0). If
0 < |g(0)| < p < 1, then |q| > 1 and condition (P) holds, so that from
Lemma 1(A) we get f(x) = 0 for x ∈ R. When |g(0)| > p > 1 we write
equation (4) in the form

f

(
1
p
x

)
=

1
q
f(x), x ∈ R.

Because of 0 < 1
p < 1 and

∣∣1
q

∣∣ > 1 Lemma 1(A) again works, yielding
f = 0. ¤

Remark 1. In the cases: p < |g(0)| < 1 or p > |g(0)| > 1 the solution
f of (4) which is continuous in a neighborhood of the origin depends on
an arbitrary function (cf. [1], and also [5, Theorem 3.1.3, p. 99]) and there
is no way of finding solutions of (1) among them. In these cases neces-
sarily f(0) = 0 (observe that since f(pnx) = qnf(x), n ∈ N, x ∈ R, the
conditions p < 1 and |q| < 1 lead to a contradiction when f(0) 6= 0).
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4. Regularity of solutions from the class F × G

We shall prove the following.

Lemma 2. If a > 0, b > 0 and (f, g) ∈ F × G is a solution to (1),
then

(a) f ∈ C∞(R),

(b) g ∈ C∞(J), where J is an open interval containing zero, and

g′(0) = 0.

Proof. We put again p := a + b (> 0).

(a) For an arbitrarily fixed x0 > 0 let δ > 0 be such that f is integrable
in the interval V = V (x0) := [x0 − pδ, x0 + pδ].

Let t ∈ (0, δ) and x ∈ V . Replacing x in (1) by x− bt and y by x + at

we get

af(x− bt) + bf(x + at) = f(px)g(pt), x ∈ V, t ∈ (0, δ).

Since f ∈ F is not the zero function, we have g(0) 6= 0 (cf. Theorem 1 (i))
and f satisfies (4) (with q = p/g(0)), whence

af(x− bt) + bf(x + at) = qf(x)g(pt), x ∈ V, t ∈ (0, δ). (10)

In particular, the function (0, δ) 3 t 7→ g(pt) is integrable. We integrate
(10) with respect to t over the interval [0, δ] to get

a

∫ δ

0
f(x− bt)dt + b

∫ δ

0
f(x + at)dt = qf(x)

∫ δ

0
g(pt)dt. (11)

After the substitutions s = x−bt and s = x+at in the respective integrals
equation (11) turns over

k(x) = cqf(x), x ∈ V, (12)

where

k(x) :=
a

b

∫ x

x−bδ
f(s)ds +

b

a

∫ x+aδ

x
f(s)ds, x ∈ V, (13)

and

c :=
∫ δ

0
g(pt)dt.
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Since f is integrable, (13) says that k is continuous in V . In turn, (12)
implies that f is continuous in V , yielding, again by (13), the differentia-
bility of k on V , etc. Therefore the function f is of class C∞ on V , i.e., as
x0 was arbitrary in R, f ∈ C∞(R).

(b) By letting

u = ax + by, v = y − x, x, y ∈ R,

we see that (1) is equivalent to:

af

(
u− bv

p

)
+ bf

(
u + av

p

)
= f(u)g(v), u, v ∈ R. (14)

Since f is not identically zero and it is of class C∞ on R, there is an open
interval containing zero, say J , on which g is of class C∞.

Taking derivatives in (14) with respect to v we obtain

−ab

p
f ′

(
u− bv

p

)
+

ab

p
f ′

(
u + av

p

)
= f(u)g′(v), u ∈ R, v ∈ J.

Letting v = 0 here we get the equality f(u) g′(0) = 0, whence, as f 6= 0,
we have g′(0) = 0. ¤

5. Case a + b 6= 1

In this case if f ∈ F has a non-zero derivative at zero then it is a
linear function, and g ∈ G is a constant function.

Theorem 2. Assume (I). If (f, g) ∈ F × G is a solution to (1), f is

differentiable at zero, and

f(0) = 0, f ′(0) 6= 0, (15)

then

f(x) = αx; g(x) = 1, x ∈ R, (16)

where α 6= 0 is a real number.
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Proof. Assume (15). The function f satisfies equation (3), i.e.,

pf(x) = g(0)f(px), x ∈ R, (17)

whence
p
f(x)

x
= g(0)p

f(px)
px

, x ∈ R \ {0}.

Since f(0) = 0 and f is differentiable at zero, we get pf ′(0)(g(0)− 1) = 0
and by (I) and (15) we have

g(0) = 1. (18)

Because of (18) the Schröder equation (17) for f becomes

f(px) = pf(x), x ∈ R, (19)

and, by Lemma 2 (a), f is of class C∞(R). If p < 1 then conditions (P)
and (5) are satisfied, Lemma 1 (B) works, and we get formula (6) (i.e.,
(16) for f(x)), whereas if p > 1 it is enough to write (19) in the form

f(p−1x) = p−1 f(x), x ∈ R,

to have Lemma 1 (B) applicable again. Using (6) in (1) we get g(x) = 1
and formula (16) holds true. ¤

6. Case a + b = 1; a differential equation

We pass to the remaining case

(II) p := a + b = 1 and 0 < a < b.

(Solutions of equation (1) when a = b=1/2 are described in the paper [6].)
We have the following

Lemma 3. Assume (II). If (f, g) ∈ F × G is a solution to (1), then

(a) the function g fulfils condition (18),

(b) the function f satisfies the differential equation

abf ′′(x) = f(x)g′′(0), x ∈ R. (20)
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Proof. (a) Because of (II) the function f satisfies (17) with p = 1,
i.e., f(x) = g(0)f(x) for x ∈ R. Since f is not identically zero, we get
g(0) = 1 that is condition (18).

(b) Proceeding as in the proof of Lemma 2 (b) we obtain equation (14)
with p = 1:

af(u− bv) + bf(u + av) = f(u)g(v), u, v ∈ R. (21)

According to Lemma 2 we may differentiate both sides of (21) with respect
to v (in J) twice, to arrive at

ab2f ′′(u− bv) + a2bf ′′(u + av) = f(u)g′′(v) u ∈ R, v ∈ J.

With v = 0 (∈ J) and u = x here, thanks to (II) we get (20). ¤

7. Case a + b = 1; main result

In the theorem that follows exponential functions show up.

Theorem 3. Assume (II) and let (f, g) ∈ F × G be a solution to (1)
satisfying

g′′(0) > 0. (?)
If f(0) 6= 0 then there is a non-zero c such that either

f(x) = cekx; g(x) = beakx + ae−bkx, x ∈ R, (22)

or

f(x) = ce−kx; g(x) = aebkx + be−akx, x ∈ R, (23)

with

k := (g′′(0)/ab)1/2. (24)

If f(0) = 0, then f and g are given by (8).

Proof. 1◦ If (f, g) ∈ F×G satisfy equation (1), then f fulfils equation
(20) which, according to (?) and (24), becomes f ′′(x) = k2f(x) and

f(x) = Aekx + Be−kx, x ∈ R, (25)

with some constants A and B.



Integrable solutions of a functional equation. . . 313

2◦ Assume that f(x) 6= 0 in R. Putting x = 0 in (1) we calculate (for
y ∈ R)

g(y) =
af(0) + bf(y)

f(by)
(26)

and eliminate g from (1):

[af(x) + bf(y)]f [b(y − x)] = f(ax + by)[af(0) + bf(y − x)], x, y ∈ R.

We may substitute here y = 0. The resulting equation takes the form:

[af(x) + bd]f(−bx) = f(ax)[bf(−x) + ad], x ∈ R (d := f(0)). (27)

Using (25) in (27) we get the identity (with t := kx, for short):

8∑

j=1

αj exp(mjt) ≡ 0, (28)

where

m1 = a, m2 = −a, m3 = b, m4 = −b,

m5 = 1 + a, m6 = −(1 + a), m7 = 1 + b, m8 = −(1 + b)

and
α1 = aA(A− d), α2 = aB(B − d),

α3 = bB(d−B), α4 = bA(d−A),

α5 = α6 = bAB, α7 = α8 = aAB.

Since the exponents in (28) are mutually different, the corresponding
exponential functions are linearly independent. The equalities α5 = · · · =
α8 = 0 yield A = 0 or B = 0. When A = 0, from the equalities α2 = α3 = 0
we get B = d, whereas when B = 0 there is A = d, because of α1 = α4 = 0.
We have found formula (22), resp. (23), for f , with C = d.

We proceed with determining g(x) from (26). At first we put f(x) =
dekx there. We obtain by (II) g(x) = beakx + ae−bkx, in accordance with
(22). Formula (23) for g(x), corresponding to f(x) = de−kx is obtained in
the same way.
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A straightforward calculation shows that the functions f (which does
not vanish on R) and g given by (22) or (23) (with (24)) actually satisfy
(1) and that they are from F × G.

3◦ In turn, let f(0) 6= 0 and f(r) = 0 for an r > 0. We make use
of (21) putting u = r, v = t there:

af(r − bt) + bf(r + at) = 0, −r

a
≤ t ≤ r

b
.

On replacing t by −t we obtain

af(r + bt) + bf(r − at) = 0, −r

b
≤ t ≤ r

a
.

The equalities when first added then subtracted side by side yield

aϕ(t) + bϕ
(a

b
t
)

= 0, aψ(t)− bψ
(a

b
t
)

= 0, t ∈ Ir :=
[
−r

b
,
r

b

]
, (29)

where we have put

ϕ(t) := f(r + bt) + f(r − bt),

ψ(t) := f(r + bt)− f(r − bt), t ∈ Ir.
(30)

Equations (29) are the Schröder equations (4). We rewrite the first equa-
tion in (29) as

ϕ
(a

b
t
)

= −a

b
ϕ(t), t ∈ Ir,

and replace t by ab−1t. Hence we get

ϕ

(
a2

b2
t

)
= −a

b
ϕ

(a

b
t
)

=
a2

b2
ϕ(t), t ∈ Ir,

i.e., equation (4) with 0 < p = q = a2b−2 < 1 (cf. (II)). In turn, cf. (29),

ψ
(a

b
t
)

=
a

b
ψ(t), t ∈ Ir,

i.e., equation (4) with 0 < p = q = ab−1 < 1 (cf. (II)). By Lemma 2 the
function f is of class C1(R), whence so are ϕ and ψ given by (30), in the
interval I. Lemma 1(B) then implies that there are real constants α1 and
α2 such that ϕ(t) = α1t, ψ(t) = α2t, t ∈ Ir. From relations (30) we see
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that 2f(r + bt) = ϕ(t) + ψ(t) = (α1 + α2)t for t ∈ Ir. This means that,
whenever x ∈ [0, 2r], we have

f(x) = γ(x− r), (31)

where γ := 1
2(α1 + α2). Coming back to equation (1) we take x, y ∈ [0, 2r]

there. Since the convex combination ax + by of x and y (cf. (II)) is also
in [0, 2r], we have by (31):

aβ · (x− r) + bβ · (y − r) = [β · (ax + by)− r]g(y − x).

As a + b = 1, this yields g(y − x) = 1 for x, y ∈ [0, 2r], that is g(t) = 1 for
|t| ≤ 2r. Therefore g′′(0) = 0, which contradicts assumption (?).

If f(r) = 0 for an r < 0, the proof runs the same way.

4◦ Finally, in the case where f(0) = 0 we get from (25) the formula

f(x) = C sinh kx, x ∈ R, (32)

where C := 2A = −2B. Assume that C 6= 0. Thus f(x) 6= 0 for x 6= 0 and
formula (26) works for y 6= 0, yielding

g(y) =
bf(y)
f(by)

=
b sinh (ky)
sinh (kby)

, y 6= 0. (33)

On letting y = 0 in (1) and taking into account that f(0) = 0 we obtain

af(x) = f(ax)g(−x).

Substituting here (32) and (33) we have a sinh (kbx) = b sinh (kax) for
x 6= 0 which is not an identity when (II) is assumed. Therefore C = 0
in (32), whence f is the zero function and g is arbitrary, i.e., formula (8)
describes all the solutions of (1). ¤

Acknowledgement. The authors want to express their best thanks
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