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Harmonicity of maps between (indefinite)
metric-f-manifolds and ϕ-pseudo harmonic morphisms

By SADETTIN ERDEM (Ankara)

Abstract. Conditions are investigated for maps to be harmonic between
M(P )-f -manifolds with (semi-)Riemannian metrics. Also a geometrical con-
dition, ϕr-pseudo horizontally weak conformality [which is weaker than hori-
zontally weak conformality when they are comparable], is imposed on maps
of a (semi-)Riemannian manifold into a metric M(P )-f -manifold with (semi-)
Riemannian metric and harmonicity of such maps are discussed. Some results
obtained by Loubeau and Lichnerowicz in the almost Hermitian case are given
here in both almost Hermitian and almost para-Hermitian cases.

Introduction

Harmonic maps of semi-Riemannian manifolds (Mm, g) of signature
(ρ,m−ρ), ρ indicates the negative indices, sharply contrasts from the ones
of Riemannian manifolds. The ones of semi-Riemannian manifolds are so-
lutions of, so called, (non-linear) ultrahyperbolic system when 1 < ρ <

m−1 and hyperbolic system when ρ = 1 or ρ = m−1. On the other hand,
harmonic maps of Riemannian manifolds are solutions of (non-linear) el-
liptic system. The later class of harmonic maps have been receiving much
attention from geometers, but harmonic maps of semi-Riemannian mani-
folds have not got much, though one may cite e.g. [3], [8], [9], [11], [12], [19].
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However in other disciplines almost 150 articles so far have been produced
on the topic (including the existence and uniqueness questions) some of
which have applications in solving various type of problems. Here are few
reasonings to call geometers’ attentions to the topic:

1◦) In general, harmonic maps of semi-Riemannian manifolds have
significant roles to play in the areas of quantum field theory, solitons and
scattering theory, general relativity and gauge field theory. For example
harmonic maps φ of semi-Riemannian manifolds into SO(3, 2)/S(2, 2) is
connected to the SL(2,R)-gauge field theories. It is possible to understand
these relations through some forms of Lagrangian density of φ [13].

Also harmonic maps of Lorentzian manifolds is closely connected to,
so called p-brane (membrane when m = 3) [6].

2◦) The pole density functions in crystallography are governed by the
tension field of a function of the semi-Riemannian manifold (Rm, g). Ex-
ploiting this tension field may provide the means for:

i) checking the compatibility of experimental pole density functions.

ii) normalizing or completing incompletely measured pole density func-
tions and

iii) calculating additional pole density functions directly without previous
determination of a reasonable solution of the inverse problem.

Such means have been searched for long [17].
In this work we mainly investigated how to guarantee the harmonic-

ity of maps and their further properties, namely being ϕ-pseudo harmonic
morphism, between (semi)-Riemannian manifolds by putting extra struc-
tures on the manifolds and imposing some conditions on the maps. Our
result recovers most of the known ones in the Riemannian cases and also
improve significantly some of them. To be precise, Theorem 2.3 gives a
result in the most general form so far: It recovers, as a special case, a
well-known result of Lichnerowicz [14] that every holomorphic map of a
cosymplectic manifold into a quasi-Kaehlerian one is harmonic and also it
recovers various generalizations of this, e.g. see Bejan–Benyounes’s [3],
author’s [9], Parmar’s [19], Rawnsley’s [20] results.
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It should be noted here that in this work the structure ϕr can be taken
to be

i) an almost complex structure Jr, in that case r = 1, so that (N,h, J1)
becomes an almost Hermitian or indefinite almost Hermitian manifold.

ii) an f -structure ϕ1 so that (N, h, ϕ1) becomes a metric f -manifold
with a Riemannian or semi-Riemannian metric h.

iii) an almost paracomplex structure Jr, in that case r = −1, so that
(Nn, h, J−1) becomes an almost para-Hermitian manifold (with necessarily
a semi-Riemannian metric h of signature (n/2, n/2) i.e. a neutral metric).

iv) a para f -structure ϕ−1 so that (N, h, ϕ−1) becomes a metric para
f -manifold with necessarily a semi-Riemannian metric of any signature.

The case where (N,h, J1) is an almost (indefinite) Hermitian, is treated
in [15]. In the other cases, some more harmonic maps and morphisms can
be produced.

We also impose a condition [dφ ◦ (dφ)∗, ϕr] = 0 on maps φ : (M, g) →
(N, h, ϕr) from a semi-Riemannian manifold into a metric (para-)f -mani-
fold (whose metric h is allowed to be semi-Riemannian as well as Riemann-
ian) in an attempt to produce harmonic maps (see Theorem 3.2). This
particular line of investigation was first taken by Loubeau, [15], for maps
of Riemannian manifolds into Kaehlerian ones, even though the above
condition was first considered in [2] in a study of stable harmonic maps.
Following the terminology in [15], we call such maps satisfying the above
condition ϕr-pseudo horizontally weakly conformal (ϕr-PHWC). Also, har-
monic (ϕr-PHWC) map φ will be called ϕr-pseudo harmonic morphism,
(ϕr-PHM). It turns out that a (ϕr-PHM) pulls certain harmonic maps,
namely ϕr-pluriharmonic ones, back to harmonic maps, (see Section 4).

When the metrics g and h are Riemannian and ϕr is a complex struc-
ture then Theorem 3.2 gives Baird–Eells’s result [1] (see Proposition 3.7
below). In passing that we also show how the Wood’s method, used in gen-
eralizing a special case (namely, when dimN = 2) of Baird–Eells’s result
for larger classes of maps, works when the metrics g and h are allowed to
be semi-Riemannian.
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1. Definitions, notations and some basic results

Let K denote either the complex number C or the paracomplex num-
bers A = {x + εy : x, y ∈ R; ε2 = 1}. Let k denote i =

√−1 when
K = C and ε when K = A, so that we may write K = {x + ky : x, y ∈ R},
(see [5] and the references therein for the paracomplex numbers and their
introduction in Differential Geometry).

Let (N2n+`, h) be a (semi)-Riemannian manifold of dimension 2n + `.
For either r = 1 or r = −1, let ϕr denote a (1, 1)-tensor field on N of
rank 2n satisfying:

1◦) ϕ3
r + rϕr = 0

2◦) h(X,Y ) = 0 ∀X ∈ Dr, ∀Y ∈ Vr

3◦) h(ϕrX, ϕrY ) = rh(X, Y ); ∀X, Y ∈ Dr

4◦) h is of constant signature (ξ, ζ) on Dr(p) for all p ∈ N .

(Here the first entry in the signature represents the negative indices.)
Where Dr(p) = ϕr(TpN) and Vr = Kerϕ which we call them ϕr-horizontal
and ϕr-vertical distributions over N respectively.

For r = 1 [resp. r = −1] the (N,h, ϕr) will be called (indefinite)
metric-f -manifold and abbreviated as M -f -manifold [resp. metric para-f -
manifold and abbreviated as MP -f -manifold]. In the case of MP -f -
manifold (N2n+`, h, ϕ−1), the metric h is necessarily of signature (n, n)
on D in which case, h is said to induce a neutral metric on D. We write
M(P )-f-manifold to mean both M -f -manifold and MP -f -manifold. We
shall drop the subindices r when there is no confusion arise.

The (para)-f -structure ϕ induces a decomposition:

TN ⊗K = TKN = T ◦N ⊕ T+N ⊕ T−N = V ⊕D+ ⊕D−

into eingenbundles T ◦N = V, T+N = D+ and T−N = D− corresponding
to the eigenvalues 0, k, −k respectively. Note that

D+ = {X − rkϕ(X) : X ∈ D} and D− = D+.

Let φ : (M, g) → (N,h) be a map between (semi)-Riemannian manifolds
throughout unless otherwise stated.
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Definition 1.1. φ is said to be nondegenerate on a subset U of M if

i) Kφ(p) = {X ∈ TpM : dφp(X) = 0}, the kernel of φ at p, is a
nondegenerate subspace of TpM for every p ∈ U

ii) dφ(TpM) is nondegenerate subspace of Tφ(p)N for all p ∈ U .

For a nondegenerate φ on U define the adjoint map dφ∗ : TyN → TxM

of dφ by:

g(dφ∗(v), w) = h(v, dφ(w)) for v ∈ TN , w ∈ TM where y = φ(x). Set

Hφ = K⊥
φ , the g-orthogonal complement of Kφ

H∗
φ = Hφ∗ = K⊥

φ∗ , the h-orthogonal complement of Kφ∗ .

Note that the (semi-)Riemannian (also called indefinite) metrics g and
h restrict to nondegenerate metrics on H = Hφ and H∗ = Hφ∗ respectively.
Also dφ : H → H∗ and dφ∗ : H∗ → H are one to one, onto.

Definition 1.2. The map φ : (M, g) → (N,h, ϕr) into M(P )-f -mani-
fold is said to be

1◦) ([12]) horizontally weakly conformal (HWC) if

a◦) for any p ∈ M at which Kφ(p), with Kφ(p) 6= TM , is nondegen-
erate we have that dφp is surjective and satisfies

h(dφp(X), dφp(Y )) = λ(p)g(X,Y ); ∀X, Y ∈ Hp, where λ(p) 6= 0.

b◦) for any p ∈ M at which Kφ(p) is degenerate we have that Hp ⊆
Kφ(p).

2◦) (c.f. [15]) ϕr-pseudo horizontally weakly conformal, abbreviated as
ϕr-(PHWC), on an open set U of M if φ is nondegenerate on U and
satisfies [dφ ◦ dφ∗, ϕr] = 0.

It is not difficult to see that every nondegenerate (HWC) map φ :
(M, g) → (N, h, ϕr) on U is also ϕr-(PHWC) on U , for r = ±1.

Remark 1.3. i) For a nondegenerate ϕr-(PHWC) map φ : (M, g) →
(N, h, ϕr) with dφ(TM) ⊆ DN , we have that dφ(TM) = H∗ is invariant
under ϕr and therefore rank(dφp) is always even, since H∗ ⊆ DN .

ii) The terminology ϕr-pseudo horizontal weak conformality is origi-
nated from Loubeau’s work [15], in which he only deals with J-(PHWC)
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maps and calls them simply pseudo horizontally weakly conformal maps,
where the metrics involved are Riemannian and (N, h, J) is Hermitian.

For a M(P )-f -manifold (N,h, ϕ), the fundamental 2-form of N is
given by

Ω(X, Y ) = h(X, ϕY ).

Definition 1.4. A M(P )-f -manifold (N2n+`, h, ϕ) is said to be

i) (1,2)-symplectic [resp. (1, 2)-D-symplectic] if the exterior derivative
of Ω satisfies

dΩ(X,ϕX, Y ) = 0, ∀X ∈ D and ∀Y ∈ TN [resp. ∀X, Y ∈ D]

ii) (1, 2)-symplecticlike [resp. (1, 2)-D-symplecticlike] if

n∑

t=1

httdΩ(et, ϕet, Y ) = 0

for an h-orthonormal frame field {e1, . . . , en, ϕe1, . . . , ϕen} for D and ∀Y ∈
TN , [resp. ∀Y ∈ D], where (hts) = (h(et, es))−1

iii) (c.f. [20]) satisfying the condition (A) if

5UW ∈ D+; ∀U,W ∈ ΓD+

where 5 is the Levi–Civita connection on N .

Remark 1.5. Note that

i) Every (1,2)-symplectic M(P )-f -manifold is (1, 2)-symplecticlike
(and therefore (1, 2)-D-symplecticlike) and also it is (1, 2)-D-symplectic.

ii) Every M(P )-f -manifold (N, h, ϕ) satisfying the condition (A) is
(1, 2)-symplectic. The converse is not true in general. For example when
rank(ϕ) < dimN , say rank(ϕ) = (dimN) − 1, consider a (para)contact
(hyperbolic) metric manifold (N2n+1, h, ϕ). This is (1, 2)-symplectic since
dΩ = 0 and yet it can not satisfy the condition (A), (for detail see [9] and
the references therein). Nevertheless the converse is true when rank(ϕ) =
dimN , that is, every (1, 2)-symplectic almost para Hermitian or (indef-
inite) almost Hermitian manifold (N2n, h, ϕ) satisfies the condition (A).
Also for an (indefinite) almost [para] Hermitian manifold (N2n, h, J), the
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two notions (1, 2)-symplecticlike and (1, 2)-D-symplecticlike [resp. (1, 2)-
symplectic and (1, 2)-D-symplectic] do coincide and in that case the man-
ifold is also called (indefinite) [para] cosymplectic or (indefinite) semi-
[para-]Kaehler [resp. (indefinite) quasi-[para-]Kaehler].

iii) Consider the pseudo-sphere

S6=S6
3 = {X = (xt) ∈ R7 : G(X,X) = 1},

where G(X,Y ) =
4∑

t=1

xtyt −
7∑

t=5

xtyt.

The pseudo sphere S6, can be given an almost para-Hermitian structure
(G1,P), by using Cayley split octaves. Now consider S5 as a totally ge-
odesic submanifold of S6, given by x1 = 0. The almost para-Hermitian
structure on S6 induces an almost paracontact hyperbolic metric structure
(G′,P ′) on S5, with its second fundamental 2-form Ω, satisfying dΩ 6= 0.
This almost paracontact hyperbolic metric manifold (S5, G′,P ′) (which
is also metric para f -manifold) is in fact (1, 2)-symplectic manifold and
therefore it is (1, 2)-symplecticlike (see [9], Lemma 4.4).

Set S(X,ϕX) = (5Xϕ)(ϕX)− (5(ϕX)ϕ)X

Lemma 1.6. For a M(P )-f -manifold (N2n+`, h, ϕ) and a vector field

X ∈ Γ(D) we have

5XX + r5ϕX (ϕX) = −r
{
S(X,ϕX) + ϕ[X, ϕX]

}
(1.1)

and

h(S(X, ϕX), Z) = −dΩ(X,ϕX, Z), ∀Z ∈ Γ(TN). (1.2)

Consequently

i) S(X, ϕX) = 0, [resp. S(X,ϕX) ∈ Γ(V) ] if and only if N is (1, 2)-
symplectic [resp. (1, 2)-D-symplectic], ∀X ∈ Γ(D).

ii) For a local h-orthonormal frame field {e1, . . . , en, ϕe1, . . . , ϕen}
for D,

n∑

t=1

gttS(et, ϕet) = 0,
[
resp.

n∑

t=1

gttS(et, ϕet) ∈ Γ(VN )
]

if and only if N is (1, 2)-symplecticlike [resp. (1, 2)-D-symplecticlike].
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Proof. A simple calculation gives (1.1). For (1.2) we first show

Claim. For all X ∈ Γ(D) and Z ∈ Γ(TN)

2h
(
(5(ϕX)ϕ)X,Z

)
= dΩ(X,ϕX, Z)− h

(Nϕ(X, Z), X
)
,

where the Nijenhius tensor Nϕ of ϕ is given by (see [4], page 47),

Nϕ(X,Y ) = ϕ2[X, Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X, ϕY ].

Indeed observe that

. . . dΩ(X, ϕX,Z) = X · Ω(ϕX, Z) + (ϕX) · Ω(Z,X) + Z · Ω(X, ϕX)

− Ω([X,ϕX], Z)− Ω([Z,X], ϕX)− Ω([ϕX, Z], X) (1.3)

. . . 2h(5Y X, Z) = Y · h(X, Z) + X · h(Y,Z)− Z · h(X,Y )

− h([X, Y ], Z) + h([Z, Y ], X)− h([X, Z], Y ) (1.4)

. . . 2h
(
(5(ϕX)ϕ)X,Z

)
= 2h

(5(ϕX) (ϕX), Z
)

+ 2h
(
(5(ϕX)X), ϕZ

)
. (1.5)

By using the identities (1.3) and (1.4) in (1.5) we get the claim. But
then, putting Y = ϕX, the claim gives

2h((5Xϕ)(ϕX), Z) = −2rh((5ϕY ϕ)Y, Z)

= −r{dΩ(Y, ϕY, Z)− h(Nϕ(Y, Z), Y )}
= −r{rdΩ(X,ϕX, Z)− h(Nϕ(X, Z), X)}
= −dΩ(X,ϕX, Z) + rh(Nϕ(ϕX,Z), ϕX)

= −dΩ(X,ϕX, Z)− rh(ϕN (X, Z), ϕX)

= −dΩ(X,ϕX, Z)− h(Nϕ(X, Z), X)

by the fact that ϕNϕ(X, Z) = v −Nϕ(ϕX, Z); ∀X ∈ Γ(D), ∀Z ∈ Γ(TN)
and for some v ∈ Γ(V). Hence this, together with the claim, gives (1.2).
The statements (i) and (ii) follow from (1.2) easily.
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2. Harmonicity

Definition 2.1. The ϕ-vertical distribution V over (N2n+`, h, ϕ) is said
to be minimal if ( ∑̀

t=1

htt 5vt vt

)
∈ V

where ` = rankV and {v1, . . . , v`} is a local h-orthonormal frame field
for V.

Let φ : (Mm′
, g, ψ) → (Nn′ , h, ϕ) be a C2 map between M(P )-f -

manifolds of dimension m′ and n′ respectively.

Definition 2.2. The map φ is said to be i) (ψ, ϕ)-holomorphic
[resp. (ψ, ϕ)-antiholomorphic] if

dφ ◦ ψ = ϕ ◦ dφ, [resp. dφ ◦ ψ = −ϕ ◦ dφ].

We shall write ±(ψ, ϕ)-holomorphic to mean (ψ, ϕ)-holomorphic or
(ψ,ϕ)-antiholomorphic

ii) harmonic if the tension field

τ(φ) =
m′∑

t=1

gttαφ(ut, ut) =
m′∑

t=1

gtt
{
5̃ut

(dφ(ut))− dφ(5M
ut

ut)
}

which is the trace of the second fundamental form αφ = 5dφ of φ, vanishes;
where {u1, . . . , um′} is a local g-orthonormal frame field for TM and 5̃ is
the pull-back of 5N (the Levi–Civita connection on N) under φ.

Theorem 2.3. Let φ : (M2m+s, gr, ψr) → (N2n+`, hr, ϕr) be a

±(ψr, ϕr)-holomorphic map into (1, 2)-symplectic M(P )-f -manifold N with

VM ⊆ Kφ.

i) If the ψ−vertical distribution VM is minimal (in particular ψ is

parallel i.e. 5ψ = 0) and M is (1, 2)-D-symplecticlike then φ is harmonic.

ii) If φ is harmonic with VM = Kφ and VM is minimal then M is

(1, 2)-D-symplecticlike.

iii) If φ is harmonic with VM = Kφ and M is (1, 2)-D-symplecticlike

then VM is minimal.
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Proof. For a local g-orthonormal frame field {v1, . . . , vs} for VM and
{e1, . . . em, ψe1, . . . , ψem} for DM we have τ(φ) = τV(φ) + τD(φ), where

τV(φ)=
s∑

t=1

gttαφ(vt, vt) and τD(φ) =
m∑

t=1

gtt
{
αφ(et, et)+rαφ(ψet, ψet)

}
.

But

τD(φ) =
m∑

t=1

gtt
{5̃et

Et + r5̃(ψet)(ϕEt)− dφ
(5M

et
et + r5M

(ψet)
(ψet)

)}
.

By (1.1) we get

τD(φ) = −r
m∑

t=1

gtt
{
S(Et, ϕEt) + ϕ[Et, ϕEt]− dφ

(
S(et, ψet) + ψ[et, ψet]

)}

= −r

m∑

t=1

gtt
{
S(Et, ϕEt)− dφ(S(et, ψet))

}

− r
m∑

t=1

gtt{ϕ[Et, ϕEt]− dφ(ψ[et, ψet])},

where Et = dφ(et). Since the later sum is zero by the (ψ, ϕ)-holomorphicity
of φ we get

τD(φ) = −r

( m∑

t=1

gtt{S(Et, ϕEt)}
)

+ rdφ

( m∑

t=1

gtt{S(et, ψet)}
)

. (2.1)

Since VM ⊆ Kφ we get

. . . τV(φ) = −dφ

( s∑

t=1

gtt(5M
vt

vt)
)

. (2.2)

Now for (i), observe that the first and the second sums in (2.1) are
both zero by Lemma 1.1/(i and ii) since M is (1, 2)-D-symplecticlike and
N is (1, 2)-symplectic respectively. Thus τD(φ) = 0. Also (2.2) gives that
τV(φ) = 0 since VM is minimal and VM ⊆ Kφ. Hence φ is harmonic.
In particular observe that if ψ is parallel then M is (1,2)-symplectic (and
therefore (1, 2)-D-symplectic) and VM is minimal. So harmonicity of φ

follows.
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For (ii), note that τV(φ) = 0 since VM is minimal and VM = Kφ. So
τ(φ) = τD(φ). On the other hand S(Et, ϕEt) = 0; ∀t = 1, . . . , m since N

is (1,2)-symplectic. So (2.1) and the harmonicity of φ give that

τ(φ) = rdφ

( m∑

t=1

gtt{S(et, ψet)}
)

= 0.

So
m∑

t=1

gtt{S(et, ψet)} ∈ Γ(Kφ) = Γ(VM ),

thus M is (1, 2)-D-symplecticlike.
iii) By the some reasoning as in (i), τD(φ) = 0. So (2.2) and the

harmonicity of φ give that

dφ

( m∑

t=1

gtt(5M
vt

υt)
)

= 0.

Thus the minimality of VM follows easily from VM = Kφ. ¤

Remark 2.4.

i) Theorem 2.3 recovers

a◦) Rawnsley’s result, ([20], Theorem 2.7) when g and h are both
Riemannian.

b◦) Lichnerowcz’s well known result, [14], that every holomorphic
map of a cosymplectic manifold into a quasi-Kaehlerian one is
harmonic.

ii) It is important here to note that “para” cases can produce extra har-
monic maps. An other words, harmonicity of a map could be due to
its (ψ−1, ϕ−1)-holomorphicity rather than its (ψ1, ϕ1)-holomorphicity.
For example, on R4, set the following: For X = (x1, x2, x3,x4) ∈ R4

g(X,X) = (x2
1 + x2

2)− (x2
3 + x2

4)

and

J (X) = (−x2, x1,−x4, x3), P(X) = (x3, x4, x1, x2).

Then (R4, g,J ) and (R4, g,P) become indefinite Kaehler and para-Kaehler
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manifolds with the same neutral metric g respectively. Now define φJ , φP :
(R4, g) → (R4, g) by

φJ(X) =
(
(x2

1 − x2
2), (2x1x2), (x1x3 − x2x4), (x1x4 + x2x3)

)

and

φP (X) =
(
(x2

1 + x2
3), (x1x2 + x3x4), (2x1x3), (x1x4 + x2x3)

)
.

Then the map φJ : (R4, g,J ) → (R4, g,J ) is holomorphic (i.e. (J ,J )-
holomorphic) and therefore harmonic by Theorem 2.3/(ii). But it is not
paraholomorphic (i.e. not (P,P)-holomorphic). On the other hand, the
map φP , is paraholomorphic and therefore harmonic and yet it is not
holomorphic.

3. Revisiting ϕ-(PHWC) maps

Let φ : (Mm′
, g) → (Nn′ , h, ϕ) be a nondegenerate, ϕ-(PHWC) map

of a (semi)-Riemannian manifold M into M(P )-f -manifold N with the
properties that

(3/i): dφ(TM) ⊂ DN and dφ(TM) is invariant under ϕ)

(3/ii): g and h are of constant signature (ξ, ζ) on Kφ(p) and (ξ′, ζ ′) on
dφ(TpM) respectively for every p ∈ M .

Note that (ii) implies that dim(Kφ(p)) and rank(dφp) are constant for
every p ∈ M .

Unless otherwise stated φ will be as above throughout.
Define now φ-related (1, 1)-tensor field F on M as follow:

F(X) =

{
dφ∗ ◦ ϕ ◦ (dφ∗)−1(X), for X ∈ H = K⊥

φ ,

0 for X ∈ Kφ.

Lemma 3.1. i) (M,F) is a (para-)f -manifold.

ii) Kφ = VM
F , the F-vertical distribution, and therefore

rank F = rank(dφ).

iii) (Mm′
, g,F) is a metric (para-)f -manifold with

rank(F) = rank(DM ) = 2m, where m′ = 2m + s with s = rank(VM ).

iv) φ is (F , ϕ)-holomorphic.
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Theorem 3.2. Let φ : (M, g) → (N, h, ϕ) be a ϕ-(PHWC) map of

a (semi-)Riemannian manifold M into a (1, 2)-symplectic M(P )-f -mani-

fold N satisfying the conditions 3/(i) and 3/(ii). Then

i) Any two of the following conditions imply the third:

a◦) φ is harmonic,

b◦) VM is minimal or equivalently φ has minimal fibres,

c◦) (M, g,F) is (1, 2)-D-symplecticlike.

ii) If F is parallel then φ is harmonic.

Proof. i) Note that, by Lemma 3.1, the map φ : (M, g,F)→ (N, h, ϕ)
satisfies all the hypothesis of Theorem 2.3. So (i) follows easily. For (ii),
observe that F being parallel implies (i)/(b◦ and c◦). So the harmonicity
of φ follows from the part (i). ¤

For a M(P )-f -manifold (M, g, ψ) recall the notations: VK = V ⊗K =
T ◦M and T±M = D±K = D± which are the ψ-eigenbundles of TKM =
TM ⊗K corresponding to the eigenvalues 0 and ±k of ψ. Set conditions

5X(T ∗+M) ⊂ (T ∗+M ⊕ T ∗−M) = D∗K, ∀X ∈ VK. (∗)
dΩ1,2 = 0, (∗∗)

where T ∗±M is the dual bundle of T±M , Ω is the fundamental 2-form of
M and “dΩ1,2 = 0” means that dΩ(u, v, w) = 0 whenever u, v are of the
same type and w is of a different one.

Remark 3.3. i) For K = C, the conditions (∗) and (∗∗) coincide with
the ones in Loubeau’s work ([15], conditions (7) and (8) in Theorem 3
respectively).

ii) Every M(P )-f -manifold (M, g, ψ) satisfying (∗∗) is (1, 2)-D-sym-
plectic as we have that dΩ(w, w, u) = 0, ∀u,w ∈ D+ if and only if
dΩ(X, ψX, Y ) = 0 ∀X, Y ∈ D. However the converse is not true in general
as dΩ(u, v, w) need not to vanish, for example, for u, v ∈ D+ and w ∈ VK
while M is (1, 2)-D-symplectic. Nevertheless, it is the standard fact that,
when V = {0},

dΩ(w, w, u) = 0 if and only if dΩ(w, v, u) = 0 for all u, v, w ∈ D+.
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In other words, an almost (indefinite) Hermitian or almost para Hermit-
ian manifold is (1, 2)-D-symplectic (i.e. (1, 2)-symplectic) if and only if it
satisfies the condition (∗∗).

Lemma 3.4. Let (M2m+s, g, ψ) be a M(P )-f -manifold with its ψ-

vertical and ψ-horizontal distributions V and D respectively. The distri-

bution V is minimal if M satisfies the condition (∗).

Proof. For any vector field U ∈ V consider 5UU = WD+WV , where
WD ∈ Dr and WV ∈ Vr. Suppose WD 6= 0 and then choose a (local) vector
field X ∈ Dr with g(X, WD) 6= 0. For X = X + krψX ∈ D−r define

X ′(Y) = g(X ,Y), Y ∈ TKM.

Here g is K-linearly extended to TKM . Note that X ′ is a nonzero 1-form
in D∗+r ⊂ (TKM)∗ since for W = WD − krψWD ∈ D+

r ,

X ′(W) = g(X ,W) = 2[g(X, WD)− kg(X, ψWD)] 6= 0.

Therefore X ′(V ) = 0 for all V ∈ Vr, in particular X ′(U) = 0. On the other
hand, (5UX ′)(U) = 0 too since (5UX ′) ∈ (DKr )∗ by the assumption that
M satisfies the (∗). Thus we have

0 = 5U (X ′(U)) = (5UX ′)(U) + X ′(5UU) = X ′(5UU).

But then

0 = X ′(5UU) = X ′(WD + WV) = X ′(WD) = g(X ,WD) 6= 0.

This contradiction is due to the assumption that WD 6= 0. Thus WD = 0,
so 5UU ∈ Vr. Hence ( s∑

t=1

gtt 5ut ut

)
∈ Vr

for any g-orthonormal local frame field {u1, . . . , us} for V. This completes
the proof. ¤

Remark 3.3 and Lemma 3.4 would help us to appreciate the improve-
ments and the generalizations made on the earlier results obtained, e.g.
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Theorem 3.5 ([15], Theorem 2 and Theorem 3). Let φ : (M, g) →
(N, h, J) be a J-(PHWC) map of a Riemannian manifold into a Kaehlerian

one (with rank dφp constant for all p ∈ M).

i) Further suppose (M, g,F) satisfies the conditions (∗) and (∗∗) and

also F is integrable. Then φ is harmonic.

ii) If F is parallel then φ is harmonic.

Remark 3.6. We may higlight the improvements and generalizations
to Theorem 3.5 as follows:

i) The metrics g and h are allowed to be semi-Riemannian.

ii) The rank of the tensor field J need not to be equal to dimN . It is
allowed that rankJ ≤ dimN . Also J is allowed to be para-f -structure as
well as f -structure (in particular, it is allowed to be almost paracomplex
structure as well as almost complex one).

iii) The target manifold (N, h, J) with its fundamental 2-form ΩN need
not to be Kaehler. That is, neither J need to be integrable nor dΩN need
to vanish.

iv) The integrability condition imposed on the J-related f -structure
F is dropped altogether.

v) The condition (∗∗) imposed on (M, g,F) is relaxed, so that (M, g,F)
is only required to be (1, 2)-D-symplectic (see Remark 3.3).

vi) The condition (∗) imposed on (M, g,F) is relaxed to the require-
ment that the F-vertical distribution VM is minimal (see Lemma 3.4),
which is equivalent to saying that “φ has minimal fibres” since V = Kφ

under the circumstances.

For a ϕ-(PHWC) map φ : (M, g) → (N,h, ϕ) of a (semi-)Riemannian
manifold into M(P )-f -manifold N with dimN = 2, satisfying 3/(ii) we
necessarily have that

i) rankϕ = 2 and so that (N2, h, ϕ) is either Kaehler or para-Kaehler.
That is, N is either a Riemann surface or a Lorentz surface.

ii) φ is horizontally weakly conformal (HWC) and thus φ is a sub-
mersion. Also g restricts on H = K⊥

φ to a Riemannian metric when h is
Riemannian and to a neutral metric (of signature (1, 1)) when h is neutral.

Theorem 3.2 overlaps with the result of Baird–Eells when the metrics
involved are Riemannian and the target manifold (N, h, J) is semi-Kaehler:
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Proposition 3.7 ([1]). Let φ : (M, g) → (N, h) be a horizontally con-

formal submersion between Riemannian manifolds with dilation λ. Then

for n 6= 2

i) Any two of the following conditions imply the third:

a◦) φ is harmonic,

b◦) φ has minimal fibres,

c◦) gradλ2 is vertical or equivalently φ is horizontally homothetic

(i.e. λ is constant along horizontal curves).

ii) For dimN = 2 we have that φ is harmonic if and only if φ has minimal

fibres.

Wood, [22], has shown that the conclusion of Proposition 3.7/(ii) is
still valid for a larger class of mappings φ : (Mm′

, g) → (N2, h) from a
Riemannian manifold into a Riemann surface, namely, those which have
horizontally holomorphic quadratic differentials. We will further extend
his result to the cases where g and h are allowed to be semi-Riemannian
as well as Riemannian.

Let φ : (Mm′
, g) → (N2, h) be a map of a (semi-)Riemannian manifold

into a surface with Riemannian or semi-Riemannian metric, (in the later
case h is necessarily neutral). Let U be a dense subset of M on which φ is a
submersion with g of constant signature on H = K⊥

φ . (Note here that when
g is Riemannian and φ is real analytic then U = {p ∈ M : rank(dφp) = 2},
is always dense.) At each p ∈ U , orient the horizontal space Hp so that
dφp : Hp → Tφ(p)N is an orientation preserving map with respect to a
chosen (locally) orientation on N . The orientation and the metric on H

defines an endomorphism Jr on H which is a complex structure if G = g|H
is Riemannian, a paracomplex structure if G is semi-Riemannian. More
precisely, for a G -orthonormal oriented frame field {e1, e2} for H over an
open subset U ′ in U set Jr(e1) = e2 and Jr(e2) = −re1, where r = 1 when
G is Riemannian and r = −1 when G is semi-Riemannian. Define a section
η of the symmetric square bundle ¯2(H+)∗ over U :

η(Z, W ) = h′
(
dKφ(Z), dKφ(W )

) ∈ K
for Z, W ∈ H+ = {X−rkJrX : X ∈ H}, where dKφ : TKM = TM ⊗K→
TKN and h′ are the K-linear extension of dφ and h respectively. (As before
K = C, k = i for r = 1 and K = A, k = ε for r = −1.)
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We say that η is horizontally holomorphic [resp. paraholomorphic] if
5Zη = 0 for Z ∈ H+

p and for all p ∈ U and r = 1 [resp. r = −1]. The
section η will be called horizontal quadratic differential of φ.

Theorem 3.8 (c.f. [22]). Let (M, g), (N2, h) and φ : M → N with

U ⊂ M be as above such that Hp ⊂ Kφ(p) for all p ∈ M \ U . Then

i) η ≡ 0 on U if and only if φ is (HWC) on M .

ii) Any two of the following conditions imply the other one:

a◦) φ is harmonic on M ,

b◦) φ has minimal fibres,

c◦) η is horizontally (para) holomorphic on U .

Proof. It is the same as in [22] with some minor modifications where
necessary. ¤

Remark 3.9. In the above theorem note that

i) If η ≡ 0 then the metric G and h are necessarily both Riemannian or
both semi-Riemannian.

ii) Otherwise we can have the mixture of cases, namely:

a◦) When G is Riemannian on H (while g may still be semi-Rieman-
nian on TM), h can be Riemannian or semi-Riemannian.

b◦) When G is semi-Riemannian, again h can be Riemannian or semi-
Riemannian.

4. ϕ-pseudo harmonic morphism

Definition 4.1. i) (c.f. [15]) A map φ : (M, g) → (N2n+`, h, ϕr) of
a (semi-)Riemannian manifold into a M(P )-f -manifold is said to be ϕr-
pseudo harmonic morphism if φ is harmonic and ϕr-(PHWC).

ii) (c.f. [7]) A map φ : (M2m+s, g, ψr) → (N, h) of a M(P )-f -manifold
M into a (semi-)Riemannian manifold N is said to be ψr-pluriharmonic
[resp. D-pluriharmonic] if for every X, Y ∈ TM [resp. for every X, Y ∈ Dr]
we have

βφ(X, Y ) = αφ(X, Y ) + rαφ(ψrX,ψrY ) = 0,

where αφ = 5dφ, the second fundamental form of φ.
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Remark 4.2. i) When (M, g) is a Riemannian manifold and (N,h, ϕr)
is a Hermitian one (i.e. h is Riemannian, r = 1, rankϕ1 = dimN and
ϕ1 is integrable) then the notion of being ϕ1-pseudo harmonic morphism
coincides with the one introduced by Loubeau in [15], in which he simply
calls it pseudo harmonic morphism.

ii) When the metrics g and h involved are Riemannian and
(M2m+s, g, ψr) is a M -f -manifold (i.e r = 1, rank(ψ1) = 2m < dimM)
then the notions ψ-pluriharmonicity and D-pluriharmonicity coincide with
the ones introduced in [7].

iii) For s = 0, so that (M2m, g, ψr) is an (indefinite) almost (para)
Hermitian manifold, we have that φ is ψr-pluriharmonic if and only if

αφ(Z,W ) = 0 for every Z, W ∈ T+M.

In this case φ is also called ψr-(1, 1)-geodesic. In the literature, for r = 1,
ψ1-(1, 1)-geodesic map is simply called (1, 1)-geodesic. However the word
pluriharmonic is mostly reserved for maps φ satisfying: For every Z, W ∈
T+M

α′φ(Z,W ) = 5̃Zdφ(W )− dφ(∂ZW ) = 0 (4.1)

when ψ1 is integrable and g is Riemannian so that (M, g, ψ1) is a Hermitian
manifold. Here ∂ is the usual ∂-operator of a complex manifold. Note that
the condition (4.1) is still meaningful for maps of indefinite Hermitian or
para-Hermitian manifolds. Thus the definition of pluriharmonicity may
be extended for maps of those manifolds, (for the ∂-operator in “para”
cases see [10]). We shall be calling pluriharmonic maps in the ‘para’ cases,
para-pluriharmonic. Here is an example of para-pluriharmonic map:

For a Riemannian manifold (M, g) let π : TM → M be its tangent
bundle. For a local coordinate frame field {∂xi = ∂

∂xi
}, let {∂xi , ∂yi} denote

the induced local coordinate frame field on TM , where {xi} is a local
coordinate system on M and {xi, yi}, is the induced one on TM . Then we
have the following definitions ([21]):

1◦) For a smooth map f : M → Rn, f = (f1, . . . , fn), the vertical lift
fv : TM → Rn of f is given by

fv = f ◦ π = (f1 ◦ π, . . . , fn ◦ π).
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2◦) For a vector field X =
∑

aj∂xj
∈ Γ(TM) on M , p ∈ M and Wp ∈ TpM

a◦) the vertical lift Xυ ∈ Γ(TTM) of X, is given by

Xυ(p,Wp) =
∑

aυ
j (p,Wp)∂yj (p,Wp),

b◦) the complete lift Xc ∈ Γ(TTM) of X, is given by

Xc(p,Wp) =
∑

aυ
j (p,Wp)∂xj (p,Wp) + daj(Wp)∂yj (p, Wp),

3◦) the complete lift gc of a Riemannian metric g on M is characterized
by ∀X, Y ∈ Γ(TM)

gc(Xc, Y c) = (g(X,Y ))c, gc(Xv, Y v) = 0

gc(Xc, Y v) = gc(Xv, Y c) = (g(X, Y ))v.

The complete lift gc is a neutral metric, that is, it is a semi-Riemannian
metric of signature (m, m) on TM .

4◦) the almost paracomplex structure P on TM is characterized by

PXυ = Xυ and PXc = 2Xυ −Xc.

Then (TM,P, gc) provides an example of an almost para-Hermitian
manifold. Moreover, it is para-Kaehler if and only if M is flat, ([3],
Proposition 4.1).

Now let f : (M, g) → (N, h) be a totally geodesic map between Rie-
mannian manifolds and consider the differential map

df = F : (TM,PM , gc) → (TN,PN , hc).

Since F is also totally geodesic ([3], Theorem 4.3) it trivially becomes PM -
(1, 1)-geodesic. In the cases where M is flat, the manifold (TM,P, gc) is
para-Kaehler. Thus, by the next Lemma 4.3, F becomes para-plurihar-
monic.

Lemma 4.3. Let φ : (M2m, g, Jr) → (N,h) be a map from an (in-

definite) Kaehler [resp. para-Kaehler] manifold into a (semi-)Riemannian

manifold. Then the two concepts; being J1-(1, 1)-geodesic [resp. J(−1)-

(1, 1)-geodesic] and J1-pluriharmonicity [resp. J(−1)-pluriharmonicty] co-

incide, that is, αφ = α′φ.
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Proof. It is the standard fact that (see [16], [18]) “50,1

Z
= ∂Z if and

only if M is (indefinite) Kaehler” where

50,1 : Γ(T−M)× Γ(TCM) → Γ(TCM)

is the (0, 1) part of the C-linear extension of the Levi–Civita connection
on (M, g). The above statement is also true for the ‘para’ cases. (Its proof
goes formally exactly the same as that of (indefinite) Kaehlerian case, (see
[10], [19]).) Thus, the result will immediately follow from this fact. ¤

Lemma 4.4. Recalling the adjoints ϕ∗ : TN →TN , dφ∗ : TN →TM

and dπ∗ : TB→TN we have

i) ϕ∗ = −ϕ

ii) (dπ ◦ dφ)∗ = dφ∗ ◦ dπ∗

iii) The following are equivalent:

a◦) dπ ◦ ϕ = Ξ ◦ dπ, i.e. π is (ϕ,Ξ)-holomorphic

b◦) ϕ ◦ (dπ)∗ = (dπ)∗ ◦ Ξ.

Proposition 4.5. Let φ : (M, g, ψ) → (N, h) be a map of a M(P)-f-

manifold into a (semi-)Riemannian one.

i) φ is harmonic if it is ψ-pluriharmonic.

ii) φ is harmonic if it is D-pluriharmonic and ψ-vertical distribution VM

is minimal with VM ⊂ Kφ.

By a local map we shall mean a map defined on an open set.

Proposition 4.6. Let (M,g) be a semi-Riemannian manifold, (N,h, ϕ)
a (para-)Hermitian manifold and φ : M → N a nondegenerate map. Then

φ is ϕ-(PHWC) if and only if it pulls back local ±(ϕ,Ξ)-holomorphic maps

π : (N, h, ϕ) → (B, µ,Ξ) onto Ξ-(PHWC) maps, where (B,µ,Ξ) is a

(para-)Hermitian manifold.

Proof. Let φ be ϕ-(PHWC) map. Then setting G = π ◦ φ we have

Ξ ◦ dG ◦ dG∗ = Ξ ◦ dπ ◦ dφ ◦ dφ∗ ◦ dπ∗ = ±dπ ◦ ϕ ◦ (dφ ◦ dφ∗) ◦ dπ∗

since π is ±(ϕ,Ξ)-holomorphic.

= ±dπ ◦ (dφ ◦ dφ∗) ◦ ϕ ◦ dπ∗ = (dπ ◦ dφ) ◦ (dπ ◦ dφ)∗ ◦ Ξ

= dG ◦ dG∗ ◦ Ξ,
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which says that G is a local Ξ-(PHWC) map.
Conversely assume that G is Ξ-(PHWC) with a local ±(ϕ,Ξ)-holomor-

phic map π. Then, by Lemma 4.4

± dπ ◦ ϕ ◦ (dφ ◦ dφ∗) ◦ dπ∗ = Ξ ◦ (dπ ◦ dφ) ◦ (dπ ◦ dφ)∗ = Ξ ◦ dG ◦ dG∗
= dG ◦ dG∗ ◦ Ξ = (dπ ◦ dφ) ◦ (dπ ◦ dφ)∗ ◦ Ξ = dπ ◦ (dφ ◦ dφ∗) ◦ dπ∗ ◦ Ξ

= ±dπ ◦ (dφ ◦ dφ∗) ◦ ϕ ◦ dπ∗.

That is

dπ ◦ ϕ ◦ (dφ ◦ dφ∗) ◦ dπ∗ = dπ ◦ (dφ ◦ dφ∗) ◦ ϕ ◦ dπ∗.

Noting that dπ : Hπ → Hπ∗ = dπ(TN) and dπ∗ : Hπ∗ → Hπ are invertible,
we get

dφ ◦ dφ∗ ◦ ϕ = ϕ ◦ dφ ◦ dφ∗ on dφ(TM) ∩Hπ.

But for every X ∈ dφ(TM) one can construct a local ±(ϕ,Ξ)-holomorphic
map π , by means of (para) holomorphic charts of N and B with X ∈ Hπ

since (N, ϕ) and (B, Ξ) are (para) complex manifolds. Thus ϕ-pseudo
horizontal weak conformality of φ follows. ¤

Proposition 4.7. Let π : (N,h, ϕ) → (B,µ, Ξ) be a±(ϕ,Ξ)-holomor-

phic map of (1, 2)-D-symplectic M(P )-f -manifold N into (1, 2)-D-symp-

lectic B. Then

i) π is D-pluriharmonic

ii) π is ϕ-pluriharmonic (and therefore harmonic) if further dπ(TN) ⊂
DB and Vϕ is a minimal distribution on N .

Proof. For X ∈ DN .

απ(X, X) + rαπ(ϕX,ϕX) = 5̃Xdπ(X) + r5̃ϕXdπ(ϕX)

− dπ
(5X X + r5(ϕX) (ϕX)

)

= −r
{
Ξ[dπ(X), Ξdπ(X)]− dπ

(
ϕ[X, ϕX]

)}

since N,B are (1, 2)-D-symplectic and π is ±(ϕ,Ξ)-holomorhic. But then

Ξ[dπ(X), Ξdπ(X)] = dπ
(
ϕ[X,ϕX]

)
.

So we get
βπ(X, X) = απ(X, X) + rαπ(ϕX, ϕX) = 0.



338 Sadettin Erdem

Hence, for any X, Y ∈ DN ,

βπ(X, Y ) =
1
4
{
βπ(X + Y, X + Y )− βπ(X − Y, X − Y )

}
= 0,

which completes the proof. ¤

This proposition has the following two corollaries as its particular
cases.

Corollary 4.8. Let π : (N,h, J)→ (B,µ,Ξ) be a ±(J,Ξ)-holomorphic

map of a (1, 2)-symplectic almost (para-)Hermitian (i.e. quasi-(para-)Kaeh-

ler) manifold into (1, 2)-symplectic M(P )-f -manifold. Then π is J-pluri-

harmonic (and therefore harmonic).

We say that ([9]) an almost (para) contact (hyperbolic) metric man-
ifold (N2n+1, h, ϕ) satisfies the geodesic condition if 5ξξ = 0, where
spanR{ξ} = VN and in which case ξ is called the characteristic vector
field of N . Thus (N2n+1, h, ϕ) satisfies the geodesic condition if and only
if VN is a minimal distribution over N .

Corollary 4.9. Let π : (N2n+1, h, ϕ) → (B2b+1, µ,Ξ) be a ±(ϕ,Ξ)-
holomorphic map of an (1, 2)-D-symplectic almost (para) contact (hyper-

bolic) metric manifold N whose distribution VN is minimal (or equiva-

lently, N being satisfying the geodesic condition) into (1, 2)-symplectic al-

most (para) contact (hyperbolic) metric manifold B with dπ(TN) ⊂ DB.

Then π is ϕ-pluriharmonic (and therefore harmonic).

This result overlaps in great deal with an other result obtained by the
author:

Proposition 4.10 ([9]). Let π : (N2n+1, h, ϕ) → (B2b+1, µ, Ξ) be

a ±(ϕ,Ξ)-holomorphic map between almost (para) contact (hyperbolic)

metric manifolds with both N and B satisfying the geodesic condition. If

further N is (1, 2)-symplecticlike with nonintegrable distribution DN and

B is (1, 2)-symplectic then π is harmonic.

Proposition 4.7 also recovers, as a special case, a recent result of
Duggal–Ianus–Pastore ([7], Proposition 6.1/(a)).
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Theorem 4.11. Let (M, g)
φ→ (N2n+`, h, ϕ) π→ (B2b+ρ, µ, Ξ) and G

be as above with dφ(TM) ⊂ DN . Then

i) φ pulls back any local D-pluriharmonic map π to a local harmonic

map G if φ is a ϕ-pseudo harmonic morphism.

ii) Suppose also that N and B are (1, 2)-D-symplectic [in particular,

N and B are (indefinite) quasi-(para)-Kaehler] manifolds. Then φ pulls

back every local ±(ϕ,Ξ)-holomorphic map π to a local Ξ-pseudo harmonic

morphism G if φ is a ϕ-pseudo harmonic morphism.

iii) Suppose further that N and B are (indefinite) (para-)Kaehler man-

ifolds. Then φ is a ϕ-pseudo harmonic morphism if and only if φ pulls back

each local ±(ϕ, Ξ)-holomorphic map π to a local harmonic map G.

Proof. i) Let φ be a ϕ-pseudo harmonic morphism. Then
φ : (M2m+s, g,F) → (N,h, ϕ) is (F , ϕ)-holomorphic, where F is the φ-
related f -structure. For a g-orthonormal frame field {e1, . . . , em,Fe1, . . .

. . . ,Fem, v1, . . . , vs} for TM with {v1, . . . , vs} ⊂ VF and the rest in DF ,
we have dφ(vt) = 0, t = 1, . . . , s since φ is (F , ϕ)-holomorphic. Thus

τ(G) = dπ(τ(φ)) +
m∑

t=1

gtt
(
απ

(
dφ(et), dφ(et)

)
+ rαπ

(
dφ(Fet), dφ(Fet)

))
.

By the harmonicity and holomorphicity of φ, this becomes

τ(G) =
m∑

t=1

gtt
(
απ

(
dφ(et), dφ(et)

)
+ rαπ

(
ϕdφ(et), ϕdφ(et)

))

=
m∑

t=1

gttβπ

(
dφ(et), dφ(et)

)
.

But βπ(X, X) = 0, ∀X ∈ DN since π is D-pluriharmonic map. So, we get
τ(G) = 0, the harmonicity of G.

ii) Since φ is ϕ-(PHWC) by the assumption, G is Ξ-(PHWC) by Propo-
sition 4.6. So, it is left to show that G is a locally harmonic map. Indeed,
by Proposition 4.7, π is D-pluriharmonic since π is ±(ϕ,Ξ)-holomorphic.
Then, the harmonicity follows from Part (i).

iii) “only if” part of (iii) is a special case of Part (ii). For the “if” part
of the statement, we quote the proof provided for ([15], Proposition 3) as
it extends “indefinite” and “para” cases with no difficulty. ¤
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Corollary 4.12. Let (M, g)
φ→ (N2n, h, ϕ) π→ (B2b, µ, Ξ) be as above

with (indefinite) (para-)Kaehler manifolds N and B. Then φ is a ϕ-pseudo

harmonic morphism if and only if φ pulls back each local ϕ-pluriharmonic

map π to a local harmonic map G = π ◦ φ.

Proof. Observing that, under the circumstances, every ±(ϕ,Ξ)-holo-
morphic map is ϕ-pluriharmonic by Proposition 4.7, corollary follows easily
from Theorem 4.11. ¤

Remark 4.13. The above corollary recovers the results obtained in [15]
(Propositions 3 and 4 and Corollary 1).

Acknowledgement. I would like to thank the referees’ for their
valuable comments.
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