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Projective flatness of complex Finsler metrics

By TADASHI AIKOU (Kagoshima)

Dedicated to Professor Yoshihiro Ichijyō on the occasion
of his 70th birthday

Abstract. In the previous papers [7], we have studied complex Finsler ge-
ometry from the view point of Kähler fibration, and have obtained the character-
izations of flatness of complex Finsler metrics in terms of Finsler connection. In
the present paper, we shall introduce the notion of projective flatness of Finsler
connections, and characterize the projective flatness of complex Finsler metrics
in terms of Finsler connections.

1. Introduction and preliminaries

Let π : E → M be a holomorphic vector bundle of rank(E) = r

(r ≥ 2) over a connected complex manifold M of dimCM = n. We denote
by TE and TM the tangent bundle of the total space E and the base
manifold M , and we also denote by Ω1• the corresponding cotangent bundle.
Moreover we denote by TE/M := ker dπ the relative tangent bundle of the
morphism π. Then we have the fundamental sequence of vector bundles:

O→ TE/M
i−→ TE

dπ−→ π−1TM → O. (1.1)
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A connection hE in E is a smooth splitting in this sequence, that is, a
smooth bundle morphism hE : π−1TM → TE such that dπ◦hE = Id. Then
hE induces an isomorphism H = hE(π−1TM ) ∼= π−1TM , and it defines a
smooth decomposition

TE = TE/M ⊕H. (1.2)

The non-zero complex number field C× acts on E by multiplication. We
denote by Rλ the action for λ ∈ C×, that is, Rλv = (z, λξ) for ∀v = (z, ξ) ∈
Ez and ∀λ ∈ C×. We shall only consider homogeneous connections, that
is, connections invariant under the action of Rλ.

The splitting (1.2) induces the dual splitting Ω1
E = Ω1

E/M ⊕ H∗, and
so the differential operator dE : OE → Ω1

E is decomposed as dE = dv
E +dh

E

by the differential dh
E : OE → H∗ along H and the differential dv

E : OE →
Ω1

E/M along vertical direction. We also decompose the operators ∂E and
∂̄E as ∂E = ∂v

E + ∂h
E and ∂̄E = ∂̄v

E + ∂̄h
E respectively. We denote by S the

sheaf of germs of linear functionals along the fibres of π. A connection hE

in the sequence (1.1) is determined by the action of ∂h
E on S (cf. [16]). A

connection hE is said to be compatible with the vector bundle structure or
simply linear connection if ∂h

E sends S to S, that is,

∂h
ES ⊂ S ⊗H∗. (1.3)

If a connection hE : π−1TM → TE is given in this sequence, we have to
consider two cases. The one is the case where hE is a linear connection
and another one is the case where hE is a non-linear connection.

Throughout the present paper, we use the following local coordinate
system on M and E. Let U be an open set in M with local coordinate
(z1, . . . , zn), and let sU = (s1, . . . , sr) be a local holomorphic frame field
on U . The pair (U, sU ) induces a coordinate (z1, . . . , zn, ξ1, . . . , ξr) on
π−1(U), where (z1, . . . , zn) is lifted from M and (ξ1, . . . , ξr) is the fibre
coordinate.

If a connection hE is given in E, by definition, the condition ∂h
Eξi ∈ H∗

implies that there exists some local functions N i
α on π−1(U) such that

∂h
Eξi = −∑

N i
α(z, ξ)dzα. Since hE is invariant by the action Rλ, these

functions {N i
α} satisfy the homogeneity

N i
α(z, λξ) = λN i

α(z, ξ) (1.4)
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for all λ ∈ C. These functions {N i
α} are the coefficients of the connection

hE . If hE is linear, then by definition (1.3), the coefficients N i
α are linear

in (ξi) along the fibre Ez, i.e., there exist some functions γi
jα(z) on U

such that N i
α(z, ξ) =

∑
γi

jα(z)ξj . Then it is easily checked that the (1, 0)-
forms ωi

j =
∑

γi
jα(z)dzα define a connection ∇ : E → E ⊗ Ω1

M . If E

has a Hermitian metric, there exists a canonical connection ∇, and the
Hermitian geometry on E is the differential geometry of the bundle E

with the connection ∇.
On the other hand, if hE is non-linear, then it induces a connection

∇̂ : TE/M → TE/M ⊗ Ω1
E in the relative tangent bundle $ : TE/M → E.

Such a connection ∇̂ is naturally induced from a Bott connection DE of
the relative tangent bundle TE/M . If E has a Finsler metric, then there
exists a canonical connection ∇̂ in TE/M , and the Finsler geometry on E

is the differential geometry of the bundle TE/M with the connection ∇̂.

π∗TM
hE−→ TE

TE/M
∇̂−→ TE/M ⊗ Ω1

E : Finsler geometry

E
∇−→ E ⊗ Ω1

M : Hermitian geometry

©©©©*

HHHHj
?

non-linear

linear

$

In the previous paper [7], we have studied Finsler geometry from the
point of view of Kähler fibration, and characterized the flatness of complex
Finsler metrics in terms of Finsler connection. The main purpose of this
paper is to define the notion of projective flatness of Finsler metrics and
to characterize it in terms of the projective curvature of ∇̂.

1.1. Projectively flat Hermitian metrics. We recall the notion of
projective flatness of vector bundles and Hermitian metrics (for details,
see [14]). We denote by E× the open submanifold of a holomorphic vector
bundle E consisting from non-zero elements. The multiplicative group
C× = C−{0} acts on E× by scalar multiplication. The projective bundle
P(E) associated with E is defined by P(E) = E×/C× with the structure
group PGL(r,C) := GL(r,C)/C×I. Then E is said to be projectively flat
if P(E) admits a flat structure, i.e., E admits an open cover {U, sU} whose
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transition functions AUV are of the forms

AUV = cUV ⊗ CUV (1.5)

on U∩V , where {cUV : U∩V → O∗U∩V } are 1-cocycles and CUV : U∩V →
GL(r,C) is locally constant. As a characterization of projectively flat
bundles, the following is well-known (cf. Proposition 2.8 in p. 7 of [14]).

Proposition 1.1. A complex vector bundle is projectively flat if and

only if E admits a connection ∇ : E → E ⊗ Ω1
M whose curvature Ω is of

the form

Ω =
1
r
tr(Ω)⊗ I. (1.6)

If the curvature form Ω of a connection ∇ is given by the form (1.6),
then its connection form ω is given by

ω = a⊗ I (1.7)

for a local 1-form a with respect to certain open cover {U, sU} of E. In
fact, if we take another local frame field s̃U = sUAU for some AU : U →
GL(r,C), the connection form ω̃ relative to s̃U is given by ω̃ = A−1

U dAU +
A−1

U ωAU . Hence the condition ω̃ = a ⊗ I is equivalent to aAU = dAU +
ωAU . The integrability condition d(dAU ) ≡ 0 for the existence of such AU

is given by the condition (1.6).

Definition 1.1. A connection ∇ in a complex vector bundle E is said
to be projectively flat if its curvature Ω is of the form (1.6).

We shall explain this situation from classical view-point (cf. [19]). On
each open set U with sU = (s1, . . . , sr), we say that the direction of a
section ξ(t) =

∑
ξi(t)si(t) along a smooth curve c(t) is projectively parallel

with respect to a connection ∇ if it satisfies ∇ċ(t)ξ = λ(ċ(t))ξ. If we put
λ(ċ(t)) = λ(t), then this condition is written as

dξi

dt
+

∑
ωi

j(ċ(t))ξ
j = λ(t)ξi.

Suppose that the direction of ξ is also parallel with respect to another
connection ∇̃. This means that any section ξ satisfying

ξi

(
dξh

dt
+

∑
ωh

j (ċ(t))ξj

)
− ξh

(
dξi

dt
+

∑
ωi

j(ċ(t))ξ
j

)
= 0
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also satisfies the following

ξi

(
dξh

dt
+

∑
ω̃h

j (ċ(t))ξj

)
− ξh

(
dξi

dt
+

∑
ω̃i

j(ċ(t))ξ
j

)
= 0

for an arbitrary regular curve c(t). Then we have ξi
∑

(ωh
j − ω̃h

j )ξj −
ξh

∑
(ωi

j − ω̃i
j)ξ

j = 0, and from this we get ωi
j = ω̃i

j + aδi
j with a =

tr(ω − ω̃)/r. Hence there exists a 1-form a satisfying

ω = ω̃ + a⊗ I

for the connections forms ω and ω̃ of ∇ and ∇̃ respectively. In this case,
we say that ∇ is projectively related to ∇̃. If ∇ is projectively related to
a connection ∇̃, the curvature Ω of ∇ is related to the one Ω̃ of ∇̃ by
Ω = Ω̃ + A⊗ I for A = da. Since A = {tr(Ω)− tr(Ω̃)}/r, the 2-form

Θ = Ω − 1
r
tr(Ω)⊗ I (1.8)

is invariant by the projective change ∇ → ∇̃. This form Θ is called the
projective curvature of ∇. From (1.7), a connection ∇ is projectively flat
if and only if ∇ is projectively related to a flat connection ∇̃. Moreover,
from (1.8) we have

Proposition 1.2. A connection ∇ is projectively flat if and only if

its projective curvature Θ vanishes identically.

A Hermitian metric g on E is said to be projectively flat if its Hermit-
ian connection ∇ is projectively flat. If we denote by gij̄ = g(si, sj) the
components of g with respect to the open cover {U, sU}, the Hermitian
connection ∇ is given by the (1, 0)-form θi

j =
∑

gim̄gjm̄, and its curvature
Ω = (Ωi

j) is given by Ωi
j = ∂̄θi

j . Since the Ricci form tr(Ω) of (E, g) is
given by tr(Ω) = ∂̄∂ log det(gij̄), the condition (1.6) is written as

Ω =
1
r
∂̄∂ log det(gij̄)⊗ I.

On each open set U , we put σU = r−1 log det(gij̄). The metric gU :=
eσU (z)g is a flat metric on E|U . Hence g is projectively flat if and only if g

is (locally) conformally flat (cf. [15]).
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Let X and M be connected complex manifolds of dimCX = n + r

and dimCM = n, and let p : X → M be a holomorphic map of maximal
rank n everywhere. We suppose that each fibre p−1(z) = Xz is connected.
The family X = {Xz} is considered as a family of complex manifold of
dimCXz = r parameterized by z ∈ M . We say that p : X → M a Kähler
fibration if each fibre Xz is a Kähler manifold with a Kähler metric Πz,
where Πz is assumed to be parameterized smoothly by z ∈ M .

A typical example of Kähler fibration is the projective bundle P(E) →
M associated to an Hermitian bundle (E, g) over M . In a Hermitian vector
bundle (E, g), if we put F (z, ξ) =

∑
gij̄(z)ξiξ̄j , we have a Kähler fibration

π : P(E) → M with Kähler metrics

Πz =
√−1

∂2 log F

∂ξi∂ξ̄j
dξi ∧ dξ̄j . (1.9)

Since, if we fix a point z0 ∈ M , we can take an orthonormal frame sz0 at z0,
the Kähler metric Πz0 can be written as Πz0 =

√−1∂∂̄ log
( ∑

δijξ
iξ̄j

)
=√−1∂∂̄ log

( ∑ |ξi|2), the Fubini-Study metric ΠFS on Pz0 = Pr−1. We
can not, however, take a frame field sU on U so that Πz = ΠFS at every
point z ∈ U .

We suppose that (E, g) is projectively flat. Since the projective-
flatness of g is equivalent to the local conformal-flatness, there exists
an open cover {U, sU} of E and local functions σU on each U such that
g̃U = eσU (z)g defines a flat metric on EU . Then, if we take a suitable frame
field sU on U , we may assume that g̃ij̄ = δij and F̃U = eσU (z)F is given
by F̃U =

∑
g̃ij̄ξ

iξ̄j =
∑ |ξi|2 at each point on U . Since log

( ∑ |ξi|2) =
σU (z) + log F (z, ξ) and the Kähler metrics Πz are given by (1.9), the
Kähler metrics on Pz induced from log F and log F̃U coincide each other,
i.e., Πz = ΠFS , and thus Πz is independent of base point z ∈ U .

Definition 1.2. We say that a Kähler fibration p : X → M is flat if,
at each point z ∈ M there exists an open neighborhood U of z so that we
can choose Kähler potentials for Πz which is independent of z ∈ U . Such
a pseudo-Kähler metric ΠX = {Πz} is said to be flat.

Then, from the discussion above we have
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Proposition 1.3. If a holomorphic vector bundle E admits a pro-

jectively flat Hermitian metric, then its projective bundle P(E) is a flat

Kähler fibration.

By Proposition 2.2 in the below, the metric on E corresponding to a
pseudo-Kähler metric ΠP(E) on P(E) is a Finsler metric, not a Hermitian
metric in general. The converse of Proposition 1.3 will be proved in the
last section.

1.2. Bott connections. A connection hE in the sequence (1.1) does not
necessarily define a connection ∇ in the bundle E so long as hE is not
linear. However, any connection hE defines a connection ∇ : TE/M →
TE/M ⊗ Ω1

E in the relative tangent bundle $ : TE/M → E. To show
this, we recall the notion of partial connection. A morphism DE : TE/M →
TE/M⊗H∗ is called a partial connection if the Leibnitz condition DE(fs) =
dh

Ef ⊗s+fDEs is satisfied for ∀s ∈ TE/M and ∀f ∈ C∞(E). A connection
hE in the sequence (1.1) defines a partial connection DE on the relative
tangent bundle TE/M .

Definition 1.3. Let hE be a connection in the sequence (1.1). The
Bott connection of hE is a partial connection DE : TE/M → TE/M ⊗H∗ of
(1, 0)-type defined by

DE
XY = 〈[X, Y ]〉 (1.10)

for all X ∈ H and Y ∈ TE/M , where 〈 · 〉 : TE → TE/M is the natural
projection.

By direct calculations, for Y =
∑

Y i(∂/∂ξi) ∈ TE/M , we have

DEY =
∑(

dh
EY i +

∑
ω̂i

jY
j
)⊗ ∂

∂ξi
(1.11)

for the (1, 0)-form ω̂i
j defined by the horizontal (1, 0)-form ω̂i

j =
∑

Γ i
jαdzα,

where we put

Γ i
jα =

∂N i
α

∂ξj
(1.12)

for the coefficients {N i
α} of hE . By the homogeneity (1.4), the connection

form ω̂ = (ω̂i
j) satisfies the homogeneity ω̂(z, λξ) = ω̂(z, ξ). In terms of ω̂,
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the connection hE is expressed as

∂hξi = −
∑

ω̂i
jξ

j . (1.13)

The Bott connection DE defined by a connection hE in the sequence
(1.1) is extended to an ordinary connection ∇̂ in TE/M . In fact, since
TE/M

∼= π−1E, the relative tangent bundle TE/M admits a relatively flat
connection D0 : TE/M → TE/M ⊗Ω1

E/M defined by D0(π−1s) = 0 for every

s ∈ E. The connection ∇̂ : TE/M → TE/M ⊗ Ω1
E is given by

∇̂ = DE ⊕D0. (1.14)

For any section Y =
∑

Y i(∂/∂ξi) ∈ TE/M , the covariant differential ∇̂Y

is given by

∇̂Y =
∑(

dEY i +
∑

ω̂i
jY

j
)
⊗ ∂

∂ξi
.

Since the curvature ΩD of DE is defined by ΩD = dh
Eω̂ + ω̂ ∧ ω̂, the

curvature Ω∇̂ of ∇̂ is given by

Ω∇̂ = ΩD + dv
Eω̂. (1.15)

2. Finsler geometry

2.1. Finsler metrics. A Finsler metric or Minkowski metric f(ξ) =
f(ξ1, . . . , ξr) on Cr is a function satisfying the following conditions:

(1) f(ξ) ≥ 0 for all ξ ∈ Cr, and the equality holds if and only if ξ = 0,

(2) f is smooth on Cr − {0},
(3) f(λξ) = |λ|2f(ξ) for all λ ∈ C and ξ ∈ Cr,

(4) f is pluri-subharmonic, that is,
√−1∂∂̄f > 0.

We show that any Finsler metric on Cr (r ≥ 2) induces a Kähler metric
on the complex projective space Pr−1. We denote by ρ : Cr − {0} → Pr−1

the natural projection. The tangent bundle TPr−1 is locally spanned by
the vector fields {ρ∗(∂/∂ξi)} with the relation

ρ∗

(∑
xii

∂

∂ξi

)
= 0. (2.1)



Projective flatness of complex Finsler metrics 351

Let HPr−1 = OPr−1(1) be the hyperplane bundle over Pr−1. We identify the
fibre H[ξ] = O[ξ](1) over [ξ] ∈ Pn with the set of homogeneous functions of
order 1 on ρ−1([ξ]). For the tautological line bundle OPr−1(−1) over Pr−1,
the Euler sequence 0 −→ OPr−1(−1) −→ O⊕r −→ OPr−1(−1)⊗TPr−1 −→ 0
implies

0 −→ OPr−1
i−→ H⊕r

Pr−1

σ−→ TPr−1 −→ 0, (2.2)

where the surjective morphism σ : H⊕r
Pr−1 → TPr−1 is defined by

σ(X1, . . . , Xr) = ρ∗

(∑
Xi(ξ)

∂

∂ξi

)
.

By the relation (2.1), the bundle OPr−1 is the trivial line bundle locally
spanned by E = (ξ1, . . . , ξr). Since f satisfies

√−1∂∂̄f > 0, we define a
Hermitian metric 〈 · , · 〉 on H⊕r

Pr−1 by

〈X, Y 〉 =
1

f(ξ)

∑ ∂2f

∂ξi∂ξ̄j
XiY j

for sections X = (X1, . . . , Xr) and Y = (Y 1, . . . , Y r) of H⊕r
Pr−1 . With

respect to this Hermitian metric, we get an orthogonal decomposition
H⊕r
Pr−1 = TPr−1 ⊕ OPr−1 . Since 〈E , E〉 = 1, we decompose σ(X) = X̃

orthogonally as X̃ = X − 〈X, E〉E . Then it induces a Hermitian metric
〈 · , · 〉Pr−1 by 〈X̃, Ỹ 〉Pr = 〈X, Y 〉 − 〈X, E〉〈E , Y 〉 which is written as

〈X̃, Ỹ 〉Pr−1 =
(
∂∂̄ log f

)(
X̃, Ỹ

)
.

Hence any Finsler metric f on Cr determines a Kähler metric on the
projective space Pr−1. Let (ζ1, . . . , ζr−1) be the inhomogeneous coordinate
on Uj =

{
[ξ] ∈ Pr−1 | ξi 6= 0

}
. We put gj(ζ1, . . . , ζr−1) := log f(ξ) −

log |ξj |2 on Uj . Since
√−1∂∂̄gi =

√−1∂∂̄gj on Ui ∩ Uj , the real (1, 1)-
form

√−1∂∂̄gi defines the Kähler metric 〈 · , · 〉Pr−1 . The functions {gj}
are called the Kähler potentials of 〈 · , · 〉Pr−1 . We note that the functions
Gj = f(ξ)|ξj |−2 satisfy |ξi|2Gi(ξ) = |ξj |2Gj on Ui∩Uj , and thus the family
{Gj} defines a Hermitian metric on H with positive curvature.

Conversely, from any Kähler metric
√−1∂∂̄gj on Pr−1, we get a Finsler

metric f on Cr. In fact, since H1(Pr−1,Or−1
P ) = 0, we can take gj satisfying

|ξi|2 exp gi = |ξj |2 exp gj on Ui ∩ Uj . Then the function f(ξ) = |ξj |2 exp gj
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defines a convex Finsler metric on Cr. We suppose that we get an-
other Finsler metric f̃ from another Kähler potential {g̃j}. Then, since√−1∂∂̄g̃j =

√−1∂∂̄gj , the function log f̃ − log f is pluri-harmonic func-
tion on Pr−1. If we denote by F the sheaf of germs of pluri-harmonic

functions on Pr−1, the exact sequence 0 −→ R ×√−1−→ O Re−→ F −→ 0 of
sheaves on Pn implies the long exact sequence of cohomology groups

0 −→ H0(Pr−1,R) −→ H0(Pr−1,OPr−1)

−→ H0(Pr−1,F) −→ H1(Pr−1,R) −→ . . . .

The identifications H0(Pr−1,R) ∼= R, H0(Pr−1,OPr−1) ∼= C and
H1(Pr−1,R) ∼= R imply the identification H0(Pr−1,F) = R. Hence any
pluri-harmonic function on Pr−1 is a constant c. Consequently we have
f̃ = ecf . Hence we have

Proposition 2.1 ([7]). Any Kähler metric on the complex projective

space Pr−1 determines a Finsler metric on Cr uniquely up to the multiple

by a positive constant.

Example 2.1. If f(ξ) =
∑ |ξi|2, then it induces a flat metric ds2 =√−1

∑
dξi∧dξ̄i on Cr. The induced Kähler metric 〈 · , · 〉Pr−1 is called the

Fubini-Study metric and given by the form

ΠFS =
√−1∂∂̄ log

(
1 +

r−1∑

i=1

|ζi|2
)

.

Conversely, the Fubini-Study metric on Pr−1 induces a flat Hermitian
metric on Cr uniquely up to a positive constant.

A complex Finsler metric on a vector bundle is defined as follows.

Definition 2.1. A Finsler metric F on a homomorphic vector bundle
π : E → M is a smooth assignment of Finsler metrics fz to each fibre
Ez

∼= Cr. The pair (E, F ) is called a Finsler bundle.

It is easily shown that if a Finsler metric F is given on E, then P(E) ad-
mits a pseudo-Kähler form ΠP(E) =

√−1∂∂̄ log F . We shall show that the
converse is also true. For this purpose, we take an open covering {(U, sU )}
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on E which induces complex coordinate systems (z1, . . . , zn, ξ1, . . . , ξr) on
π−1(U) and (z1, . . . , zn, ζ1

j , . . . , ζr−1
j ) on Uj = {(z, [ξ]) ∈ p−1(U) | ξj 6= 0}.

Let L = OP(E)(−1) the tautological line bundle over P(E). The re-
striction of L to each fibre Pz is the tautological line bundle OPz(−1) over
Pz
∼= Pr−1. The sequence (2.2) is true for each fibre Pz, that is,

0 −→ OPz

i−→ H⊕r
Pz

σ−→ TPz −→ 0.

Thus, on each Pz, we can construct a Kähler form Πz on Pz. If each Πz

depends on z ∈ M smoothly, then the family {Πz} defines a pseudo-Kähler
form ΠP(E) on P(E). If we put ΠP(E) =

√−1∂∂̄gj on P(E), then we can
construct a Finsler metric F on E by

F (z, ξ) = |ξj |2 exp gj(z, [ξ]).

We note that another Kähler potential {g̃j} for Π which induces the Kähler
metric Πz on each Pz is given by

g̃j(z, [ξ]) = σU (z) + gj(z, [ξ]) (2.3)

for some functions σU (z) defined on U . Hence the Finsler metric F̃ de-
termined from the potential {g̃j} is connected to the function F by the
relation F̃ = eσU (z)F on each U . Consequently we have

Proposition 2.2. Any pseudo-Kähler metric on P(E) determines a

Finsler metric on E uniquely up to the multiple by a positive function

on M .

2.2. Finsler connections. Each fibre of a Finsler bundle (E,F ) is a
vector space Ez

∼= Cr with a Finsler metric fz. By definition fz is parame-
terized smoothly by points of the base manifold M . Since F (z, ξ) = fz(ξ),
the real (1, 1)-form

√−1∂∂̄F defines a pseudo-Kähler form on E which
induces a Kähler metric on each fibre Ez. Hence the bundle πE : E → M

is a Kähler fibration with a pseudo-Kähler form
√−1∂∂̄F . We put

Fij̄(z, ξ) =
∂2F

∂ξi∂ξ̄j
.

Then, since the locally ∂∂̄-exact real (1, 1)-form
√−1∂∂̄F is positive def-

inite on each fibre Ez, the Hermitian matrix (Fij̄) defines a Hermitian
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metric G on the bundle $ : TE/M → E by

G

(
∂

∂ξi
,

∂

∂ξj

)
= Fij̄ .

In the sequel we consider the bundle $ : TE/M → E with the Hermitian
metric G.

TE/M
∼= π∗E −−−−→ E

$

y
yπ

E
π−−−−→ M

We shall determine a connection hE : π∗TM → TE in the sequence
(1.1) so that the induced connection ∇̂ in TE/M satisfies the metrical con-
dition

dh
EG(Y, Z) = G(∇̂Y,Z) + G(Y, ∇̂Z) (2.4)

for all Y, Z ∈ TE/M . Since ∇̂ is of (1, 0)-type, we have dh
EFij̄ =

∑
Fmj̄ω̂

m
i +

Fim̄ω̂m
j . Hence the connection form ω̂ = (ω̂i

j) of ∇̂ is given by ω̂i
j =∑

F im̄∂h
EFjm̄. From (1.13), the coefficients of hE is defined by

∑
N i

αdzα =∑
ω̂i

jξ
j , and thus we have

N i
α =

∑
F im̄ ∂Fjm̄

∂zα
ξj . (2.5)

The horizontal lifts Xα of ∂/∂zα are given by

Xα =
∂

∂zα
−

∑
Nm

α

∂

∂ξm
.

We denote by Xᾱ its complex conjugate Xα. The connection ∇̂ : TE/M →
TE/M ⊗ Ω1

E induced from the connection hE of (2.5) is called the Finsler
connection of (E,F ). We also denote by E the section of TE/M which
spans the line bundle ker{ρ∗ : TE/M → TP(E)}, i.e., E =

∑
ξm(∂/∂ξm).

Then, the equation (1.13) shows that ∇̂E ≡ 0, and from F (z, ξ) = G(E , E)
and (2.4) we have dh

EF =
∑

XαFdzα +
∑

XᾱFdz̄α ≡ 0. Then we have

Lemma 2.1 ([3]). Let (E, F ) be a Finsler bundle, and ω̂ the connec-

tion form of the Finsler connection ∇̂. Then we have

(1) ∂hω̂ + ω̂ ∧ ω̂ ≡ 0.
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(2) ΩD = ∂̄h
Eω̂.

(3) Ω∇̂ = ΩD + dv
Eω̂.

A Finsler bundle (E,F ) is said to be modeled on a complex Minkowski
space (Cr, f) if the connection hE defined by N i

α in (2.5) is linear(cf. [11]).
Then hE induces a connection ∇ in E. We recall some results from [1]
and [2].

We fix a point z0 ∈ M and identify the fibre (Ez0 , fz0) as a Minkowski
space (Cr, f). If we set

G =
{
A ∈ GL(r,C) | f(Aξ) = f(ξ), ∀ξ ∈ Cr

}
,

then G is a compact subgroup of unitary group U(r). Let z ∈ M be an
arbitrary point and c = c(t) be a smooth curve connecting z0 = c(0) and
z = c(1). We can assume without loss of generality that the points z and
z0 are contained in a neighborhood (U, sU ). Let ξ(t) be a parallel field
of E along the curve c. Since

dξi

dt
+

∑

j,α

ξjΓ i
jα(c(t))

dzα

dt
= 0, (2.6)

we have
d

dt
‖ξ(t)‖2 =

d

dt
F (c(t), ξ(t)) =

∑(
XαF

dzα

dt
+ XᾱF

dz̄α

dt

)
= 0.

This shows that the parallel displacement Pc along the curve c is norm-
preserving. Hence each fibre (Ez, fz) is congruent to a fixed Minkowski
space (Cr, f), and the holonomy group H is a subgroup of the compact Lie
group G. Then there exists a GL(r,C)-valued function AU : U → GL(r,C)
satisfying

F (z, ξ) = f(AU (z)ξ). (2.7)

Since f(AU (z)ξ) = f(AV (x)ξ) on U ∩V , we see that the local frame fields
{s̃U = sUA−1

U } define a G-structure on E.
On the other hand, by using Szabó’s idea (cf. [18]), we can construct

a Hermitian metric gF compatible with the connection ∇̂. In fact, for an
arbitrary Hermitian inner product (·, ·) in Ez0 , we define a G-invariant
Hermitian inner product 〈 · , · 〉0 in Ez0 by

〈η, ζ〉0 =
∫

G
(gη, gζ)dg
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for all η, ζ ∈ E0 and for a bi-invariant Haar measure dg of G. Then,
since the holonomy group H with reference point z0 is contained in G, this
Hermitian inner product 〈 · , · 〉0 is extended to a Hermitian metric gF on
E defined on the whole of M by

gF (ξ, η) = 〈P−1
c ξ, P−1

c η〉0.
This Hermitian metric gF is compatible with ∇̂. Hence we have

Theorem 2.1 ([1]). We suppose that a Finsler bundle (E,F ) is mod-

eled on a complex Minkowski space (Cr, f). Then

(1) the metric F is of the form (2.7),

(2) the structure group of E is reducible to the Lie group G,

(3) there exists a Hermitian metric gF on E which is compatible with the

connection ∇̂.

A Finsler metric F on E which is modeled on a complex Minkowski
space (Cr, f) can be written in the form (2.7). We consider the case
where the connection ∇̂ is flat. In this case, we can assume that the
neighborhoods {U, sU} can be chosen so that the connection form ωi

j =∑
Γ i

jα(z)dzα vanishes on each U . Hence the differential equation (2.6)
is simplified as dξi/dt = 0, and thus the components ξi(t) of parallel
field ξ(t) along a curve c(t) are constant on c(t). Hence the function
AU : U → GL(r,C) in (2.7) is constant. Consequently, with respect to
such a neighborhood (U, s̃U ), the metric F is independent of the base point
z ∈ M . The following definition is a generalization of real case in [17].

Definition 2.2. A Finsler bundle (E, F ) is said to be flat or locally
Minkowski if it is locally isometric to a Minkowski space (Cr, f), i.e., E

admits an open cover {(U, sU )} with respect to which the metric F depends
only on the fibre point ξ not on the base point z.

If (E, F ) is flat, then from (2.5) it is easily shown that its Finsler
connection ∇̂ is flat. In the previous papers [3] and [7], we have shown the
following:

Proposition 2.3. A Finsler bundle (E, F ) is flat if and only if its

Finsler connection ∇̂ is flat, i.e., (E, F ) is modeled on a complex Minkowski

space and its associated Hermitian metric gF is flat.
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3. Projectively flat Finsler metrics

3.1. Projectively flat Finsler metrics. Similarly to (1.8), the projec-
tive curvature Θ̂ of Finsler connection ∇̂ is defined by

Θ̂ = Ω∇̂ − 1
r
tr(Ω∇̂)⊗ I.

Definition 3.1. A Finsler metric F is said to be projectively flat if its
projective curvature Θ̂ vanishes identically.

We suppose that F is projectively flat, i.e., Θ̂ ≡ 0. If we put

1
r
tr(Ω∇̂) =

∑
Aαβ̄dzα ∧ dz̄β +

∑
Aαkdzα ∧ θk +

∑
Aαk̄dzα ∧ θ̄k

:= A,

the curvature Ω∇̂ is given in the form Ω∇̂ = A ⊗ I. To investigate the
projective-flatness of F in local coordinates, we compute the curvature
Ω∇̂ = ∂̄hω̂ + dvω̂. The components Ω̂i

j = ∂̄hω̂i
j + ∂vω̂i

j + ∂̄vω̂i
j of Ω∇̂ are

given by

∂̄hω̂i
j =

∑
Ri

jαβ̄dzα ∧ dz̄β, ∂vω̂i
j =

∑
Ri

jαkdzα ∧ θk,

∂̄vω̂i
j =

∑
Ri

jαk̄dzα ∧ θ̄k,

where the coefficients of Ω̂i
j are given by

Ri
jαβ̄ = Xβ̄Γ i

jα, Ri
jαk =

∂Γ i
jα

∂ξk
, Ri

jαk̄ =
∂Γ i

jα

∂ξ̄k
.

For local computations, we shall state some formulas. From the ho-
mogeneity (1.4), differentiating (1.4) with respect to λ and λ̄ respectively,
we have ∑ ∂N i

α

∂ξj
ξj = N i

α,
∑ ∂N i

α

∂ξ̄j
ξ̄j = 0. (3.1)

Moreover, from the homogeneity Γ i
jα(z, λξ) = Γ i

jα(z, ξ), we have

∑ ∂Γ i
jα

∂ξk
ξk = 0,

∑ ∂Γ i
jα

∂ξ̄k
ξ̄k = 0. (3.2)
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Lemma 3.1. If the Finsler connection ∇̂ in (E, F ) is projectively flat,

then (E,F ) is modeled on a complex Minkowski space.

Proof. From Ri
jαk = Aαkδ

i
j and the first identity of (3.2) we have

Aαkξ
i =

∑
ξj

∂Γ i
jα

∂ξk
=

∑
ξj ∂Γ i

kα

∂ξj
= 0.

Here we used the homogeneity Γ i
jα(z, λξ) = Γ i

jα(z, ξ) for λ ∈ C. Hence we
get Aαk = 0, and thus Ri

jαk = 0. Moreover, from Ri
jαk̄

= Aαk̄δ
i
j we have

Aαk̄ξ
i =

∑
ξjRi

jαk̄ =
∑

ξj
∂Γ i

jα

∂ξ̄k
=

∂N i
α

∂ξ̄k
. (3.3)

Hence, from the second identity of (3.1) we have
( ∑

Aαk̄ξ̄
k
)
ξi = 0, and

thus we get
∑

Aαk̄ξ̄
k = 0. We also consider the tensor field Nα on each

fibre Ez defined by

Nα =
∑ ∂N i

α

∂ξ̄j
dξ̄j ⊗ ∂

∂ξi
.

Since each fibre Ez has a Hermitian metric (Fij̄), the norm ‖Nα‖z of Nα

is naturally defined. Then, by the condition (3.3), we have
∥∥Nα

∥∥2

z
=

∑(
Aαj̄ξ

i
)
Aαīξ

j =
∑

(Aαj̄ ξ̄
j) · (Aαīξ̄

i) = 0,

from which we have Nα = 0, and so Aαī = 0 from (3.3). Consequently
we get Ri

jαk = Ri
jαk̄

= 0. Thus dvω = 0, that is, (E, F ) is modeled on a
complex Minkowski space. ¤

On the other hand, the condition Θ̂ ≡ 0 is equivalent to that there
exists a suitable open covering {(U, sU )} of E such that the connection
form ω̂ of the Finsler connection ∇̂ is of the form ω̂ = aU ⊗ I for a (1, 0)-
form aU on each π−1(U). Then we have

Lemma 3.2. If the Finsler connection ∇̂ in (E, F ) is projectively flat,

then there exists a local function σU : U → R such that Ω∇̂ = ∂∂̄σU ⊗ I

on U .

Proof. By Lemma 3.1, if ∇̂ is projectively flat, then (E, F ) is mod-
eled on a complex Minkowski space. Hence, by Theorem 2.1, there exists
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a Hermitian metric gF = (gij̄(z)) on E such that the connection form ω̂i
j

of ∇̂ is given by ω̂i
j =

∑
gim̄∂gjm̄ and the form aU is given by

aU =
1
r

tr(ω̂) =
1
r
∂ log

(
det(gij̄)

)
.

If we put σU = r−1 log det(gij̄) on each U , the connection form is given by

ω̂i
j = ∂σU ⊗ δi

j , and its curvature Ω∇̂ is given by Ω∇̂ = ∂∂̄σU ⊗ I. ¤

3.2. Main theorems. We suppose that (E, F ) is projectively flat. Then,
by the proof of Lemma 3.2, there exists a local function σU (z) on U such
that the curvature Ω̂ is written as Ω̂ = ∂∂̄σU (z) ⊗ I. Then we can show
hat the local metric F̃U = eσU (z)F (z, ξ) is a flat Finsler metric on U ,
i.e., F (z, ξ) = e−σU (z)F̃ (ξ). Then, from (1.9), the Kähler metrics Πz are
given by Πz =

√−1∂∂̄ log F̃ (ξ) which shows that {Pz,Πz} is a flat Kähler
fibration.

Conversely we suppose that F is induced from a flat pseudo-Kähler
metric on P(E). Then, from (2.3), there exists a local function σU (z) on
each U such that

g̃j = log
(

1
|ξj |2 F (z, ξ)

)
− σU (z) (3.4)

is independent of the base point z ∈ M . If we put F̃U (ξ) = |ξj |2 exp g̃j([ξ]),
we have

F (z, ξ) = eσU (z)F̃U (ξ) (3.5)

on each π−1(U). In this case, the connection h : π∗TM → TE is given by

N i
α(z, ξ) =

∂σU

∂zα
ξi,

and the Finsler connection ∇̂ in (E, F ) is given by ω̂i
j = ∂σU ⊗ δi

j on each

π−1(U). Hence its curvature Ω∇̂ is given by the form Ω̂i
j = ∂∂̄σU ⊗ δi

j .
This shows that the Finsler connection ∇̂ is projectively flat.

Theorem 3.1. A complex Finsler metric F is projectively flat if and

only F is induced from a flat pseudo-Kähler metric on P(E).

By Lemma 3.1 and 3.2, we have also proved the following.
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Corollary 3.1. A Finsler bundle (E,F ) is projectively flat if and only

if it is modeled on a complex Minkowski space and its associated Hermitian

metric gF is projectively flat.

Corollary 3.1, Proposition 2.3 and Proposition 1.3 imply the following.

Theorem 3.2. Let E be a holomorphic vector bundle over a complex

manifold M . The projective bundle p : P(E) → M is a flat Kähler fibration

if and only if E admits a projectively flat Hermitian metric.

From (3.5), the projective flatness of Finsler metrics is equivalent to
the conformal-flatness in the sense of [3]. Then we get an example of
projectively flat Finsler metrics.

Example 3.1 (cf. [4]). Let M = C×n
/λZ be the Hopf manifold. The

tangent bundle TM admits a projectively flat Finsler metric. In fact, for
an arbitrary Finsler metric f : Cn → R, the function F : TM → R given by

F0(z, ξ) = e− log ‖z‖2f(ξ)

defines a projectively flat Finsler metric on TM , and an associated Her-
mitian metric is given by the Boothby metric ds2 = e− log ‖z‖2 ∑

dzj ⊗dz̄j .
The projective bundle P(TM ) → M is a flat Kähler fibration.

4. Some remarks

In this last section, we shall consider the case where M is a compact
Riemann surface and f : X → M a geometrically ruled surface. Every
geometrically ruled surface over M is isomorphic to P(E) for some holo-
morphic vector bundle E → M of rank two.

For the degree
∫
M c1(E) := deg(E) of a holomorphic vector bundle E

over M , its degree/rank ratio of E is defined by µ(E) := deg(E)/rank(E).
A holomorphic vector bundle E is said to be stable (in the sense of Mum-
ford) if it satisfies µ(E′) < µ(E) for an arbitrary proper sub-bundle E′

satisfying 0 < rank(E′) < rank(E).
We fix a Kähler metric g = g11̄dz ⊗ dz̄ of M . A Hermitian metric h

on E is said to be weak Einstein–Hermitian if its curvature form Ωi
j =

Ri
j11̄

dz ∧ dz̄ satisfies g1̄1Ri
j11̄

= ϕδi
j for a function ϕ. Hence the curvature
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form is written as the form (1.6) for the 2-form A = ϕg11̄dz ∧ dz̄, which
shows that (E, h) is projectively flat. The converse is also true. On the
other hand, by [8], a holomorphic vector bundle E is stable if and only if
it admits a projectively flat Hermitian metric h. Hence the following three
conditions are equivalent (see (2.7) Theorem on p. 140 of [14]):

1. E is stable in the sense of Mumford,

2. E admits a weak Einstein–Hermitian metric h,

3. E admits a projectively flat Hermitian metric h.

On the other hand, by Theorem 3.2, a holomorphic vector bundle E ad-
mits a projectively flat Hermitian metric if and only if P(E) admits a flat
pseudo-Kähler metric ΠP(E). Hence the statement above, we have

Proposition 4.1. A geometrically ruled surface f : X = P(E) → M

is a flat Kähler fibration if and only if the bundle E is stable in the sense

of Mumford.
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