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On the m-convexity of C,(X)

By HUGO ARIZMENDI-PEIMBERT (Mexico)
and ANGEL CARRILLO-HOYO (Mexico)

Abstract. Let X be a topological space and Cy,(X) the algebra of bounded
continuous complex functions defined on X, with the strict topology 8 defined
by R. Giles. In this paper a necessary and sufficient condition is given in order
that C,(X) be an m-convex algebra, when X is a completely regular Hausdorff
space. The density of principal ideals in this algebra and an algebra of analytic
sequences are also studied.

1. Introduction

Let X be a topological space. We denote by B (X) the algebra of
all bounded complex functions on X, and by Cj (X) the subalgebra of
B (X) consisting of bounded continuous functions. The ideal in B (X)
of all bounded functions vanishing at infinity is denoted by By(X) and
Byo(X) denotes the subspace of By(X) consisting of all the elements in
B(X) with compact support.

The strict topology 3 on the algebra Cy(X) was introduced by C. Buck
in [4] when X is a locally compact Hausdorff space. For an arbitrary topo-
logical space X it was defined by R. GILES [5] as the locally convex topol-
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ogy on Cy(X) given by the seminorms
Iflle = sup | f(z)e(z)], (1)
zeY

where ¢ ranges on By(X). If we restrict the functions ¢ to the class
By (X) we obtain the compact-open topology , and we obtain the uni-

form convergence topology o defined by the sup norm || f||s = sup |f(z)],
zeX
if we allow ¢ to be any function in B(X). This shows that kK < 5 < 0.

If X is a locally compact space, then the strict topology 8 on the
algebra Cy(X) can be defined by the family of seminorms (1), but with
¢ restricted to the space Co(X) = C (X) N By (X). This is the way in
which C. Buck defined the strict topology.

We recall that X is called a k-space if it is a space in which a set is
closed iff its intersection with every compact closed set is closed. If X is a
locally compact or metrizable space then X is a k-space.

In [5] it is shown that the algebra (Cy(X),3) is complete if and only
if X is a k-space.

A commutative locally convex algebra A with unit e, whose topology
is given by the family {|| |l : @ € A} of seminorms on A, is said to be
locally A-convex if for each x € A and o € A there exists some constant
M (z,a) > 0 such that

[2ylla < Mzllylla forally e A. (2)

If the above constant M, o) does not depend on « i.e. (2) holds for
all & € A and some constant M, depending only on x, then we say that A
is a locally uniformly A-convex algebra.

We say that A is a locally m-convex (shortly m-convex) algebra if
every seminorm || ||, is submultiplicative i.e. |zy|lo < ||2|lallylla for all
a € A and x,y € A.

The algebra (Cy(X), ) is locally uniformly A-convex, since || fglls <
| flloollg]ls for every ¢ € By (X) and f, g € Cyp(X). It is easy to see that the
topological algebras (C(X), o) and (Cp(X), k) are m-convex algebras. In
this paper we establish, among other things, some conditions under which
the algebra (Cy(X), ) is also an m-convex algebra.
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By M (A) (resp., M#(A)) we denote the space of all continuous non-
zero linear multiplicative complex functionals on A (resp., all non zero
linear multiplicative complex functionals on A).

If X is a completely regular Hausdorff space, then it is well known
that M (Cy, (X),5) = X, i.e. h € M (Cyp(X), 8) if and only if A(f) = Z(f)
for all f € Cy(X) and a fixed z € X, where Z (f) = f(x).

2. The Wiener property

A commutative complete complex m-convex algebra A with unit sat-
isfies the Wiener property: x € A is invertible if and only if Z(f) # 0 for
every f € M(A).

In this section we formulate for (Cy(X),3) a result, Corollary 2.2,
that resembles the Wiener property and we use this result to prove that
a particular commutative locally convex complete algebra with unit is not
m-convex.

The next theorem is the complex version of the Stone—Weierstrass
theorem given in [5].

Theorem 2.1. Let A be a self adjoint [3-closed subalgebra of Ci(X)
which separates points and contains, for each x in X, a function nonvan-
ishing at . Then A = Cy (X).

Corollary 2.2. Let X be a completely regular Hausdorff space. Sup-
pose f € Cy(X) is such that f(x) # 0 for every x € X. Then the ideal
fCy (X) is dense in (Cy(X), ).

PROOF. Since X is a completely regular Hausdorff space, Cp,(X) sep-

arates points and so does fCy(X), and since %g € Cp(X) for every g €
Cy (X), fO(X) is self adjoint. O

When the above function f is not invertible in Cj(X) we obtain the
following

Theorem 2.3. If f € Cy(X) is such that f(x) # 0 for every v € X
and infzex |f(x)| = 0, then the ideal fCy(X) is of infinite codimension.
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PROOF. Let us assume that f satisfies the hypothesis. For each n > 1
let us define the function h,(z) = %\/|f(z)| for all z € X. Then we obtain
a sequence (h,Cy(X))>2; of ideals of Cj, (X) such that

hiCy(X) C haCy(X) C ...

This implies that {h,, : n > 1} is a set of linearly independent elements.
Since the function % is not bounded whenever g is not the null element
in the linear space (h,) generated by the set {h, : n > 1}, it follows that
(hn) N fCy(X) = {0} and then the ideal fCy(X) is of infinite codimension.

O

Corollary 2.4. Let X be a completely regular Hausdorff k-space. If
there exists f € Cy(X) as in the above theorem, then (Cy(X), 3) is not an
m-convex algebra.

PROOF. We know that M (C, (X)), 3) = X, and by hypothesis Z (f) =
f(z) # 0 for every x € X. Therefore, (Cy(X),3) is a commutative com-
plete complex algebra with unit that does not satisfy the Wiener condition.
Thus, (Cy (X), ) is not an m-convex algebra. O

3. The M-convexity of (Cy(X), )

Let A be a topological algebra. In [2] an element x € A is said to be
Me-invertible (resp., M#-invertible) if Z(f) # 0 for every f € M(A) (resp.,
f € M#(A)). The set of all M-invertible (M#-invertible) elements in A is
denoted by Gai(A) (Gy#(A)). The set of all invertible elements in A is
denoted, as usual, by G (A).

Suppose X is a completely regular Hausdorff space. Since
M (Cy(X), ) = X and M# (Cy(X)) = B(X) (the Stone-Cech compactifi-
cation of X) we have

Gm(Co(X), B) ={f € Co(X) : f(x) #0, Vo € X}

and

G(Cb(X)) = GM# (Cb(X)) = {f € Cb(X) : xlél)f( \f(x)\ > 0}.
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Proposition 3.1. Suppose X is a completely regular Hausdorff space.
The following properties are equivalent:

(1) Cyp(X) = C(X), where C(X) is the space of all complex continuous
functions on X.

(2) G(Co(X)) = Gn (Cp(X), B).

PROOF. It is obvious that (1) = (2). To show (2) = (1) we assume the
contrary, namely that there exists f € C'(X) which is not a bounded func-
tion. Then 14 |f(z)| # 0 for every € X and it is not a bounded function.
Therefore, the element h = ﬁ belongs to Gy (Cyp(X), B)NG (Cp (X)). O

A topological algebra A is said to be a Q-algebra if G (A) is an open
set in A, in other words the complement of G (A) is closed in A. In the
topological algebra (Cy(X), 3), with X a completely regular non compact
Hausdorff space, the set of invertible elements has the opposite property,
as we can see in the following

Proposition 3.2. Let X be a completely regular noncompact Haus-
dorff space. The set of all noninvertible elements of Cy, (X) is dense in

(Cy (X))

PROOF. Let ¢ € By (X) and € > 0. There exists a compact subset
K C X such that |p(z)| < € for every z ¢ K. Since X is a completely
regular noncompact Hausdorff space there exist zp ¢ K and a function
g € Cp(X) such that g(x) =1if z € K, g(xg) =0 and 0 < g(x) < 1 for
all z € X. It immediately follows that g is not invertible in Cj, (X) and
lg—11l, < e o

In what follows we establish a necessary and sufficient condition for
the m-convexity of (Cyp(X),3), when X is a completely regular Hausdorft
space. For this we follow the proof of Proposition 4 in [11].

Theorem 3.3. Let X be a completely regular Hausdorff space.
(Cy(X), B) is an m-convex algebra if and only if By (X) = By (X).

PROOF. Let us assume that Byo(X) € Bo(X) and suppose that
(Cp(X), B) is an m-convex algebra; so there exists a system P of submul-
tiplicative seminorms that defines 3. Thus, for ¢ € Bo(X)\ Boo(X) we
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can find a submultiplicative seminorm || || belonging to P and two positive
constants p and ¢ such that

plfll, < A< alifll,

for all f € Cy (X). Then [[f[| <1 whenever ¢||f||, <1, and so [|f"[| <1
and p||f"]|, < 1 for all n > 1. Since limy; . ¢ (z) = 0 we can find a
compact subset K of X such that ¢ |¢(z)| < & for every = ¢ K.

Let f € Cp(X) with f(z) =0ifx € K, 0< f(z) <2forallz € X
and f(z1) = 2 for some z1 ¢ K for which ¢ (z1) # 0. We have that
q|Ifll, <1, and then p[[f"||, <1 for all n > 1. On the other hand,

plfll, = 2" e (z1)lp

for all n > 1 and the expression on the right tends to co as n grows. This
shows that (Cy (X), ) is a non m-convex algebra.
If we have By (X) = Byp (X) then the topology [ coincides with x and
then
(Ch (X),8) = (Cp (X)), k)

is clearly m-convex. (|

Corollary 3.4. Let X be a locally compact Hausdorff space.
(Cy(X), B) is an m-convex algebra if and only if Cy(X) = Coo(X).

PrOOF. If (Cy(X), §) is an m-convex algebra, then By(X) = Boo(X).
If f e Cy(X), then f € Byo(X). Thus, f € Coo(X).

Conversely, since X is a locally compact Hausdorff space, the strict
and the uniform topologies in Cj are given by the families of seminorms
{I o ¢ € Co(X)} and {|| ||¢ : ¢ € Coo(X)}, respectively. Thus, these
two topologies coincide and (Cy(X), ) is an m-convex algebra. O

Remark 3.5. Observe that Cy(X) = C(X), where X is a locally com-
pact space, does not imply in general that Cyp(X) = Cpo(X), as we can see
in the following example:

Let © and w be the first uncountable and countable ordinal numbers,
respectively. It can be proved that the space

Y =1[0,9Q] x [0,w] — (2,w)
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is pseudocompact and so Cp(Y) = C'(Y). Let f : ¥ — C be defined
as f(,0) =1, f(a,w) = 0 and f(a,n) = = for every a € [0,Q] and
n=1,2,.... It is easy to see that f € Co(Y)\Coo(Y). Thus, (Cp(X), )

is not m-convex.

A space X is called a P-space if every function in Cy(X) is constant in
some neighborhood of each point of X. If X is a locally compact Hausdorff
space such that its Stone—Cech compactification is a P-space, then Cp(X)
coincides with Cpo(X) and therefore (Cy(X),3) is an m-convex algebra.
For example, every ordinal segment [0,7), where 7 is an infinite ordinal
with uncountable cofinality, has this property.

In [1], for a locally A-convex algebra (A, 7(P)) with unit, where P =
{pa | @ € A} is a family of seminorms which determines the topology 7,
another topology 7'(]5) is defined. This topology 7'(15) is the weakest locally
m-convex topology on A which is stronger than 7(P), and it is given by
the family of seminorms P = {p, | & € A}, where

Pa(z) = sup{pa(zy) : paly) < 1}.
For (Cy(X), B) this locally m-convex topology will be denoted by 3 (ﬁ)
and it is defined by the seminorms
Po(f) =sup {15l < oll, < 1},

where f,g € Cy(X) and ¢ € By (X).
The following lemma is obvious.

Lemma 3.6. Let X be a locally compact Hausdorff space. There
exists a real function ¢ € By (X) such that ¢(x) # 0 for all x € X if and
only if X is o-compact.

Proposition 3.7. If X is a locally compact and o-compact Haus-
dorff space then the topology B(P) in Cy(X) coincides with the uniform
topology.

PrOOF. It is clear that
Pe(f) < 1 fllso
for all f € Cp(X) and ¢ € By (X).
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On the other hand, by the above lemma there exists ¢ € By(X) such
that ¢(x) # 0 for all x € X. Given € > 0 and f € Cp(X), let x € X be
such that

[flloe — € <If(z)],
then

£l = € < 1f (@)] = ‘f(w) e @) < sl

where g, (z) = @(130) and ge (y) = 0 if y # . Thus, ||f|l < Du(f)-

The space [0,12) is a locally compact Hausdorff space, but it is not
a o-compact space. In this case, the 5(15) topology coincides with the
open-compact topology in Cy([0,€2)).

On the other hand, 3(P) coincides with the uniform topology in the
space Y of Remark 3.5, because || f||,, = p(f) for the function f defined
there. ]

4. The algebra H(D)

Let H(D) be the algebra of all holomorphic functions in the unit com-
plex open disc D, and let A denotes the space of all complex sequences
a = (ay)?2, such that if z is a complex number and |z| < 1, then S_7° ; ayz*
converges. The transformation

F2) =Y ar () = alf) = (a())io (3)
k=0

identifies H (D) with the sequence space A.

Let A be endowed with the Hadamard product, i.e. the coordinatewise
product, and the compact-open topology inherited from H (D) through the
identification (3); this topology, that we denote by 7 (A), can be given by

o
n=1

e ()EZolln = sup (Ja (£)17%)

the sequence (|| ||»),—; of seminorms on A defined as

for n > 1, where (r,);.; is an increasing sequence of positive numbers
tending to 1.
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Then A becomes an algebra of analytic sequences, moreover, (A4, 7(A))
is a locally convex, metrizable complete commutative algebra with unit
e=(1,1,...) and orthogonal basis (ey)32, where e, = o for n,k > 0.

In [3], it is proved that (ax(f));>, € A is invertible if and only if it
satisfies

i) ar(f) # 0 for every k > 0 and
i) limp_oo lan (f) |V* = 1.

Now we prove the following

Proposition 4.1. Ifa(f) = (ar(f))3>, in A is such that ay(f) # 0 for
every k > 0, then a(f)A is dense in (A,7(A)) and if a (f) is not invertible,
then the ideal a (f) A is of infinite codimension.

PROOF. Let us assume first that a (f) € £°°, then by Theorem 2.2 we
have that a(f)I* is dense in (£*°,¢g) and so, for each j € [*°, b € ¢y and
€ > 0 there exists h € £°° such that

sup |(jx — a (f) hi) bi| < e.
k>0

o
o €0 for each

In particular, for the sequence (r,),-; we have (rffb) k

positive integer n > 1, and so

sup |(ji — ar, (f) hi) i | < €.

k>0

This implies that £ C a(f)A (the 7 (A)-closure of a(f) A) and since
0> is dense in (A,7(A)), it follows that a(f) A is dense in A with the
compact-open topology 7 (A).

If a(f) € Ais such that a(f) ¢ £°°, then there exists b € A such that
a(f)b € £2° and so we are led to the previous case.

On the other hand, if a(f) € A is such that ax (f) # 0 for all
k = 0,1,..., and it is not invertible, then a(f) ¢ M}, where M) =
{a(g) € A: ax (g) =0} for each k > 0, and therefore a(f) A cannot be
contained in any M, but each proper ideal is contained in some maximal
ideal; so a (f) A must be contained in some ideal MP? with p € § (N)\N.

Since the algebra A is functionally continuous (see [3]), this ideal M? is

dense of infinite codimension and hence a (f) A is of infinite codimension.
(I
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