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Babbage equation on the circle

By WITOLD JARCZYK (Zielona Géra and Katowice)

Abstract. Given a positive integer n a description of all continuous self-
mappings of the unit circle, having the identity as the n-th iterate, is presented.

Introduction

It seems that it was CH. BABBAGE ([1]; cf. also [5, Chap. XV] and [6,
Chap. 11]) who still in 1815 dealt with the equation

p"(r) = (1)

where ¢ is an unknown self-mapping of a set and, for a given positive
integer n, ¢" stands for the n-th iterate of ¢. Equation (1) is intensively
investigated till now (cf., for instance, [3, Section 2| and the bibliography
therein). Its solutions are named n-th iterative roots of identity. In the
case n = 2 such roots are called involutions. If n is the smallest positive
integer such that ¢ is an n-th root we say that n is the order of .

Studying solutions of (1) we may actually confine ourselves to roots
of order n which can be read from the following.

Proposition 1. Let ¢ : X — X be an iterative root of order n of
identity. If m € N and ¢ = idx then n divides m.
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Proor. Fix a positive integer m such that ¢™ = idx. Then m =
pn +r with p € Nand r € {0,...,n — 1}. Moreover,

@' =idx op" = ("o =" =™ =idy .

Therefore, in view of the definition of n, we have r = 0, that ism = pn. O

Thus, given a positive integer m, to determine all m-th roots of identity
it is enough to find all roots of order n for every divisor n of m.

Corollary 1. Let f : X — X, 9 € X and let n be the smallest
positive integer such that f™(zg) = zo. If m € N and f™(x¢) = xo then n
divides m.

PROOF. Apply Proposition 1 to the restriction of f to {zo,...,
" Y(x0)} or simply repeat the argument proving it. O

Clearly every solution of (1) is a bijection of its domain. What con-
cerns monotonic and/or continuous solutions of (1) defined on a set of
reals we have what follows.

1. Every monotonic self-mapping of a set of reals satisfying (1) is
either the identity function, or a decreasing involution (E. VINCZE [8],
N. McSHANE [7]; cf. also M. KuczmA [5, Theorem 15.2], M. KuczMA,
B. CHOCZEWSKI, R. GER [6, Theorems 11.7.1 and 11.2.1]).

2. For solutions of (1) defined on a real interval monotonicity and
continuity are equivalent (cf. [5, Theorem 5.3] and [6, Theorem 11.2.1]).

3. All decreasing involutions defined on a real interval I are given by

o(z) = {(pg(l’) for x € I N(—o00,xo],
o5 (@) for € 1N (z0,00),

where xg € I and pg s an arbitrary decreasing bijection mapping I N
(=00, o] onto I N [xg,00) (cf. [5, Lemma 15.2] and [6, Theorem 11.7.2]).

Thus, for an interval domain, continuous solutions of (1), different
from the identity function, depend on an arbitrary function. The aim of
the present paper is to show a similar effect for self-mappings of the unit
circle S'; we will find all continuous iterative roots of identity defined
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on S, that is all continuous functions ¢ : S — S satisfying the Babbage
equation

¢"(2) = 2 (2)

with a positive integer n. As continuous bijections of a compact set they
are necessarily homeomorphisms. (In particular, every continuous invo-
lution defined on S! is a homeomorphism.) For this reason we recall a
terminology useful in studying homeomorphisms of the circle. In what
follows, homeomorphicity of a self-mapping F of S' means, among others,
that F' maps S* onto S'.

Given points 2g, ..., zm—1 € S with m > 2 we write

20 < - < Zm—1
if there are reals tq,...,t,_1 such that
0<t; <---<tp—1<1land zj:zoe%itj for j e {1,...,m—1}.

This is a modification of the notion of cyclic order proposed by M. BAJGER
[2]. The following is almost obvious and is a simple consequence of the
above definition.

Remark 1. If zg, ..., 2zm—1 € ST with m > 2 and zg < - -+ < 2,1 then

Zj (mod m) << Z(j4+m—1) ( mod m)
for every j € N.

For any different points 21, z2 € S* define the arcs (21, 22), [21, 22) and
(217 22] by

(21,22) :={z € Slizi <2< z2},
[21,22) := (21,22) U{z1} and (z1,22] := (21, 22) U{22},
respectively. A standard argument allows us to state that
(21,29) = {e%it eSt:te (t1,t2)}
where t1, to are the unique reals satisfying the conditions

— e?ﬂ'itl

21 722:e2m't2’ 0<ti<tao<ti +1<2.
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It is well-known (cf., for instance, [4, Chap. 2, Section 3] or [9, Chap. 6])
that for every homeomorphism F : S' — S! there is a (unique up to an
additive integer constant) homeomorphism f : R — R such that

F (e2mt) =™ forteR
and f satisfies the Abel equations

fE+1)=f(t)+1
if it is increasing and

fiE+1) =f(t) -1

if f is decreasing; every such an f is called a lift of F. In the first case we
say that F' preserves orientation. Otherwise F' reverses orientation.

1. Roots of identity having fixed points

We start with

Theorem 1. Let ¢ be a homeomorphism of S' satisfying (2) and
having a fixed point.

(i) If ¢ preserves orientation then it is the identity function.

(ii) If ¢ reverses orientation then it is an involution.

PrOOF. Denote by ¢ a lift of ¢. Therefore ¢ : R — R is a homeomor-

phism and
P (e2mt) — o2mie(t)  for ¢t € R. (3)

Let to € R be such that ¢ (e?™0) = ™. Then, by (3), (to) = to+p for
an integer p. Replacing the lift ¢ by o —p, if necessary, we may additionally
assume that p = 0, that is ¢(tg) = to. Since ¢ satisfies (2) and (3) and it
is continuous, there is an integer k such that

e"(t)=t+k forteR. (4)
Applying (4) to ty we get

to = ¢"(to) = to + k,
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which means that £ = 0 and, consequently, ¢ satisfies equation (1).

Put € =1 if the homeomorphism ¢ is increasing and € = 2 otherwise.
Then ¢° is strictly increasing. Thus, if ¢°(t) # t, say ¢°(t) >t forat € R
then, since ¢ satisfies (1), we would have

t<e(t) < - <"(t) =t

which is impossible. Consequently, ©°(t) =t for each ¢ € R and both the
statements follow. |

As an immediate corollary we obtain the first of our main results.

Theorem 2. The only homeomorphism of S! satisfying (2), preserv-
ing orientation and having a fixed point is the identity function.

Now, following Theorem 1, we will study involutions reversing orien-
tation.

Proposition 2. For every different points zp,z, € S' and every in-
vertible function ¢y mapping [zo, z1) onto (z1, zp] and sending zy to zy the
formula

¢o(2), Iif z € [z20,21),
¢(z) = q 21, if 2=z, (5)
(;561(2), if z € (z1,20),

defines a unique extension ¢ : S' — S' of ¢ to an involution.

PROOF. It is enough to observe that ¢o((20,21)) = (21, 20) and make
a standard computation. O

Theorem 3. For every different points zy,z; € S' any homeomor-
phism ¢g mapping [zo,z1) onto (z1,29] can be uniquely extended to an
involution ¢ : S* — S'. Moreover, ¢ is a reversing orientation homeomor-
phism with zy and z; as unique fixed points and it is defined by (5).

Conversely: if ¢ : S' — S' is a continuous involution and reverses
orientation then it has exactly two fixed points zg,z1 € S' and maps
[20, 21) onto (21, zo].

PROOF. Fix zp, 21 € S', 29 # 21, and a homeomorphism ¢ mapping
[20, 21) onto (z1,20]. Then ¢o(20) = 2o and lim,_,,, ¢o(z) = z1. Thus, by
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Proposition 2, formula (5) defines a unique extension ¢ : S — St of ¢q to
an involution which, in addition, is a homeomorphism having zg and z; as
unique fixed points. Since ¢g cannot be the identity function, Theorem 2
implies that ¢ reverses orientation.

Now let ¢ : S — S! be a continuous involution which reverses orienta-
tion and take an arbitrary lift ¢ : R — R of ¢. As a decreasing continuous
function, defined on the real line, ¢ has exactly one fixed point, say tp.
Then

o(tg) —to+1=1>0.
Moreover, since
p(t+1)=¢p(t)—1 forteR,
we have

(p(t0+1)*(t0+1)+1:*1<0.

Thus, by continuity and strict monotonicity of the function R 3 ¢ —
o(t) —t+1, we can find a unique t1 € (to,to+ 1) such that ¢(t1) = t; — 1;
in addition, ¢([to,t1)) = (t1 — 1,to] and to,t; are the unique reals ¢ €
[to, to + 1) satisfying the condition ¢(t) € t + Z. Consequently, according
to (3), 2o := e?™0 and z; := > are the unique fixed points of ¢ and
¢([20,21)) = (21, 20]- O

2. Roots of identity without fixed points

Any lift of a reversing orientation homeomorphism of a circle, being a
decreasing continuous function defined on R, has a fixed point. Therefore,
homeomorphisms with no fixed points necessarily preserve orientation.

Proposition 3. For every integer k € {1,...,n — 1} relatively prime
to n, points zg,...,2p—1 € S' such that zg < --- < 2,1 and every in-
vertible function ¢¢ mapping (2o, zn—1) onto [z, zx—1) and satisfying the
condition

¢o([zj-1,2)) = [zj—14ks Zj4k) forje{l,...,n—1} (6)
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(with zj 1= 2 (mod n) for j > n) the formula
oo(z2), if z € [20,2n-1),
¢(z) = o . (7)
(¢1 ©---0 (bn*l) (Z), if z€ [anlv 20)7

where
¢j = ¢0|[Zj(n7k)717zj(n7k)) forje{l,...,n—1} (8)

defines a unique extension ¢ : S — S of ¢ to a solution of (2); if z € S*,
j€{1,...,n} and ¢/(z) = z then j = n.

PRrROOF. Fix an integer k € {1,...,n — 1} relatively prime to n, and
points zg,...,2n—1 € ST with 29 < --+ < z,_1. Put Zj = Zj(mod n) fOT
j > n. Let ¢g be an invertible function mapping [2g, 2,—1) onto [zx, zk—1)
and satisfying (6). By (8) and (6) we have

Gir1([2(4+1) (n—k)—15> 2(j+1) (n—k))) = [Zj(n—k)—1> Zj(n—k))
for j € {1,...,n — 2} whenever n > 3 and
A1([Zn—k—1,Zn—k)) = [Zn—1, 2n) = [Zn—1, 20)-

Since (n—1)(n—k) = n(n—k—1)+k, we have [2(,—1)(n—k)—15 Z(n—1)(n—k)) =
[2k—1,2k). Thus ¢ 0---0¢,_1 maps [zx_1, 2k) onto [z,—1, 20) and formula
(7) defines a function ¢ : S* — S%; in particular (cf. also (6)),

P([zj-1,25)) = [zj—14k: 2j+x) for j €{l,... n}. (9)

Fix an arbitrary z € S'. Then z € [2_1, %) for a unique | € {1,...,n}.
Since n and k are relatively prime, there is exactly one m € {0,...,n— 1}
satisfying (I + mk)(modn) = 0. If m = 0 then | = n, z € [2,-1,20) and,
by (7), (8) and (6),

¢"(z) =" od(z) =gro-0da10(dro-0da1) H(2) = 2.

In the case m > 1 we have [211, 21) = [Zm(n—k)—1> Zm(n—k)), Whence, again
by (7), (8) and (6),

¢"(2) = d1o-- 0 dm(2) € [2n-1,20)
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and

¢ (z) = (pr0- 0 dp-1) T (97 (2))
= ¢l 00 opro0dm(2) € [zh1, )
= [Z(n—l)(n—k;)—b Z(n—l)(n—k))'

If m=n—1we get ¢"(2) = ¢™H(2) = 2. Otherwise

o™ (2) = gpli 00l (2)

whence

¢"(z) = ¢" o ¢ (2)
:¢m+lo---o¢n,1oqﬁgilo---ogb;il(z) = z.

Consequently, in all the cases we obtain ¢"(z) = z. Suppose that

#(z) = z foraj € {1,...,n—1}. By (9) we have ¢’([z_1,2)) =
(2114 k> 2145k).  Hence [z1-1,21) N [z1-14jk, 2145k) # 0, s0 [z-1,21) =
[21—1+jks Z1+jk), that is ziyjx = 2z, which means that n divides jk con-
trary to the fact that j < m and k is relatively prime to n. Thus ¢ is a
solution of (2) and for every z € S' the number n is the smallest positive
integer j with ¢/(2) = 2. In particular, ¢ is of order n and it has no fixed
points. Clearly ¢l ., ,) = ¢o. Moreover, if z € [2,_1,20) then

¢(z) = (0" ) H2) = (d1o---0dn1)"(2).
Therefore ¢ is the unique extension of ¢y to a solution of (2). [l

The next result provides a complete description (cf. also Proposition 1)
of continuous solutions of (2) having no fixed points.

Theorem 4. For every integer k € {1,...,n—1} relatively prime ton
and points zg,...,2n—1 € S' such that zy < --- < 2z,_1 any homeomor-
phism ¢y mapping [zg, z,—1) onto [z, zx—1) and satisfying condition (6)
(with 2j := 2j(mod n) for j > n) can be uniquely extended to a solution
¢ : S' — S of (2). Moreover, ¢ is a homeomorphism with no fixed points,
it is defined by (7) and (8), and is a root of identity of order n.

Conversely: if ¢ : S — S! is a continuous solution of (2) of order n
and has no fixed points then there are an integer k € {1,...,n — 1} rela-
tively prime to n and points 2, ..., z,—1 € S* such that zy < -+ < 2Zp,_1
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and ¢ maps [2j-1,2;) onto [2(j_14k) (mod n)> Z(j+k) (mod n)) for every j €
{1,...,n—1}.

PROOF. Fix an integer k € {1,...,n— 1} relatively prime to n, points
20y, %n—1 € St such that zyg < --- < 2,1 and a homeomorphism ¢q
mapping [z0,2p-1) onto [zg,zx—1). Put 2; := 2j(mod n) for j = n and

assume (6). By Proposition 3 formulas (7) and (8) give a unique extension
of ¢p to a solution ¢ : St — S of (2). It is a root of order n and has no
fixed points. Clearly, (7) and (8) give the continuity of ¢ at every point of
(20, 2n—1) and (zn—1, 20). Moreover,

lim @o(2) = zk—1 = (d10 -0 Pp_1)""(2n-1) = P(2p—1)

Z—=Zn—1

whence

lim Bliz0,20-1)(2) = B(2n-1)-

Z—Zp—

By (7) we have also
i @[,y z0)(2) = Jim (G100 dn1) 7 (2) = Jim g1y 00067 (2)

z—20 2—20 zZ—20
= lim ¢ 1,00y (2)= = lim —1 (2
Jim oplionogil (@) == lm 6 (2)

= Z(n—1)(n—k) = 2k = P0(20) = ¢(20)-
This means that ¢ is also continuous at zy and z,_1 whence, consequently,
it is a homeomorphism.

To prove the converse let ¢ : S' — S! be a continuous solution of (2) of
order n, having no fixed points. As ¢ is a bijection it is a homeomorphism.
Since it has no fixed points, ¢ preserves orientation. Thus there is an
increasing homeomorphism ¢ mapping R onto R such that

pt+1)=p(t)+1 forteR (10)

and (3) holds.
Since ¢ has no fixed points and it is continuous, by (3) there is an
integer p such that

t+p<et)<t+p+1 forteR.

Replacing the lift ¢ by ¢ — p, if necessary, we may assume without loss of
generality that p = 0. In other words

t<ept)<t+1 forteR. (11)
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As ¢ satisfies (2) and is continuous we can find, by (3), an integer k
such that (4) holds. Using [10, Lemma 6] or simply repeating a part of its
proof we infer that & € {1,...,n — 1} and k is relatively prime to n.

Since ¢ is a root of identity of order n, there is a zy € S with the orbit

consisting of exactly n points 2g,...,2,—1 € S'. Choose tg,...,thn_1 €
[0,1) in such a way that z; = e*™% for j € {0,...,n — 1}. Without loss
of generality we may assume that 0 < tp < --- < t,—1 < 1. Clearly

20 < < Zp—1.
We will verify that

d)(zm) = Z(m+k) (mod n) for m € {0, ey, — 1}. (12)
Fix an m € {0,...,n — 1}. Then, according to Remark 1,
Zm(mod n) < " < Z(m4n—1) ( mod n)- (13)
If " 1(t;,) < tm + k — 1 then, by (4), (10) and (11), we would have

tm +k = ‘Pn(tm)
= o(" Htm)) S ptm +k—1) = o(tm) + k=1 < tm +k,

which is impossible. Thus ¢" ! (t,,) > t,, + k — 1. Moreover, on account
of (11) and (4),

tm < @(tm) <+ < Son_l(tm) <" (tm) =t + k-

Therefore, for every j € {0,...,k — 1} there is an r; € {0,...,n — 1}
satisfying the condition

@ (tm) < tm + 7 < @ (tm)-
Hence, taking into account strict monotonicity of ¢ and (10), we infer that

(Prj_l(tm) <tm+j <P (tm) < o(tm +7)

14
=p(tm) +Jj < ‘Prj+1<tm) 49

for every j € {0,...,k — 1}. This means that

{0 (zm), - 0" (2m)} C [2m, ¢(2m))- (15)
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By (14) and (11) we have
tm +J <@ (tm) < pltm) +j<tm+j+1 forjef0,....k—1}

whence 7g,...,rp_1 are distinct and, consequently, the set on the left-
hand side of the inclusion (15) consists of exactly k elements of the orbit
{#20,...,2n—1}. On the other hand, if ¢*(zp) € [zm,d(2zm)) for an s €
{0,...,n — 1} then (cf. also (4))

tm +J <@ (tm) < @(tm) + 3

with an j € {0,...,k — 1}. Thus, since the sequence (p'(t,;,) : i € N) is
strictly increasing, from (14) we get that s = r;. Summarizing, the arc
[2m, ®(zm)) contains exactly k of the points zg, ..., z,—1. Thus, according
to (13), we have @(2y, (mod n) = Z(m4k) (mod n)- Lhis completes the proof
of (12).

The function ¢g := ¢|[zo,zn71) is a homeomorphism preserving ori-
entation which, by virtue of (12), satisfies condition (6). In particular,
do([20, 2n-1)) = [Zk(mod n)s> #(n—14k) ( mod n)) := [2k, 2k—1) and the theo-
rem follows. U
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