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Babbage equation on the circle

By WITOLD JARCZYK (Zielona Góra and Katowice)

Abstract. Given a positive integer n a description of all continuous self-
mappings of the unit circle, having the identity as the n-th iterate, is presented.

Introduction

It seems that it was Ch. Babbage ([1]; cf. also [5, Chap. XV] and [6,
Chap. 11]) who still in 1815 dealt with the equation

ϕn(x) = x (1)

where ϕ is an unknown self-mapping of a set and, for a given positive
integer n, ϕn stands for the n-th iterate of ϕ. Equation (1) is intensively
investigated till now (cf., for instance, [3, Section 2] and the bibliography
therein). Its solutions are named n-th iterative roots of identity. In the
case n = 2 such roots are called involutions. If n is the smallest positive
integer such that ϕ is an n-th root we say that n is the order of ϕ.

Studying solutions of (1) we may actually confine ourselves to roots
of order n which can be read from the following.

Proposition 1. Let ϕ : X → X be an iterative root of order n of

identity. If m ∈ N and ϕm = idX then n divides m.
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Proof. Fix a positive integer m such that ϕm = idX . Then m =
pn + r with p ∈ N and r ∈ {0, . . . , n− 1}. Moreover,

ϕr = idX ◦ϕr = (ϕn)p ◦ ϕr = ϕpn+r = ϕm = idX .

Therefore, in view of the definition of n, we have r = 0, that is m = pn. ¤

Thus, given a positive integer m, to determine all m-th roots of identity
it is enough to find all roots of order n for every divisor n of m.

Corollary 1. Let f : X → X, x0 ∈ X and let n be the smallest

positive integer such that fn(x0) = x0. If m ∈ N and fm(x0) = x0 then n

divides m.

Proof. Apply Proposition 1 to the restriction of f to {x0, . . . ,

fn−1(x0)} or simply repeat the argument proving it. ¤

Clearly every solution of (1) is a bijection of its domain. What con-
cerns monotonic and/or continuous solutions of (1) defined on a set of
reals we have what follows.

1. Every monotonic self-mapping of a set of reals satisfying (1) is
either the identity function, or a decreasing involution (E. Vincze [8],
N. McShane [7]; cf. also M. Kuczma [5, Theorem 15.2], M. Kuczma,

B. Choczewski, R. Ger [6, Theorems 11.7.1 and 11.2.1]).

2. For solutions of (1) defined on a real interval monotonicity and
continuity are equivalent (cf. [5, Theorem 5.3] and [6, Theorem 11.2.1]).

3. All decreasing involutions defined on a real interval I are given by

ϕ(x) =

{
ϕ0(x) for x ∈ I ∩ (−∞, x0],

ϕ−1
0 (x) for x ∈ I ∩ (x0,∞),

where x0 ∈ I and ϕ0 is an arbitrary decreasing bijection mapping I ∩
(−∞, x0] onto I ∩ [x0,∞) (cf. [5, Lemma 15.2] and [6, Theorem 11.7.2]).

Thus, for an interval domain, continuous solutions of (1), different
from the identity function, depend on an arbitrary function. The aim of
the present paper is to show a similar effect for self-mappings of the unit
circle S1; we will find all continuous iterative roots of identity defined
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on S1, that is all continuous functions φ : S1 → S1 satisfying the Babbage
equation

φn(z) = z (2)

with a positive integer n. As continuous bijections of a compact set they
are necessarily homeomorphisms. (In particular, every continuous invo-
lution defined on S1 is a homeomorphism.) For this reason we recall a
terminology useful in studying homeomorphisms of the circle. In what
follows, homeomorphicity of a self-mapping F of S1 means, among others,
that F maps S1 onto S1.

Given points z0, . . . , zm−1 ∈ S1 with m ≥ 2 we write

z0 < · · · < zm−1

if there are reals t1, . . . , tm−1 such that

0 < t1 < · · · < tm−1 < 1 and zj = z0 e2πitj for j ∈ {1, . . . ,m− 1}.
This is a modification of the notion of cyclic order proposed by M. Bajger

[2]. The following is almost obvious and is a simple consequence of the
above definition.

Remark 1. If z0, . . . , zm−1 ∈ S1 with m ≥ 2 and z0 < · · · < zm−1 then

zj ( mod m) < · · · < z(j+m−1) ( mod m)

for every j ∈ N.

For any different points z1, z2 ∈ S1 define the arcs (z1, z2), [z1, z2) and
(z1, z2] by

(z1, z2) := {z ∈ S1 : z1 < z < z2},

[z1, z2) := (z1, z2) ∪ {z1} and (z1, z2] := (z1, z2) ∪ {z2},
respectively. A standard argument allows us to state that

(z1, z2) =
{
e2πit ∈ S1 : t ∈ (t1, t2)

}

where t1, t2 are the unique reals satisfying the conditions

z1 = e2πit1 , z2 = e2πit2 , 0 ≤ t1 < t2 < t1 + 1 < 2.



392 W. Jarczyk

It is well-known (cf., for instance, [4, Chap. 2, Section 3] or [9, Chap. 6])
that for every homeomorphism F : S1 → S1 there is a (unique up to an
additive integer constant) homeomorphism f : R→ R such that

F
(
e2πit

)
= e2πif(t) for t ∈ R

and f satisfies the Abel equations

f(t + 1) = f(t) + 1

if it is increasing and
f(t + 1) = f(t)− 1

if f is decreasing; every such an f is called a lift of F . In the first case we
say that F preserves orientation. Otherwise F reverses orientation.

1. Roots of identity having fixed points

We start with

Theorem 1. Let φ be a homeomorphism of S1 satisfying (2) and

having a fixed point.

(i) If φ preserves orientation then it is the identity function.

(ii) If φ reverses orientation then it is an involution.

Proof. Denote by ϕ a lift of φ. Therefore ϕ : R→ R is a homeomor-
phism and

φ
(
e2πit

)
= e2πiϕ(t) for t ∈ R. (3)

Let t0 ∈ R be such that φ
(
e2πit0

)
= e2πit0 . Then, by (3), ϕ(t0) = t0 +p for

an integer p. Replacing the lift ϕ by ϕ−p, if necessary, we may additionally
assume that p = 0, that is ϕ(t0) = t0. Since φ satisfies (2) and (3) and it
is continuous, there is an integer k such that

ϕn(t) = t + k for t ∈ R. (4)

Applying (4) to t0 we get

t0 = ϕn(t0) = t0 + k,
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which means that k = 0 and, consequently, ϕ satisfies equation (1).
Put ε = 1 if the homeomorphism ϕ is increasing and ε = 2 otherwise.

Then ϕε is strictly increasing. Thus, if ϕε(t) 6= t, say ϕε(t) > t for a t ∈ R
then, since ϕ satisfies (1), we would have

t < ϕε(t) < · · · < ϕnε(t) = t

which is impossible. Consequently, ϕε(t) = t for each t ∈ R and both the
statements follow. ¤

As an immediate corollary we obtain the first of our main results.

Theorem 2. The only homeomorphism of S1 satisfying (2), preserv-

ing orientation and having a fixed point is the identity function.

Now, following Theorem 1, we will study involutions reversing orien-
tation.

Proposition 2. For every different points z0, z1 ∈ S1 and every in-

vertible function φ0 mapping [z0, z1) onto (z1, z0] and sending z0 to z0 the

formula

φ(z) =





φ0(z), if z ∈ [z0, z1),

z1, if z = z1,

φ−1
0 (z), if z ∈ (z1, z0),

(5)

defines a unique extension φ : S1 → S1 of φ0 to an involution.

Proof. It is enough to observe that φ0((z0, z1)) = (z1, z0) and make
a standard computation. ¤

Theorem 3. For every different points z0, z1 ∈ S1 any homeomor-

phism φ0 mapping [z0, z1) onto (z1, z0] can be uniquely extended to an

involution φ : S1 → S1. Moreover, φ is a reversing orientation homeomor-

phism with z0 and z1 as unique fixed points and it is defined by (5).
Conversely: if φ : S1 → S1 is a continuous involution and reverses

orientation then it has exactly two fixed points z0, z1 ∈ S1 and maps

[z0, z1) onto (z1, z0].

Proof. Fix z0, z1 ∈ S1, z0 6= z1, and a homeomorphism φ0 mapping
[z0, z1) onto (z1, z0]. Then φ0(z0) = z0 and limz→z1 φ0(z) = z1. Thus, by
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Proposition 2, formula (5) defines a unique extension φ : S1 → S1 of φ0 to
an involution which, in addition, is a homeomorphism having z0 and z1 as
unique fixed points. Since φ0 cannot be the identity function, Theorem 2
implies that φ reverses orientation.

Now let φ : S1 → S1 be a continuous involution which reverses orienta-
tion and take an arbitrary lift ϕ : R→ R of φ. As a decreasing continuous
function, defined on the real line, ϕ has exactly one fixed point, say t0.
Then

ϕ(t0)− t0 + 1 = 1 > 0.

Moreover, since

ϕ(t + 1) = ϕ(t)− 1 for t ∈ R,

we have

ϕ(t0 + 1)− (t0 + 1) + 1 = −1 < 0.

Thus, by continuity and strict monotonicity of the function R 3 t 7→
ϕ(t)− t + 1, we can find a unique t1 ∈ (t0, t0 + 1) such that ϕ(t1) = t1− 1;
in addition, ϕ([t0, t1)) = (t1 − 1, t0] and t0, t1 are the unique reals t ∈
[t0, t0 + 1) satisfying the condition ϕ(t) ∈ t + Z. Consequently, according
to (3), z0 := e2πit0 and z1 := e2πit1 are the unique fixed points of φ and
φ([z0, z1)) = (z1, z0]. ¤

2. Roots of identity without fixed points

Any lift of a reversing orientation homeomorphism of a circle, being a
decreasing continuous function defined on R, has a fixed point. Therefore,
homeomorphisms with no fixed points necessarily preserve orientation.

Proposition 3. For every integer k ∈ {1, . . . , n− 1} relatively prime

to n, points z0, . . . , zn−1 ∈ S1 such that z0 < · · · < zn−1 and every in-

vertible function φ0 mapping [z0, zn−1) onto [zk, zk−1) and satisfying the

condition

φ0([zj−1, zj)) = [zj−1+k, zj+k) for j ∈ {1, . . . , n− 1} (6)
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(with zj := zj ( mod n) for j ≥ n) the formula

φ(z) =

{
φ0(z), if z ∈ [z0, zn−1),

(φ1 ◦ · · · ◦ φn−1)−1(z), if z ∈ [zn−1, z0),
(7)

where

φj := φ0|[zj(n−k)−1,zj(n−k)) for j ∈ {1, . . . , n− 1} (8)

defines a unique extension φ : S1 → S1 of φ0 to a solution of (2); if z ∈ S1,

j ∈ {1, . . . , n} and φj(z) = z then j = n.

Proof. Fix an integer k ∈ {1, . . . , n − 1} relatively prime to n, and
points z0, . . . , zn−1 ∈ S1 with z0 < · · · < zn−1. Put zj := zj ( mod n) for
j ≥ n. Let φ0 be an invertible function mapping [z0, zn−1) onto [zk, zk−1)
and satisfying (6). By (8) and (6) we have

φj+1([z(j+1)(n−k)−1, z(j+1)(n−k))) = [zj(n−k)−1, zj(n−k))

for j ∈ {1, . . . , n− 2} whenever n ≥ 3 and

φ1([zn−k−1, zn−k)) = [zn−1, zn) = [zn−1, z0).

Since (n−1)(n−k) = n(n−k−1)+k, we have [z(n−1)(n−k)−1, z(n−1)(n−k)) =
[zk−1, zk). Thus φ1 ◦ · · · ◦φn−1 maps [zk−1, zk) onto [zn−1, z0) and formula
(7) defines a function φ : S1 → S1; in particular (cf. also (6)),

φ([zj−1, zj)) = [zj−1+k, zj+k) for j ∈ {1, . . . , n}. (9)

Fix an arbitrary z ∈ S1. Then z ∈ [zl−1, zl) for a unique l ∈ {1, . . . , n}.
Since n and k are relatively prime, there is exactly one m ∈ {0, . . . , n− 1}
satisfying (l + mk)(modn) = 0. If m = 0 then l = n, z ∈ [zn−1, z0) and,
by (7), (8) and (6),

φn(z) = φn−1 ◦ φ(z) = φ1 ◦ · · · ◦ φn−1 ◦ (φ1 ◦ · · · ◦ φn−1)−1(z) = z.

In the case m ≥ 1 we have [zl−1, zl) = [zm(n−k)−1, zm(n−k)), whence, again
by (7), (8) and (6),

φm(z) = φ1 ◦ · · · ◦ φm(z) ∈ [zn−1, z0)
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and

φm+1(z) = (φ1 ◦ · · · ◦ φn−1)−1(φm(z))

= φ−1
n−1 ◦ · · · ◦ φ−1

1 ◦ φ1 ◦ · · · ◦ φm(z) ∈ [zk−1, zk)

= [z(n−1)(n−k)−1, z(n−1)(n−k)).

If m = n− 1 we get φn(z) = φm+1(z) = z. Otherwise

φm+1(z) = φ−1
n−1 ◦ · · · ◦ φ−1

m+1(z)

whence

φn(z) = φn−m−1 ◦ φm+1(z)

= φm+1 ◦ · · · ◦ φn−1 ◦ φ−1
n−1 ◦ · · · ◦ φ−1

m+1(z) = z.

Consequently, in all the cases we obtain φn(z) = z. Suppose that
φj(z) = z for a j ∈ {1, . . . , n − 1}. By (9) we have φj([zl−1, zl)) =
[zl−1+jk, zl+jk). Hence [zl−1, zl) ∩ [zl−1+jk, zl+jk) 6= ∅, so [zl−1, zl) =
[zl−1+jk, zl+jk), that is zl+jk = zl, which means that n divides jk con-
trary to the fact that j < n and k is relatively prime to n. Thus φ is a
solution of (2) and for every z ∈ S1 the number n is the smallest positive
integer j with φj(z) = z. In particular, φ is of order n and it has no fixed
points. Clearly φ|[z0,zn−1) = φ0. Moreover, if z ∈ [zn−1, z0) then

φ(z) = (φn−1)−1(z) = (φ1 ◦ · · · ◦ φn−1)−1(z).

Therefore φ is the unique extension of φ0 to a solution of (2). ¤

The next result provides a complete description (cf. also Proposition 1)
of continuous solutions of (2) having no fixed points.

Theorem 4. For every integer k ∈ {1, . . . , n−1} relatively prime to n

and points z0, . . . , zn−1 ∈ S1 such that z0 < · · · < zn−1 any homeomor-

phism φ0 mapping [z0, zn−1) onto [zk, zk−1) and satisfying condition (6)
(with zj := zj ( mod n) for j ≥ n) can be uniquely extended to a solution

φ : S1 → S1 of (2). Moreover, φ is a homeomorphism with no fixed points,

it is defined by (7) and (8), and is a root of identity of order n.

Conversely: if φ : S1 → S1 is a continuous solution of (2) of order n

and has no fixed points then there are an integer k ∈ {1, . . . , n − 1} rela-

tively prime to n and points z0, . . . , zn−1 ∈ S1 such that z0 < · · · < zn−1
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and φ maps [zj−1, zj) onto [z(j−1+k) ( mod n), z(j+k) ( mod n)) for every j ∈
{1, . . . , n− 1}.

Proof. Fix an integer k ∈ {1, . . . , n−1} relatively prime to n, points
z0, . . . , zn−1 ∈ S1 such that z0 < · · · < zn−1 and a homeomorphism φ0

mapping [z0, zn−1) onto [zk, zk−1). Put zj := zj ( mod n) for j ≥ n and
assume (6). By Proposition 3 formulas (7) and (8) give a unique extension
of φ0 to a solution φ : S1 → S1 of (2). It is a root of order n and has no
fixed points. Clearly, (7) and (8) give the continuity of φ at every point of
(z0, zn−1) and (zn−1, z0). Moreover,

lim
z→zn−1

φ0(z) = zk−1 = (φ1 ◦ · · · ◦ φn−1)−1(zn−1) = φ(zn−1)

whence
lim

z→zn−1

φ|[z0,zn−1)(z) = φ(zn−1).

By (7) we have also

lim
z→z0

φ|[zn−1,z0)(z) = lim
z→z0

(φ1 ◦ · · · ◦ φn−1)−1(z) = lim
z→z0

φ−1
n−1 ◦ · · · ◦ φ−1

1 (z)

= lim
z→zn−k

φ−1
n−1 ◦ · · · ◦ φ−1

2 (z) = · · · = lim
z→z(n−2)(n−k)

φ−1
n−1(z)

= z(n−1)(n−k) = zk = φ0(z0) = φ(z0).

This means that φ is also continuous at z0 and zn−1 whence, consequently,
it is a homeomorphism.

To prove the converse let φ : S1 → S1 be a continuous solution of (2) of
order n, having no fixed points. As φ is a bijection it is a homeomorphism.
Since it has no fixed points, φ preserves orientation. Thus there is an
increasing homeomorphism ϕ mapping R onto R such that

ϕ(t + 1) = ϕ(t) + 1 for t ∈ R (10)

and (3) holds.
Since φ has no fixed points and it is continuous, by (3) there is an

integer p such that

t + p < ϕ(t) < t + p + 1 for t ∈ R.

Replacing the lift ϕ by ϕ− p, if necessary, we may assume without loss of
generality that p = 0. In other words

t < ϕ(t) < t + 1 for t ∈ R. (11)
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As φ satisfies (2) and is continuous we can find, by (3), an integer k

such that (4) holds. Using [10, Lemma 6] or simply repeating a part of its
proof we infer that k ∈ {1, . . . , n− 1} and k is relatively prime to n.

Since φ is a root of identity of order n, there is a z0 ∈ S1 with the orbit
consisting of exactly n points z0, . . . , zn−1 ∈ S1. Choose t0, . . . , tn−1 ∈
[0, 1) in such a way that zj = e2πitj for j ∈ {0, . . . , n − 1}. Without loss
of generality we may assume that 0 ≤ t0 < · · · < tn−1 < 1. Clearly
z0 < · · · < zn−1.

We will verify that

φ(zm) = z(m+k) ( mod n) for m ∈ {0, . . . , n− 1}. (12)

Fix an m ∈ {0, . . . , n− 1}. Then, according to Remark 1,

zm ( mod n) < · · · < z(m+n−1) ( mod n). (13)

If ϕn−1(tm) ≤ tm + k − 1 then, by (4), (10) and (11), we would have

tm + k = ϕn(tm)

= ϕ(ϕn−1(tm)) ≤ ϕ(tm + k − 1) = ϕ(tm) + k − 1 < tm + k,

which is impossible. Thus ϕn−1(tm) > tm + k − 1. Moreover, on account
of (11) and (4),

tm < ϕ(tm) < · · · ≤ ϕn−1(tm) < ϕn(tm) = tm + k.

Therefore, for every j ∈ {0, . . . , k − 1} there is an rj ∈ {0, . . . , n − 1}
satisfying the condition

ϕrj−1(tm) < tm + j ≤ ϕrj (tm).

Hence, taking into account strict monotonicity of ϕ and (10), we infer that

ϕrj−1(tm) < tm + j ≤ ϕrj (tm) < ϕ(tm + j)

= ϕ(tm) + j ≤ ϕrj+1(tm)
(14)

for every j ∈ {0, . . . , k − 1}. This means that

{φr0(zm), . . . , φrk−1(zm)} ⊂ [zm, φ(zm)). (15)
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By (14) and (11) we have

tm + j ≤ ϕrj (tm) < ϕ(tm) + j < tm + j + 1 for j ∈ {0, . . . , k − 1}

whence r0, . . . , rk−1 are distinct and, consequently, the set on the left-
hand side of the inclusion (15) consists of exactly k elements of the orbit
{z0, . . . , zn−1}. On the other hand, if φs(zm) ∈ [zm, φ(zm)) for an s ∈
{0, . . . , n− 1} then (cf. also (4))

tm + j ≤ ϕs(tm) < ϕ(tm) + j

with an j ∈ {0, . . . , k − 1}. Thus, since the sequence (ϕi(tm) : i ∈ N) is
strictly increasing, from (14) we get that s = rj . Summarizing, the arc
[zm, φ(zm)) contains exactly k of the points z0, . . . , zn−1. Thus, according
to (13), we have φ(zm ( mod n) = z(m+k) ( mod n). This completes the proof
of (12).

The function φ0 := φ|[z0,zn−1) is a homeomorphism preserving ori-
entation which, by virtue of (12), satisfies condition (6). In particular,
φ0([z0, zn−1)) = [zk ( mod n), z(n−1+k) ( mod n)) := [zk, zk−1) and the theo-
rem follows. ¤
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