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Continuity of functions which are convex
with respect to means

By TOMASZ ZGRAJA (Bielsko-Biata)

Abstract. Some generalization of Bernstein—Doetsch and Sierpinski theo-
rems from the theory of Jensen convex functions are presented.

1. Introduction

Throughout the paper let I and J be open intervals such that J C
I CcR.
We say that a function f: 1 — R is Jensen convez iff

f (w—;y) < f(fﬁ)-;f(y)’

z,y €I

In 1915 BERNSTEIN and DOETSCH proved that every Jensen convex func-
tion f : I — R locally bounded above at a point zg € [ is continuous
[3]. Moreover, in 1920 SIERPINSKI proved that every Lebesgue measurable
Jensen convex real function is continuous [12].

In this paper we transfer these results on a class of functions which
are convex with respect to means satisfying some additional conditions.
Generally the idea of proof is derived from [8] and [6]. Similar problems
are considered also in [11].
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The next two Sections introduce the notions of means and functions
convex with respect to a mean to the reader. The last Sections 4 and 5,
contain main results and their applications.

2. Means
A function M : I? — T is called a mean iff
min{z,y} < M(z,y) < max{z,y}, z,yel.

If, moreover, for all x # y, x,y € I these inequalities are sharp, then M is
said to be a strict mean.
If M : I? — I is a mean, then

M(z,z)=x, ze€l

and
M(K,K)=K

for every subinterval K C I.
We call a mean M : I? — I symmetric iff

M(z,y) = M(y,z), =z,yecl.

In the sequel the family of weighted quasi-arithmetic means and the loga-
rithmic mean play a crucial role.

Let ¢ : I — R be a continuous and strictly monotonic function. Let
t € (0,1) be fixed. A weighted quasi-arithmetic mean My, : I* — I is
defined by the formula

Mo (z,y) = ¢~ (tp(x) + (1= )e(y), a,y €l

The particular cases of this mean are among others: theweighted arith-
metic mean (p(x) =z, v € I,t€(0,1)) My(z,y)=tx + (1 —t)y, z,y € ;
the arithmetic mean (gp(:n) =z, xecl;t= %) A(z,y) = L‘gy, x,y € I;
the geometric mean (p(z) =Inz, z € IN(0,00); t = 3) G(z,y) = /7Y,
z,y € IN(0, 00) and the harmonic mean (p(z) = 1, z € IN(0,00); t = 1)

H(z,y) = F2L, 2,y € 1N (0,00).
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The weighted quasi-arithmetic mean is continuous and strictly increas-
ing with respect to both variables ([1], as well as [2], [4]).

A logarithmic mean is called function L : (0,00)2 — (0, 00) defined
by formula

_r-y . £y
L(z,y) ={ Inz —Iny’

xT, r =Y

, x,y € (0,00).

The logarithmic mean is not a quasi-arithmetic mean ([5]). It has,
among others, the following properties ([10], [5], as well as [4]): L is a
strict symmetric mean; for every x > 0 a function L(z, ) is an increasing
homeomorphism of interval (0,00) on itself and for every z,y > 0 the

inequalities

Vzy < L(z,y) < x;ry

are fulfilled, besides the equalities hold iff x = y.

3. Functions convex with respect to a mean

Let M : I? — I be a mean.
We say that a function w: J — [ is

(i) M-convex (or convex with respect to the mean M) iff
w(M(z,y)) < M(w(x), w(y)), wy€J;
(ii) M-concave (or concave with respect to the mean M) iff
w(M(z,y)) = M(w(z),w(y), .yeJ;
(iii) M-affine (or affine with respect to the mean M) iff
w(M(z,y)) = M(w(z), w(y)), xye..

Notice that if M(x,y) = %ry, x,y € I, then the above conditions
determine Jensen convex (concave, affine) functions, and if M;(x,y) =
tr+ (1 —t)y, z,y € I, t € (0,1), then fulfilling the above conditions for

every t € (0,1) determines convex (concave, affine) functions.
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Now let ¢ : I — R be a continuous and strictly monotonic functions.
Fix at € (0,1). Function w : J — I is called M, ;-convex iff

W(Myi(2,9)) < Mp(w(@), w(y)), @y €.

Function w : J — [ is called M-convez iff w is M, ;-convex for every
€ (0,1). We define M, ¢-concave, M, 1-affine, M,-concave and M -affine
functions in a similar way.
Notice that if ¢ = id, then M,-convexity determines classical convex-
ity and hence M,-convexity is the generalization of convexity.

4. Main results

Let M : I? — I be a mean.
In the sequel we will consider means M satisfying some of the following
conditions:

(i) for every = € I functions M (-, x) and M (z, -) project open sets onto
open sets;

(ii) there exists a A € (0,1) such that for every z,y € I
M(z,y) < Amax{z,y} + (1 — A\) min {z, y};
(iii) for every z,y € I, x # y
min {z,y} < M(z,y);

(iv) for every z € J and for every [c,d] C J such that = € (¢, d) there exists
a 0 > 0 such that for every u € (x — d,x + J) there exists v € (¢, d)
such that z = M (v, u);

(v) for every x € I function M (-,x) is continuous;

(vi) for every positive Lebesgue measurable set T C I the condition
int M(T,T) # () is fulfilled;
(vii) for every = € I functions M (-,x) and M (z, -) are homeomorphisms
of interval I in itself.
Note that if condition (vii) is satisfied, then M(-,x) and M (z, -)
are strictly increasing functions. We start with useful two remarks which
proofs will be omitted.
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Remark 4.1. If M : I? — T satisfies (ii) and (iii), then M is a strict
mean.

Remark 4.2. If M : I*> — [ satisfies (vii), then M also satisfies (i),
(iv) and (v).

Before proving theorems joining local boundedness above of M-convex
functions with continuity we prove the following

Lemma 4.3. Let M : I? — I be a mean satisfying (i)—(v). Let
f +J — I be M-convex function. If f is locally bounded above at
xg € J, then f is locally bounded above at every point of J.

PRrROOF. Let Uy be a neighbourhood of x¢ for which there exists kg € R
such that f(x) < kg for x € Up. Fix arbitrarily zgp € J and put x,11 =
M (xp,20), n € NU{0}. The sequence (z,)nenufoy is bounded and mono-
tonic and hence converges. Let zZ = lim, ., . From the definition of
the sequence x,, and (v) we obtain z = M (Z, zp). Applying Remark 4.1
we get z = zg. Put U,y1 = M(20,U,), n € NU{0}. By virtue of (i),
(Un)nenu{oy is a sequence of open sets. We prove the existence of con-
stants ky, n € NU {0} such that f|y, < k,. For n = 0 it follows from
the assumption. Now suppose that f|y, < k, and let © € U,41. Then
x = M(zp,u) for some u € U,. Hence, by M-convexity of f, (ii) and
boundedness above of f on U, we get

f(x) < M(f(20), f(u)) <max(f(z0), f(u)) < max(f(20), kn) = knt1,

which shows that f is bounded above on each set U,, n € NU{0}. Fix p > 0
such that [z — p, 20+ p] C J. From (iv) (for z = zp, ¢ = 20— p, d = 20+ p)
there exists a § > 0 such that p > ¢ and for each u € (20 — J, zp + 0) there
exists a v € (29 — p, 20 + p) such that zg = M (v,u). Let N € N be choosen
so that zy € (20—, z0+0). Therefore there exists wgy € (z0—p, 20+ p) such
that zg = M (wg, zn). Notice that wy € J. Now we put Wy = M (wg, Un).
Since zny € Un and zp = M (wp,zy), then Wy is a neigbourhood of z.
For every w € Wy we have w = M (wp, u) for some u € Uy. Hence we get

flw) < M(f(wo), f(u)) < max(f(wo), f(u)) < max(f(wo),kn) =k,

which shows that f is locally bounded above at the point zg. This ends
the proof. O
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Theorem 4.4. Let M : I?> — I be a mean satisfying (i), (ii) and
(iv). Let f : J — I be M-convex function. If f is locally bounded above
at xg € J, then f is continuous at xg.

PRrROOF. Let Uy be a neighbourhood of zq for which there exists k1 € R
such that f(x) < k; for x € Up. Put k = k1 — f(x0) and fix ¢ > 0. There
exists NV € N such that for every n > N we have

n+1
1—A

Let Uny1 = M (Un, 70), n € NU{0}. It follows from (i) that (Un)nenu{o}
is a sequence of open sets containing xg. Without loss of generality we

0<max{ ,k‘)\"}<€.

may assume that U,, are intervals for n € NU {0}. Now we show that for
n € NU {0} the following implication

x €U, = f(x) — f(xo) < kA" (1)

is fulfilled. Let n = 0. Since x € Uy, then f(z) < k1. Hence f(z)— f(xo) <
k1— f(xo) = kX°. Now we assume that (1) is fulfilled for some n € NU{0}.
If © € Uyy1, then € M(Uy,x0). Therefore there exists an u € U,
such that z = M (u,z9). By M-convexity of f, (ii) and the inductivity
assumptionwe have

f(@) = f(M(u,20)) < M(f(u), f(20))
< Amax {f(zo), f(u)} + (1 — A)min {f(x0), f(u)}
< Amax {f(xo), f(zo) + kA"} + (1 — X) min { f(x¢), f(z0) + kA" }
= M(f(x0) +kX") + (1 = X) f(z0) = f(zo) + kA",
which completes the proof of (1). From (iv) (for z = =, (¢,d) = U,,) arises

the existence of a d,, > 0 such that for every u € (xg — oy, 2o + 0y) there
exists a v € U, such that xo = M (v,u). Put

Vi = (IEO — 571,370 + 5n) NnU,.

Note that (V)nenuqoy is a sequence of neighbourhoods of point x¢ and
Vo, C Uy, for n € NU{0}. We show that the following implication

r € Vi = f(x0) — f(x) < max { kﬁjt , k‘)\"} (2)
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is fulfilled. Take z € V,,. The choice of §,, guarantees the existence v € U,
such that zyp = M(v,z). According to the M-convexity of f and (ii) we

get
f(@o) = f(M(v,z)) < M(f(v), f())

< Amax {f(0), f@)} + (1 - Nmin {f@), f@)). O

First, assume that 0 < A < % Hence, from the above inequality we get

fv) + fz)

f(zo) < 5 ,

which by virtue of (1) implies

f(xo) = f(x) < fv) = fxo) <EA".
Now we assume that 1 < A < 1. If f(z) < f(v), then from (3) and (1) we
get
Flzo) < M) + (1= V(@)
= M)+ () = M) = MI@) ~ (@) + /(@)
< ARN £ f(a0) — @) + £(z).
Therefore

Fwo) = fz) < KA+ A(f(20) — f(2)),

or, equivalently,
k )\n—l—l

flwo) = () < T

If f(x) > f(v), than again from (3) and (1) we get
f(@o) S Af(x) + (1 =X f(v) <Af(2) + (1= X)(f(z0) + kA")
=A(x)+ (1 =X f(xzo) + (1 — A)EN".
Hence

Mf(wo) = f(2)) < kA™(1 = A) < kX™FL,

and, consequently,
f(xo) = f(x) < kA,

which completes the proof of (2). Conditions (1) and (2) imply the conti-
nuity of f at point xg. O
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The next theorem is a generalization of the Bernstein—Doetsch result.

Theorem 4.5. Let M : 1> — [ be a mean satisfying (i)—(v). If
f:J — I is M-convex functions locally bounded above at xy € J, then
f is continuous in J.

PrOOF. It follows from Lemma 4.3 that function f is locally bounded
above at every point of interval J, and hence on account of Theorem 4.4
it is continuous in J. O

As a consequence we obtain an analogous result to Sierpinski.

Theorem 4.6. Let M : I? — I be a mean satisfying (i)-(vi). If
f:J — I is M-convex and Lebesgue measurable, then f is continuous.

PROOF. Put
T, = f H(~oo,n))={x € J: f(x) <n}, neN.

(T))nen is a sequence of Lebesgue measurable sets such that T,, C T),41,
n €N, UpenTn = J. Let [ denote the Lebesgue measure in R. Notice
that

0<I(J)=1 (U Tn> = lim_I(Ty).

neN

Thus there exists an N € N such that {(T) > 0. It follows from (vi) that
int M(Tn,Tn) # 0. Let U be an open set contained in int M (Tn,Tn).
Hence, if u € U, then there exist t1,t2 € Ty such that u = M(t1,t2).
Therefore

flu) < M(f(t1), f(t2))
< Amax{f(t1), f(t2)} + (1 = A)min {f(t1), f(t2)}
< AN+ (1—A)N =N.

Therefore the function f is locally bounded above at some point. Applying
Theorem 4.5 finishes the proof. O
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5. Applications

Now we use the following

Lemma 5.1 ([7], [9]). Let A, B C R be sets such that [(A) > 0 and
I(B) > 0. Suppose that D C R? is an open set containing A x B and
that f : D — R. If a € A and b € B are density points of sets A
and B respectively, furthermore, function f and the partial derivatives f.,
[y are continuous in the neighbourhood of point (a,b) and f;(a,b) # 0,
fy(a,b) # 0, then f(A x B) contains an interval.

Theorem 5.2. The logarithmic mean satisfies condition (i)—(vii).

PRrROOF. Conditions (i)—(v) follow from the properties of the logarith-
mic mean mentioned in the second Section and from the Remark 4.2. Now
we prove (vi). To this end we show that the assumptions of Lemma 5.1
are fulfilled. We take an arbitrary set T € (0, 00) such that {(T") > 0. Let
a,b € T be the points of density of T" such that a # b. Let § > 0 be
choosen so that [(a — §,a+6) x (b—38,b+ )| N{(z,y) ER? 1z =y} = 0.
Weput Tty = TN(a—-46a+9), To = TN (b—0,b+ ). Notice that
(Ty) > 0,1(T2) >0and Ty xTp C T x T\ {(z,z) : € (0,00)}. Evi-
dently L : (0,00)*> — (0,00) and L, L/, L are continuous in the neigh-
bourhood (a — d,a + J) x (b — 6,b+ 9) of point (a,b) and L/ (a,b) # 0,
Lj(a,b) # 0. Hence, in view of Lemma 5.1 int L(T1,T3) # §. All the more
int L(T,T) # 0. Therefore, the logarithmic mean fulfils condition (vi). O

Corollary 5.3. Assume that (a,b) C (0,00). If f : (a,b) — (0,00)
is L-convex and locally bounded above at xy € (a,b) function, then f is
continuous.

Corollary 5.4. Assume that (a,b) C (0,00). If f : (a,b) — (0,00)
is L-convex and Lebesgue measurable function, then f is continuous.

For the family of weighted quasi-arithmetic means we have the follow-
ing

Theorem 5.5. If ¢ : I — R is a strictly increasing and concave
(strictly decreasing and convex) function and t € (0, 1) is fixed, then the
weighted quasi-arithmetic mean M : > — I satisfies (i)—(v) and (vii).



410 T. Zgraja

ProOF. Conditions (i), (iii), (iv), (v) and (vii) follow from the prop-
erties of weighted quasi-arithmetic mean mentioned in the second Section
and from Remark 4.2. Now we prove (ii). Assume that ¢ is concave and
strictly increasing. For a fixed t € (0,1) we have for every x,y €

e Hto(x) + (1 —t)p(y) < (¢t op)(te + (1 —t)y),
hence
Mypi(z,y) <tz + (1 —t)y. (4)

We consider a case t € [%, 1). Suppose that A =¢. If x > y, then from (4)
we get,
My (2, y) < Amax {z, y} + (1 - X) min {2, }.

If x <y, then (1—t)(y—x) < t(y —x), which is equivalent to the following
inequalities

tr+ (1 -ty <ty+ (1 —t)z < Amax{z,y} + (1 — A\) min{z,y}.

This together with (4) give (ii). If ¢ € (0,1), then we take A =1 —¢. The
proof in the case when ¢ is convex and strictly decreasing is analogous. U

Corollary 5.6. If ¢ : I — R is a strictly increasing and concave
(strictly decreasing and convex) function and t € (0,1) is fixed, then every
M, 4-convex function f : J — I locally bounded above at x¢g € J is
continuous.
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