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On the limit sets of orbits with some kinds of stabilities

By CHANGMING DING (Guilin)

Abstract. In this paper, we discuss the omega limit sets of orbits that are
asymptotically Liapunov stable and asymptotically Zhukovskij stable respectively.
We strengthen all the results in [6] and moreover point out several crucial mistakes
in [6].

1. Introduction

There are several recent papers ([6], [7]) concerning the omega limit
sets of some kind of stability. In [6] the author considered the differential
equations:

dx

dt
= f(x), x ∈ G ⊂ Rn, (E)

where G is a closed bounded domain in Rn and f ∈ Cr(G) (r ≥ 1). He
stated the following results:

(a) If the solution x(t, x0) of (E) is asymptotically Liapunov stable,
then its omega limit set ω(x0) consists of fixed points.

(b) If the solution x(t, x0) of (E) is uniformly asymptotically Zhukov-
skij stable, then its omega limit set is a closed orbit or a fixed point.

The goal of this paper is to strengthen the both results of (a) and (b).
Actually, following the ideas of [6], in Section 2 we prove that the result
of (a) still holds for a flow defined on a metric space. In Section 3 we see
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that the proof of (b) in [6] is unbelievable, but the conclusion of (b) is
also true for a flow defined on a locally compact metric space. Finally, we
present an example to illustrate that the last remark in [6, p. 1999, line 16]
is wrong. This example also shows that the assertion in [7, p. 86, line 12]
is not true, i.e., that an orbit does not tend to a fixed point does not imply
that there is no fixed points in its omega limit set of the orbit.

2. The omega limit set of an asymptotically
Liapunov stable orbit

At first we fix some notations. Let (X, d) be a metric space with
metric d, on which there is a flow f : X×R → X. Write x · t = f(x, t) and
let A · J = {x · t | x ∈ A, t ∈ J} for A ⊂ X and J ⊂ R. So x ·R and x ·R+

are the orbit and the positive semi-orbit respectively of a point x ∈ X. The
omega limit set of x is the set ω(x) = {y ∈ X | there is a sequence tn ∈
R+ such that tn → +∞ and x · tn → y}.

Definition 2.1 ([5, p. 108]). The orbit x·R of a point x ∈ X is Liapunov
stable for the flow f provided that given any ε > 0, there is a δ > 0 such
that if d(x, p) < δ, then d(x · t, p · t) < ε for all t ≥ 0. The orbit x · R is
asymptotically Liapunov stable provided it is Liapunov stable and there
is a τ > 0 such that if d(x, p) < τ , then d(x · t, p · t) goes to zero as t goes
to infinity.

Theorem 2.2. If the orbit x·R is asymptotically Liapunov stable and

its omega limit set ω(x) is nonempty, then ω(x) consists of fixed points.

Proof. Let q ∈ ω(x) and tn → +∞ such that x · tn → q. Since x ·R
is asymptotically Liapunov stable, there is a τ > 0 such that if d(x, p) < τ ,
then d(x · t, p · t) goes to zero as t goes to infinity. Now choose a λ > 0
such that for any ∆t ∈ [0, λ] we have d(x, x ·∆t) < τ . Letting xn = x · tn,
from the continuity of the flow, it follows that xn · ∆t → q · ∆t and so
x · (tn + ∆t) → q · ∆t. Thus d(q, q · ∆t) ≤ d(q, x · tn) + d(x · tn, x · (tn +
∆t)) + d(x · (tn + ∆t), q · ∆t) → 0 as tn → +∞. That is q = q · ∆t for
any ∆t ∈ [0, λ], of course it implies that q is a fixed point (see [1, Ch. 2,
Th. 2.2]). This completes the proof. ¤
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The following example is presented by the referee, which shows that
the ω-limit set can be more than one fixed point.

Example 2.3. Consider the system in R2 defined by differential equa-
tions in polar coordinates:

ṙ = −(r − 1)3, θ̇ = r − 1.

The solutions are

r(t) = 1 +
r0 − 1

[2t(r0 − 1)2 + 1]1/2
,

θ(t) = θ0 +
[2t(r0 − 1)2 + 1]1/2 − 1

r0 − 1
.

It is easy to verify that every orbit p · R outside the unit circle is asymp-
totically Liapunov stable but has ω(p) the whole unit circle.

3. The omega limit set of a uniformly asymptotically
Zhukovskij stable orbit

In this section we suppose that the metric space X is locally compact.
A set Y is invariant under the flow f if Y is a subset in X with Y ·R = Y ,
and an invariant set Y is a minimal set provided (i) Y is a closed, nonempty
set and (ii) if Z is a closed, nonempty, invariant subset of Y , then Z = Y .
In addition, in the following we let Br(x) = {y ∈ X | d(x, y) < r} and
Sr(x) = {y ∈ X | d(x, y) ≤ r} be the open ball and the closed ball
respectively with center x and radius r > 0. For p ∈ X and A ⊂ X,
let d(p,A) = inf{d(p, z)|z ∈ A}, and then we define Nr(A) = {z ∈ X |
d(z, A) < r} for r > 0, it is called the generalized open r-ball about A of
radius r.

Zhukovskij Stability ([3], [8]). The orbit x · R of a point x in X is
Zhukovskij stable provided that given any ε > 0, there is a δ(ε) > 0 such
that for any p ∈ Bδ(x), then one can find a time parameterization τp such
that d(x ·t, p ·τp(t)) < ε holds for t ≥ 0, where τp is a homeomorphism from
[0, +∞) to [0, +∞) with τp(0) = 0. Moreover, if d(x · t, p · τp(t)) → 0 as
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t → +∞ also holds, the orbit x ·R is said to be asymptotically Zhukovskij
stable.

Now we introduce the concept of uniformly asymptotically Zhukovskij
stability, it is a simpler version that is equivalent to that in [6, Def. 4.1].

Definition 3.1. The orbit x ·R of a point x in X is uniformly asymp-
totically Zhukovskij stable provided that given any ε > 0, there is a δ > 0
such that for each t′ ≥ 0 and p ∈ Bδ(x · t′), then one can find a time
parameterization τp such that d(x · (t + t′), p · τp(t)) < ε holds for t ≥ 0,
and also

d(x · (t + t′), p · τp(t)) → 0 as t → +∞, (1)

where τp is a homeomorphism from [0,+∞) to [0, +∞) with τp(0) = 0.

Geometrically, the semi-orbit p ·R+ will stay in a long tube of x ·R+

with different time scales, and the tube is getting thinner and thinner as
time tends to infinity.

In [6] the author proved the result of (b) in Section 1. However, the
proof of [6, Theorem 5.1] has some errors in it. For example, in his proof the
Poincaré map φt should not be defined by the same t for all y ∈ Dσ(x0).
Otherwise, diam (φt(Dσ(x))) → 0 does not hold as t → +∞. Also the
point ω in the omega limit set of x(t, x0) should be excluded from being a
fixed point, since it is impossible to define Dσ(ω) for a fixed point ω as in
his proof. Now we shall give a strengthened conclusion. In the following,
we always consider the case ω(x) 6= ∅ for a point x ∈ X.

Lemma 3.2. If the orbit x ·R of a point x is uniformly asymptotically

Zhukovskij stable with nonempty omega limit set, then its omega limit set

ω(x) is minimal.

Proof. Otherwise, ω(x) has a proper closed invariant subset A ⊂
ω(x) with A 6= ∅. Choose a point p ∈ ω(x) \A, then λ = d(p,A) > 0. Now
for a sufficiently large t′, we can find a point q ∈ A satisfying d(x · t′, q) < δ

(with δ the number defined as in the Definition 3.1). Also there exists a
sequence ti ≥ t′ such that ti → +∞ and x · ti → p. Since A is invariant,
it follows q · R ⊂ A. However, for large ti we have d(x · ti, p) < λ/2,
it follows d(x · ti, q · R) ≥ d(p, A) − d(x · ti, p) ≥ λ/2 for large ti. It is
contradictory to (1) in the Definition 3.1, since d(x · t′, q) < δ holds. Thus
ω(x) is minimal. ¤
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Corollary 1. Assume that x is uniformly asymptotically Zhukovskij

stable. If there is a fixed point in ω(x) then ω(x) = {p}. Also if there is a

closed orbit γ in ω(x) then ω(x) = γ.

From the proof of the Lemma 3.2, it is easy to conclude:

Corollary 2. Any closed nonempty invariant set A must be δ-apart

from a uniformly asymptotically Zhukovskij stable semi-orbit x · R+ if

A ∩ ω(x) = ∅, where δ is the number defined as in the Definition 3.1.

Lemma 3.3 ([2, p. 414]). Let X be a Hausdorff topological space and

F : X → X be continuous. If for each open covering {Wα} of X there is

at least one x ∈ X such that both x and F (x) belong to a common Wα,

then F has a fixed point.

Theorem 3.4. If an orbit x·R is uniformly asymptotically Zhukovskij

stable with nonempty omega limit set, then its omega limit set ω(x) is a

fixed point or a closed orbit.

Proof. Assume that ω(x) is not a singleton, we shall show that ω(x)
is a closed orbit. Choose a point p ∈ ω(x) and it is a regular point from
the Corollary 1. Now let a sequence {ti}∞i=1 ⊂ R+ such that ti → +∞ and
x·ti → p. Thus there is a positive σ (σ < δ) such that the closed ball Sσ(p)
lies in the open ball Bδ(x · tk) for some tk ∈ {ti}∞i=1 and so does the set
Sσ(p) · [−θ, θ] for a sufficiently small θ > 0. From the local compactness of
X, we may also suppose that Sσ(p) is compact. Since p is a regular point,
by the tubular flow theorem [4, Ch. 5, Section 2], there is a transversal
Σ ⊂ Sσ(p) · [−θ, θ] with p ∈ Σ such that for each y ∈ Sσ(p) · [−θ, θ], the
arc of y ·R in Sσ(p) · [−θ, θ] crosses Σ at a unique t = φ(y), where φ(y) is
continuous on y ∈ Sσ(p) · [−θ, θ]. Because of Sσ(p) · [−θ, θ] ⊂ Bδ(x · tk), it
follows from (1) in the Definition 3.1 that for each y ∈ Sσ(p) · [−θ, θ] there
is a T (y) > 0 such that d(x · (t + tk), y · τy(t)) < σ/2 for t ≥ T (y). Thus
from the compactness of Sσ(p) · [−θ, θ] and the continuity of the flow f ,
one can find a positive M = sup{T (y) | y ∈ Sδ(p) · [−θ, θ]} < +∞ such
that for each y ∈ Sσ(p) · [−θ, θ], d(x · (t + tk), y · τy(t)) < σ/2 holds for
t ≥ M . Fix a tl > tk and tl− tk ≥ M with d(x · tl, p) < σ/2. Now we define
a Poincaré map F : Σ → Σ as follows. If y ∈ Σ (⊂ Sσ(p) · [−θ, θ]), then
we have d(x · (t + tk), y · τy(t)) < σ/2 for t ≥ M , it implies d(p, y · τy(tl −
tk)) ≤ d(p, x · tl) + d(x · tl, y · τy(tl − tk)) < σ/2 + σ/2 = σ. So it follows
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y ·τy(tl−tk) ∈ Sσ(p) and then y ·(τy(tl−tk)+φ(y)) ∈ Σ for a φ(y) ∈ [−θ, θ].
Thus we define F (y) = y · (τy(tl − tk) + φ(y)). The continuity of F comes
from the continuities of the flow f , τy and φ(y). Note that F may not be
the first return map. Next, if {Wα} is an open covering of Σ for its subspace
topology from X, let p ∈ Wα = Σ∩U , where U is an open set in X. Choose
an r > 0 with Br(p) ⊂ U ∩ Sσ(p) and let x · ti ∈ Br/2(p) for ti ≥ T > tl.
Thus from (1) in the Definition 3.1, we assert d(Fn(p), x · ti) < r/2 for
n ≥ N and some ti ≥ T ′ ≥ T , where Fn(p) is the nth iterate of p. Hence,
d(FN (p), p) ≤ d(FN (p), x · tm)+d(x · tm, p) < r/2+r/2 = r holds for some
tm ≥ T ′ and similarly d(FN+1(p), p) ≤ d(FN+1(p), x · tn) + d(x · tn, p) <

r/2+r/2 = r for some tn ≥ T ′. It follows that both FN+1(p) and FN (p) lie
in Br(p). So we obtain that both F (FN (p)) and FN (p) belong to Wα. By
the Lemma 3.3 we conclude that F : Σ → Σ has a fixed point q. Obviously,
q ·R is a closed orbit, from the Corollaries 1 and 2, we immediately obtain
ω(x) = q ·R. This completes the proof. ¤

Example 3.5. Consider the system in R2 defined by differential equa-
tions in polar coordinates:

ṙ = r(1− r), θ̇ = 1− r. (2)

The solutions are

r(t) =
r0e

t

1− r0 + r0et
, θ(t) = θ0 − ln[r0 + (1− r0)e−t].

It is easy to see that every orbit outside the unit circle is asymptotically
Zhukovskij stable, but not uniformly asymptotically Zhukovskij stable.
Obviously, the unit circle is composed of fixed points of the system (2),
and it is the omega limit set of every point outside the unit circle. However
it is not a closed orbit. This illuminates the last remark in [6, p. 1999,
line 16] is not true, and also the conclusion of [7, p. 86, line 12] is wrong.
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[1] N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Springer
Verlay, Berlin, 1970.

[2] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.

[3] G. A. Leonov, D. V. Ponomarenko and V. B. Smirnova, Local instability and
localization of attractors from stochastic generator to chua’s systems, Acta Appl.
Math. 40 (1995), 179–243.

[4] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations,
Princeton University Press, 1966.

[5] C. Robinson, Dynamical systems: stability, symbolic dynamics and chaos, (2nd
edn), CRC Press, 1999.

[6] X. Yang, Liaponov asymptotically stability and Zhukovskij asymptotically stabil-
ity, Chaos, Soliton and Fractals 11 (2000), 1995–1999.
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