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On the continuous solutions of a generalization
of the Golab—Schinzel equation

By JANUSZ BRZDEK (Krakéw)

Abstract. Let J be a real nontrivial interval, 0 € J, F : R2 — R be
symmetric, 0 € F(R?), M : J — R be continuous, and M (0) = 0. We determine
the continuous solutions f : R — J of the functional equation

[+ M(f(x)y) = F(z,y).

The functional equation

[+ M(f(x)y) = F(z,y), (1)

where f, M : R — R and F : R? — R, is a generalization of the well known
Golab—Schinzel equation

[+ f(@)y) = f(@)f(y). (2)

For the details concerning functional equation (2) and applications of it
we refer e.g. to [1], [2], [4], [7], [11], [12], [15], [16], [19] and for its general-
izations to [3], [5], [6], [8]-[10], [13], [14], [17], [18].

If we consider (1) as an equation of three unknown functions f, M, and
F, then it is very easy to describe the general solution of it. Namely, given
arbitrary functions f, M : R — R, the function F : R? — R is uniquely
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determined by (1). Moreover, with y = 0, from (1) we get f(z) = F(x,0)
for x € R.

In the case where we solve the equation with respect to f (assuming
that F' and M are given) it is clear that the last equality does not need to
be a sufficient condition for f to satisfy (1). In other words, for some F’
and M there may be no solutions f : R — R of (1).

In this paper we determine those pairs of functions M : J — R and
F :R? — R, which admit a continuous solution f : R — .J of (1), under
the additional assumptions that F' is symmetric, 0 € F(R?), M : J — R
is continuous, and M (0) = 0, where J is a nontrivial real interval with 0.

We begin with the following

Lemma 1. Suppose that g : R — R is continuous, g(0) # 0,
0 € g((0,400)) and

9(z +g(@)y) = 9(y +g(y)z) forz,yeR (3)

Then there exist b, d € (0, +o0c) with
D := g '((~00,0)) N[0, +00) € {0, (d, +00)}, (4)
B := g~((0,+00)) N [0, +00) = [0,). (5)

PROOF. For the proof of (4) by contradiction suppose that there are
a,w € (0,+00) with a < w, g(a) < 0 and g(w) = 0. Put ip = inf{z €
(a,+00) : g(x) = 0}. Then, by the continuity of g, w > iy > a, g(ip) =0
and g((a,i)) C (—00,0). Take c € (3(a + o), i) with
a — io

219

g(c) >

Clearly

a+1iy a—1ig
= +

5 5 < c+g(e)ip < ¢ <.

Thus, on account of (3),

0 > g(c+ g(c)io) = g(io + g(io)c) = g(io) = 0.

This is a contradiction, which completes the proof of (4).
Next observe that, in view of (4) and the hypotheses, g(0) > 0, whence
B # (). So for the proof of (5) by contradiction suppose that g(a) > 0 and
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g(w) =0 for some a,w € (0, +00), w < a. Let so = sup{z € (0,a): g(z) =0}.
It is easy to see that w < s¢ < a, g(so) = 0 and g((so,a)) C (0, +00). Take
¢ € (s0, 3(a+ sp)) with 2s0g(c) < a — so. Then

a+sy a— 3o

a=——+— > c+g(c)so > ¢ > so.

This brings a contradiction, because

0 < g(c+g(c)so) = g(so + g(so)c) = g(so) = 0.
Thus we have completed the proof of Lemma 1. O

Lemma 2. Let g be as in Lemma 1. Then there exists ¢ € (—o0,0)
such that one of the following two conditions holds:

g(z)=cxr+1 forzxeR; (6)
g(x) = max{cx + 1,0} forxz € R. (7)

PROOF. On account of Lemma 1 there exist b,d € (0,400) such
that (4) and (5) are valid. Put A = {y + g(y)b : y € R}. Since g(b) = 0
and, by (3), g(y + g(y)b) = g(b+ g(b)y) = g(b) = 0 for y € R, we have

9(A) = {0}. (8)

Next A is connected and b = b+ g(b)b € A. Hence A C [b, +00), which
yields

g(y)>1—— foryeR. (9)

SalES

First consider the case D # (). Clearly g(d) = 0 and d > b. Suppose
d>b. Then 1 — ¢ <0 and, by (3),

0=g(d) =g(d+g(d)x) = g(x + g(z)d) for x € R.

This brings a contradiction, because, in view of (9),

d
x+g(w)d2x+<1—§)d:x(l—b>+d>d for x < 0.

Thus we have proved that b = d. Hence from (8) we get y + g(y)b =b

for y € R, which implies (6) with ¢ = —3.
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Now assume D = {). Suppose that g(z) # 1 — 7 for some z < 0. Then,
by (9), g(2) > 1 — %, whence z 4 g(2)b > b and consequently there is
e € (0,b) with

z4+g(z)y>b forye (b—e,b). (10)

Take yo € (b—e,b) with g(yo) < —%£, which means that yo + g(y0)z > 0.
Next g(yo) > 0, 0 < yo < b and z < 0, so we have yo + g(y0)z € (0,b).
This brings a contradiction, because, by (10),

9(yo + 9(v0)2) = g(z + g(2)yo) = 0.

In this way we have shown that

gly)=1-— % for y < 0. (11)

Take y € (0,b). Then g(y) > 0 and y + g(y)x — —oo if © — —oo. Hence
there exists x < —bli—yy with y + g(y)z < 0. Note that (b —y) < —by,
which implies x + 1y — %a:y < 0. Whence, by (11),

1 1
x+g(x)y:x+<bx+1)y::p+ybxy<0

and consequently

7%(y+g(y)l‘)+1:g(y+g(y)x):9($+g(x)y)
:—% <x+y—ixy> + 1.

Thus g(y) = —3y + 1. This and (11) imply (7) (with ¢ = —3), which
completes the proof. O

Proposition 1. Let g : R — R be a continuous solution of (3) such
that 0 € g(R). Then either g(R) = {0} or there exists ¢ € R\ {0} such
that (6) or (7) holds.

PROOF. Suppose that g(zo) # 0 for some zp € R. Then

0 # g(wo) = g(z0 + g(20)0) = g(0 + g(0)x0) = g(g(0)z0).
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Hence ¢(0) # 0. Further, according to the hypothesis, there is zp € R with
g(z0) = 0. If z9 > 0, we derive the statement from Lemma 2. If zy < 0,
we define go : R — R by go(z) = g(—z). Then

90(z + go(2)y) = g(=z + g(—x)(—y)) = 9(—y + g(=y)(-2))
= go(y + g0(y)z)
for z,y € R, go(0) = g(0) # 0 and go(—20) = g(20) = 0. Thus, on account
of Lemma 2, there is ¢y € (—o0,0) such that go(z) = copx + 1 for x € R or

go(x) = max {cor + 1,0} for z € R. Consequently (6) or (7) holds with
¢ = —cp, which completes the proof. [l

Finally we have the following

Theorem 1. Assume that J is a real nontrivial interval, 0 € J, M :
J — R is continuous, M(0) = 0, F : R? — R is symmetric, and 0 € F(R?).
Then a continuous function f : R — J is a solution of equation (1) if and
only if one of the following three conditions holds.

(i) f(R) ={0} = F(R?).
(ii) M is bijective and there exists ¢ € R\ {0} such that

F(z,y) = M ((czx + 1)(cy + 1)) for z,y € R,
f(z) =M ex+1) for x € R.

(iii) There exist a continuous one-to-one function h : [0,4+00) — J and
c € R\ {0} such that h(0) =0,

M(y) =h~'(y) for y € h([0, +00)),
F(z,y) = h(s(cx + 1)s(cy + 1)) for z,y € R,
f(x) =h(s(cx +1)) for z € R,

where s(z) = max{z,0}.

PRrROOF. It is easy to check that, in either of the cases described in
(i)—(iii), f satisfies (1). So now assume that f : R — J is a continuous
solution of equation (1).
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If F(R?) = {0}, then, by (1), we have
f(x)=f(x+ M(f(x))0) = F(x,0) =0 for x € R,

which means that (i) holds. Therefore it remains to consider the case
where F'(x1,y1) # 0 for some x1,y; € R.

According to the hypothesis there exist xg, yo € R such that
F(zo,y0) = 0. Put zo = xo + M(f(x0))yo, 21 = 1 + M(f(z1))y1, and
g = M o f. Suppose that g(0) = 0. Then (1) yields

0# F(z1,y1) = f(21) = f(21 + 9(21)0) = F(21,0) = F(0, 21)
= f(0+g(0)z1) = f(0) = f(0+ g(0)z0) = F(0, z0)
= F(ZOa ) ( g( ) ) f(z(]) = F(xovyO) = 07

a contradiction. Thus ¢(0)#0. Further g(zo)=M (f(z0))=M (F(x0,y0))=0
and, for x,y € R,

9(x +g(x)y) = M(f(x + M(f(x))y)) = M(F(z,y))
= M(F(y,z)) = g(y + g9(y)x),

whence, on account of Proposition 1, (6) or (7) holds with some ¢ € R\ {0}.
Suppose first that ¢ is of the form (6). Then g(R) = R and

M(f(y1)) = g(y1) = cyr + 1 # cya + 1 = g(y2) = M(f(y2)) (12)

for every y1,y2 € R,y1 # y2, which means that the function f(R) 3> y —
M (y) € R is a bijection. Hence f(R) = J, because M is continuous. Next

M(F(z,y)) = g(= + g(z)y)

=clx+(cx+1)y)+1=(cx+1)(cy+1) (13)

for z,y € R. Consequently (ii) holds.

Now assume (7). Let P={x € R:cx+1 >0} and Py = P\ {—=+
Then g(R\ Py) = {0}, M(f(P)) = g(P) = [0,+0c0), and (12) holds for
every yi,y2 € P,y1 # y2. Thus the function My : f(P) >y — M(y) €
[0, +-00) is bijective. Put h = My . Tt is easily seen that f(z) = h(cz +1)
for x € P and, for x € R\ P,

f(z) = f(x+g(x)20) = F(x,20) = F(20,7) = f(20) =0,
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whence h(0) = f (—%) =0 and f(y) = h(s(cy + 1)) for y € R. Further

Fly,z) = F(z,y) = f(z+ M(f(z))y)
=f(x)=0 forxzeR\ Py, yeR.

Finally observe that, for z,y € Py, c(x+g(z)y)+1 = (cx+1)(cy+1) > 0,
which means that = + g(x)y € Py and consequently (13) holds. This
completes the proof. O

The following corollary generalizes to some extent Corollary 4 in [8].

Corollary 1. Let J and M be as in Theorem 1. Then a continuous
function f : R — J satisfies the functional equation

flz+ M(f(x))y) = f(2)f(y) (14)
if and only if one of the following four conditions holds.
1° f(R) = {0}.
2° f(R) = {1}.

3° J = R and there exist a > 0 and ¢ € R\ {0} such that M(z) =
\xﬁ(sign(az)) and f(z) = |cz + 1|*(sign(cz + 1)) for z € R.

4° [0,400) C J and there exist a > 0 and ¢ € R\{0} such that M (x) = za
for x € [0,+00) and f(x) = (max {cx + 1,0})* for z € R.

PROOF. It is easy to check that if one of conditions 1°—4° holds, then f
satisfies (14). So assume now that f : R — J is a continuous solution of
equation (14).

First consider the case where 0 ¢ f(R). Suppose that x € R and
M(f(z)) # 1. Put

B x
1= M(f(2)
Then z = z + M(f(z))z and consequently

f(z) = flz+ M(f(z))2) = f(2)f(2),

whence f(z) = 1.
Thus we have proved that, for every z € R, f(x) =1 or M(f(z)) =1
Since M is continuous, this means that f(R) = {1} or M(f(R)) = {1}.

z



428 J. Brzdek

In the first case we clearly get 2° and in the latter one we have

flx+y) = flx+M(f(2)y) = f(x)f(y) forz,ycR. (15)

Next f(R) # {1} and (15) imply f(z) = expcz for x € R with some
c € R\ {0} (see e.g. [1]). But then f(R) = (0,4o00) and consequently
M((0,4+00)) = M(f(R)) = {1}, which is impossible, because M is contin-
uous and M (0) = 0.

Now assume that 0 € f(R). Put F(z,y) = f(z)f(y) for z,y € R.
Then 0 € F(R?) and f satisfies (1). Thus conditions (i)—(iii) of Theorem 1
are valid. It is easily seen that, in case (ii), M ~! and, in case (iii), h are
multiplicative. This completes the proof (see [1], pp. 29-31). O

Below we give two simple examples showing that without the assump-
tions M (0) = 0 and 0 € F(R?) in Theorem 1 the statement of the theorem
is not valid.

Ezample 1. Let f(z) = sinz and F(x,y) = sin(x + y) for z,y € R,
M(z) = |z| for |x| > 1 and M([-1,1]) = {1}. Then (1) holds, 0 € F(R?),
and M(0) = 1.

Ezample 2. Let f(z) = 1+ expx and F(z,y) = 1 4 exp(x + y) for
z,y € R, M(z) = z for x < 1 and M([1,+00)) = {1}. Then (1) holds,
0 ¢ F(R?), and M(0) = 0.
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