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On the continuous solutions of a generalization
of the GoÃla̧b–Schinzel equation

By JANUSZ BRZDȨK (Kraków)

Abstract. Let J be a real nontrivial interval, 0 ∈ J , F : R2 → R be
symmetric, 0 ∈ F (R2), M : J → R be continuous, and M(0) = 0. We determine
the continuous solutions f : R→ J of the functional equation

f(x + M(f(x))y) = F (x, y).

The functional equation

f(x + M(f(x))y) = F (x, y), (1)

where f, M : R→ R and F : R2 → R, is a generalization of the well known
GoÃla̧b–Schinzel equation

f(x + f(x)y) = f(x)f(y). (2)

For the details concerning functional equation (2) and applications of it
we refer e.g. to [1], [2], [4], [7], [11], [12], [15], [16], [19] and for its general-
izations to [3], [5], [6], [8]–[10], [13], [14], [17], [18].

If we consider (1) as an equation of three unknown functions f , M , and
F , then it is very easy to describe the general solution of it. Namely, given
arbitrary functions f, M : R → R, the function F : R2 → R is uniquely
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determined by (1). Moreover, with y = 0, from (1) we get f(x) = F (x, 0)
for x ∈ R.

In the case where we solve the equation with respect to f (assuming
that F and M are given) it is clear that the last equality does not need to
be a sufficient condition for f to satisfy (1). In other words, for some F

and M there may be no solutions f : R→ R of (1).
In this paper we determine those pairs of functions M : J → R and

F : R2 → R, which admit a continuous solution f : R → J of (1), under
the additional assumptions that F is symmetric, 0 ∈ F (R2), M : J → R
is continuous, and M(0) = 0, where J is a nontrivial real interval with 0.

We begin with the following

Lemma 1. Suppose that g : R→ R is continuous, g(0) 6= 0,

0 ∈ g((0, +∞)) and

g(x + g(x)y) = g(y + g(y)x) for x, y ∈ R. (3)

Then there exist b, d ∈ (0, +∞) with

D := g−1((−∞, 0)) ∩ [0, +∞) ∈ {∅, (d,+∞)}, (4)

B := g−1((0, +∞)) ∩ [0, +∞) = [0, b). (5)

Proof. For the proof of (4) by contradiction suppose that there are
a,w ∈ (0,+∞) with a < w, g(a) < 0 and g(w) = 0. Put i0 = inf{x ∈
(a,+∞) : g(x) = 0}. Then, by the continuity of g, w ≥ i0 > a, g(i0) = 0
and g((a, i0)) ⊂ (−∞, 0). Take c ∈ (1

2(a + i0), i0) with

g(c) >
a− i0
2i0

.

Clearly

a =
a + i0

2
+

a− i0
2

< c + g(c)i0 < c < i0.

Thus, on account of (3),

0 > g(c + g(c)i0) = g(i0 + g(i0)c) = g(i0) = 0.

This is a contradiction, which completes the proof of (4).
Next observe that, in view of (4) and the hypotheses, g(0) > 0, whence

B 6= ∅. So for the proof of (5) by contradiction suppose that g(a) > 0 and
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g(w)= 0 for some a,w∈ (0, +∞), w < a. Let s0 = sup{x∈ (0, a) : g(x) = 0}.
It is easy to see that w ≤ s0 < a, g(s0) = 0 and g((s0, a)) ⊂ (0, +∞). Take
c ∈ (s0,

1
2(a + s0)) with 2s0g(c) < a− s0. Then

a =
a + s0

2
+

a− s0

2
> c + g(c)s0 > c > s0.

This brings a contradiction, because

0 < g(c + g(c)s0) = g(s0 + g(s0)c) = g(s0) = 0.

Thus we have completed the proof of Lemma 1. ¤

Lemma 2. Let g be as in Lemma 1. Then there exists c ∈ (−∞, 0)
such that one of the following two conditions holds:

g(x) = cx + 1 for x ∈ R; (6)

g(x) = max{cx + 1, 0} for x ∈ R. (7)

Proof. On account of Lemma 1 there exist b, d ∈ (0, +∞) such
that (4) and (5) are valid. Put A = {y + g(y)b : y ∈ R}. Since g(b) = 0
and, by (3), g(y + g(y)b) = g(b + g(b)y) = g(b) = 0 for y ∈ R, we have

g(A) = {0}. (8)

Next A is connected and b = b + g(b)b ∈ A. Hence A ⊂ [b, +∞), which
yields

g(y) ≥ 1− y

b
for y ∈ R. (9)

First consider the case D 6= ∅. Clearly g(d) = 0 and d ≥ b. Suppose
d > b. Then 1− d

b < 0 and, by (3),

0 = g(d) = g(d + g(d)x) = g(x + g(x)d) for x ∈ R.

This brings a contradiction, because, in view of (9),

x + g (x) d ≥ x +
(
1− x

b

)
d = x

(
1− d

b

)
+ d > d for x < 0.

Thus we have proved that b = d. Hence from (8) we get y + g(y)b = b

for y ∈ R, which implies (6) with c = −1
b .
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Now assume D = ∅. Suppose that g(z) 6= 1− z
b for some z < 0. Then,

by (9), g(z) > 1 − z
b , whence z + g(z)b > b and consequently there is

e ∈ (0, b) with
z + g(z)y > b for y ∈ (b− e, b). (10)

Take y0 ∈ (b− e, b) with g(y0) < −y0

z , which means that y0 + g(y0)z > 0.
Next g(y0) > 0, 0 < y0 < b and z < 0, so we have y0 + g(y0)z ∈ (0, b).
This brings a contradiction, because, by (10),

g(y0 + g(y0)z) = g(z + g(z)y0) = 0.

In this way we have shown that

g(y) = 1− y

b
for y ≤ 0. (11)

Take y ∈ (0, b). Then g(y) > 0 and y + g(y)x → −∞ if x → −∞. Hence
there exists x < − by

b−y with y + g(y)x < 0. Note that x(b − y) < −by,
which implies x + y − 1

bxy < 0. Whence, by (11),

x + g(x)y = x +
(
−1

b
x + 1

)
y = x + y − 1

b
xy < 0

and consequently

−1
b

(y + g (y) x) + 1 = g (y + g (y) x) = g (x + g (x) y)

= −1
b

(
x + y − 1

b
xy

)
+ 1.

Thus g(y) = −1
by + 1. This and (11) imply (7) (with c = −1

b ), which
completes the proof. ¤

Proposition 1. Let g : R → R be a continuous solution of (3) such

that 0 ∈ g(R). Then either g(R) = {0} or there exists c ∈ R \ {0} such

that (6) or (7) holds.

Proof. Suppose that g(x0) 6= 0 for some x0 ∈ R. Then

0 6= g(x0) = g(x0 + g(x0)0) = g(0 + g(0)x0) = g(g(0)x0).
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Hence g(0) 6= 0. Further, according to the hypothesis, there is z0 ∈ R with
g(z0) = 0. If z0 > 0, we derive the statement from Lemma 2. If z0 < 0,
we define g0 : R→ R by g0(x) = g(−x). Then

g0(x + g0(x)y) = g(−x + g(−x)(−y)) = g(−y + g(−y)(−x))

= g0(y + g0(y)x)

for x, y ∈ R, g0(0) = g(0) 6= 0 and g0(−z0) = g(z0) = 0. Thus, on account
of Lemma 2, there is c0 ∈ (−∞, 0) such that g0(x) = c0x + 1 for x ∈ R or
g0(x) = max {c0x + 1, 0} for x ∈ R. Consequently (6) or (7) holds with
c = −c0, which completes the proof. ¤

Finally we have the following

Theorem 1. Assume that J is a real nontrivial interval, 0 ∈ J , M :
J → R is continuous, M(0) = 0, F : R2 → R is symmetric, and 0 ∈ F (R2).
Then a continuous function f : R→ J is a solution of equation (1) if and

only if one of the following three conditions holds.

(i) f(R) = {0} = F (R2).

(ii) M is bijective and there exists c ∈ R \ {0} such that

F (x, y) = M−1((cx + 1)(cy + 1)) for x, y ∈ R,

f(x) = M−1(cx + 1) for x ∈ R.

(iii) There exist a continuous one-to-one function h : [0,+∞) → J and

c ∈ R \ {0} such that h(0) = 0,

M(y) = h−1(y) for y ∈ h([0, +∞)),

F (x, y) = h(s(cx + 1)s(cy + 1)) for x, y ∈ R,

f(x) = h(s(cx + 1)) for x ∈ R,

where s(x) = max{x, 0}.
Proof. It is easy to check that, in either of the cases described in

(i)–(iii), f satisfies (1). So now assume that f : R → J is a continuous
solution of equation (1).
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If F (R2) = {0}, then, by (1), we have

f(x) = f(x + M(f(x))0) = F (x, 0) = 0 for x ∈ R,

which means that (i) holds. Therefore it remains to consider the case
where F (x1, y1) 6= 0 for some x1, y1 ∈ R.

According to the hypothesis there exist x0, y0 ∈ R such that
F (x0, y0) = 0. Put z0 = x0 + M(f(x0))y0, z1 = x1 + M(f(x1))y1, and
g = M ◦ f . Suppose that g(0) = 0. Then (1) yields

0 6= F (x1, y1) = f(z1) = f(z1 + g(z1)0) = F (z1, 0) = F (0, z1)

= f(0 + g(0)z1) = f(0) = f(0 + g(0)z0) = F (0, z0)

= F (z0, 0) = f(z0 + g(z0)0) = f(z0) = F (x0, y0) = 0,

a contradiction. Thus g(0)6=0. Further g(z0)=M(f(z0))=M(F (x0, y0))=0
and, for x, y ∈ R,

g(x + g(x)y) = M(f(x + M(f(x))y)) = M(F (x, y))

= M(F (y, x)) = g(y + g(y)x),

whence, on account of Proposition 1, (6) or (7) holds with some c ∈ R\{0}.
Suppose first that g is of the form (6). Then g(R) = R and

M(f(y1)) = g(y1) = cy1 + 1 6= cy2 + 1 = g(y2) = M(f(y2)) (12)

for every y1, y2 ∈ R, y1 6= y2, which means that the function f(R) 3 y →
M(y) ∈ R is a bijection. Hence f(R) = J , because M is continuous. Next

M(F (x, y)) = g(x + g(x)y)

= c(x + (cx + 1)y) + 1 = (cx + 1)(cy + 1)
(13)

for x, y ∈ R. Consequently (ii) holds.
Now assume (7). Let P = {x ∈ R : cx + 1 ≥ 0} and P0 = P \ {−1

c}.
Then g(R \ P0) = {0}, M(f(P )) = g(P ) = [0, +∞), and (12) holds for
every y1, y2 ∈ P, y1 6= y2. Thus the function M0 : f(P ) 3 y → M(y) ∈
[0, +∞) is bijective. Put h = M−1

0 . It is easily seen that f(x) = h(cx + 1)
for x ∈ P and, for x ∈ R \ P0,

f(x) = f(x + g(x)z0) = F (x, z0) = F (z0, x) = f(z0) = 0,
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whence h(0) = f
(−1

c

)
= 0 and f(y) = h(s(cy + 1)) for y ∈ R. Further

F (y, x) = F (x, y) = f(x + M(f(x))y)

= f(x) = 0 for x ∈ R \ P0, y ∈ R.

Finally observe that, for x, y ∈ P0, c(x+ g(x)y)+1 = (cx+1)(cy +1) > 0,
which means that x + g(x)y ∈ P0 and consequently (13) holds. This
completes the proof. ¤

The following corollary generalizes to some extent Corollary 4 in [8].

Corollary 1. Let J and M be as in Theorem 1. Then a continuous

function f : R→ J satisfies the functional equation

f(x + M(f(x))y) = f(x)f(y) (14)

if and only if one of the following four conditions holds.

1◦ f(R) = {0}.
2◦ f(R) = {1}.
3◦ J = R and there exist a > 0 and c ∈ R \ {0} such that M(x) =
|x| 1a (sign(x)) and f(x) = |cx + 1|a(sign(cx + 1)) for x ∈ R.

4◦ [0, +∞) ⊂ J and there exist a > 0 and c ∈ R\{0} such that M(x) = x
1
a

for x ∈ [0, +∞) and f(x) = (max {cx + 1, 0})a for x ∈ R.

Proof. It is easy to check that if one of conditions 1◦– 4◦ holds, then f

satisfies (14). So assume now that f : R → J is a continuous solution of
equation (14).

First consider the case where 0 /∈ f(R). Suppose that x ∈ R and
M(f(x)) 6= 1. Put

z =
x

1−M(f(x))
.

Then z = x + M(f(x))z and consequently

f(z) = f(x + M(f(x))z) = f(x)f(z),

whence f(x) = 1.
Thus we have proved that, for every x ∈ R, f(x) = 1 or M(f(x)) = 1.

Since M is continuous, this means that f(R) = {1} or M(f(R)) = {1}.
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In the first case we clearly get 2◦ and in the latter one we have

f(x + y) = f(x + M(f(x))y) = f(x)f(y) for x, y ∈ R. (15)

Next f(R) 6= {1} and (15) imply f(x) = exp cx for x ∈ R with some
c ∈ R \ {0} (see e.g. [1]). But then f(R) = (0, +∞) and consequently
M((0,+∞)) = M(f(R)) = {1}, which is impossible, because M is contin-
uous and M(0) = 0.

Now assume that 0 ∈ f(R). Put F (x, y) = f(x)f(y) for x, y ∈ R.
Then 0 ∈ F (R2) and f satisfies (1). Thus conditions (i)–(iii) of Theorem 1
are valid. It is easily seen that, in case (ii), M−1 and, in case (iii), h are
multiplicative. This completes the proof (see [1], pp. 29–31). ¤

Below we give two simple examples showing that without the assump-
tions M(0) = 0 and 0 ∈ F (R2) in Theorem 1 the statement of the theorem
is not valid.

Example 1. Let f(x) = sinx and F (x, y) = sin(x + y) for x, y ∈ R,
M(x) = |x| for |x| > 1 and M([−1, 1]) = {1}. Then (1) holds, 0 ∈ F (R2),
and M(0) = 1.

Example 2. Let f(x) = 1 + expx and F (x, y) = 1 + exp(x + y) for
x, y ∈ R, M(x) = x for x < 1 and M([1, +∞)) = {1}. Then (1) holds,
0 /∈ F (R2), and M(0) = 0.
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[7] N. Brillouët and J. Dhombres, Équations fonctionnelles et recherche de
sous-groupes, Aequationes Math. 31 (1986), 253–293.
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