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On the central series of the adjoint group
of a nilpotent p-algebra

By BERNHARD AMBERG (Mainz) and LEV KAZARIN (Yaroslavl)

Abstract. Let R be a finite nilpotent algebra over a field of characteristic p
and G its adjoint group. If the product of the orders of all factors γi(G)/γi+1(G)
of the lower central series γj(G) with |γi(G)/γi+1(G)| ≥ p3 is bounded by some
positive integer k, then the order of G is also bounded in terms of p and k.

1. Introduction

An associative nilpotent algebra R over a field F of prime characteristic
p is called a p-algebra. Every associative nilpotent algebra R forms a group
under the “circle multiplication” a◦b = ab+a+b for each pair of elements
in R. This nilpotent group is called the adjoint group of R and is denoted
by R◦.

Several results are known about the structure of the adjoint group
of a nilpotent algebra (see for instance [3], [4], [5], [6]). For example,
Kruse showed in [5] that the nilpotency class of the adjoint group of a
nilpotent algebra R does not exceed (dimR + 1)/2. On the other hand,
it was proved in [1], that the adjoint group G of any nilpotent p-algebra
R of dimension at least 6 has at least 3 generators. Hence in almost all
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cases we have |G/G′| ≥ p3. In the following we obtain further information
about the structure of finite p-groups that occur as the adjoint group of
some nilpotent p-algebra.

If G is a finite p-group, we consider the natural numbers µi = µi(G)
determined by |γi(G)/γi+1(G)| = pµi ; here γi(G) denotes the i-th term of
the lower central series of G. It follows from the above result in [5] that
only p-groups G for which the mean value of µi is at least 2 can occur as
the adjoint group of some finite nilpotent p-algebra of dimension at least 4.
But what can be said about groups G for which |G : G′| < k and the other
µi are bounded by 2? The following theorem shows that in this situation
the order of G is bounded.

Theorem 1.1. Let G be a finite p-group such that the numbers µi

satisfies
∑

µi≥3 µi ≤ k. If G is the adjoint group of some nilpotent p-

algebra R, then |G| ≤ f(p, k) for some function f depending only on p

and k.

As an immediate consequence of this theorem we deduce the following

Corollary 1.2. Let G be a finite p-group with two generators. If G

occurs as the adjoint group of a nilpotent p-algebra, then the order of G

is bounded.

It was proved in [1], that in this case |G| ≤ p5.
The notation is as follows. The n-th power of an algebra R is the

subalgebra Rn of R generated by the set of elements of the form x1x2 . . . xk

with k ≥ n, where x1, x2, . . . , xk ∈ R. The algebra R is called nilpotent
if Rm = 0 for some positive integer m. The largest natural number n

such that Rn 6= 0 is the nilpotency class of R. The subalgebra of an
algebra R generated by the set of elements x1, x2, . . . , xs will be denoted
by ¿x1, x2, . . . , xsÀ whereas the subspace of the algebra R generated by
these elements is 〈x1, x2, . . . , xs〉. If R is a nilpotent algebra over the field
F , then R̂ = R ⊕ F · 1 is its unital hull, i.e. the algebra obtained from
R by the adjoining a unity. The annihilator of R is Ann(R) = {x ∈ R |
xy = yx = 0 for all y ∈ R} and the center of R is Z(R) = {x ∈ R | yx =
xy for all y ∈ R}. Furthermore lAnn(S) = {x ∈ R | xy = 0 for all y ∈ S},
rAnn(S) = {x ∈ R | yx = 0 for all y ∈ S}. The minimal number
of generators of an algebra R will be denoted by d(R). Similarly d(G)
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denotes the minimal number of generators of the adjoint group R◦ = G

of R. Note that d(R) ≤ d(G). We will write di = dimRi/Ri+1.
If the dimension (the order) of some algebra R (of some group G) is

bounded in terms of parameters a, b, . . . , c, we will say that the dimension
of R (the order of G) is (a, b, . . . c)-bounded.

2. A special class of nilpotent algebras

In this section we consider a nilpotent algebra R which can be written
as a sum of two subspaces in the form R = L + L̂y, where L = 〈〈x〉〉
is a one-generator subalgebra of dimension n and y ∈ R. In this case
R = 〈〈x, y〉〉 with relations yx = φ(x) + ψ(x)y, y2 = α(x) + β(x)y for
some polynomials φ, ψ, α, β ∈ F [x]x. Clearly, we may regard φ(x), α(x) as
elements of L2 and β(x), ψ(x) as elements in L, so that φ(x) ≡ α(x) ≡ 0
(mod x2). These notations will remain fixed untill the end of this section.

Lemma 2.1. The algebra R has a basis of the form

{x, x2, . . . , xn, y, xy, . . . , xmy},

for some natural numbers n ≥ m, such that xn+1 = yxm+1 = 0. If the

minimal number of generators d(R◦) does not exceed k, then n−m− 1 ≤
kp/(p− 1).

Proof. It follows from the above relations that R2 = 〈xy, x2〉 + R3.
Therefore Ri = xRi−1 + Ri+1 and di ≤ 2 for each i ≥ 2. If d2 = 1, then R

has a one-generator subalgebra L1 of codimension 1 and we may replace
L by L1. It is easy to see that R has a basis of the required form. If there
exists a natural number j > 2 such that dj−1 = 2 and dj = 1, then either
xj−1y = λxj−1 for some λ ∈ L or xj ∈ Rj+1. In the first case we have
xj−1(y − λ) = 0 and we may consider y − λ instead of y which gives the
required assertion about the basis. If xj ∈ Rj+1, then xRj ⊆ Rj+2 and
Rj+1 = 0. In this case we are also done.

Now we consider a basis with the above properties and natural num-
bers n, m as above. Let S = rAnn(xm+1). Clearly L̂y ⊆ S and R = L+S,
so that S = S ∩ L + L̂y. Obviously dim(L ∩ S) = m + 1. It is clear
that S is a right ideal of R. Since R = L + S and for each h ∈ L
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we have xihS = hxiS, it follows that hS ⊆ S for each h ∈ L and
S is also a right ideal of R. Now R/S is a one-generator algebra with
dimR/S = n − m − 1. It is easy to prove (see for instance [2]) that we
have d((R/S)◦) = r((R/S)◦) ≥ (p− 1)(n−m− 1)/p. Since d(R◦) ≤ k the
lemma is proved. ¤

Lemma 2.2. Let R be as in the previous lemma and m, n as above.

If m = n, then the algebra R is isomorphic with the subalgebra of the

matrix algebra M2(L̂), generated by the matrices

u =

(
x 0

φ(x) ψ(x)

)
, v =

(
0 1

α(x) β(x)

)
,

where x is a generator of L. If G = R◦ is the adjoint group of R and

|G : G′| ≤ k, then dimR ≤ 4kp.

Proof. To establish an isomorphism between R and the required sub-
algebra of the algebra M2(L̂) it is enough to use the regular representation
of this algebra regarded as an algebra over the ring L̂. Indeed, we have
R̂ = L̂ · 1 ⊕ L̂y. Clearly, each element of R can be represented in a form
h = a11 + a12y for some a11 ∈ L, a12 ∈ L̂. In this case we have also that
yh = a21 + a22y with a21, a22 ∈ L. So we may attach to each h ∈ R the
matrix

[h] =

(
a11 a12

a21 a22

)
,

where the coefficients aij , i, j ≤ 2 are uniquely determined by the above
arguments. It is straightforward to see that for each g, h ∈ R, λ ∈ F we
have [g + h] = [g] + [h], [gh] = [g][h] and [λg] = λ[g]. Thus the mapping
g → [g] from R to M2(L̂) is an algebra isomorphism.

Define a homomorphism θ : G → L◦ by the rule:

θ(a) = det([a] + I)− 1,

where det is the determinant and I is the unit matrix for each matrix a.
Clearly this map is defined on the set of all matrices of the form

(
L L̂

L L

)
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It is enough to check the property θ(a ◦ b) = θ(a) ◦ θ(b) for each pair of
matrices from this set. Indeed, we have

θ(a ◦ b) = det([a ◦ b] + I)− 1 = det(([a] + I)([b] + I))− 1

= det([a] + I) det([b] + I)− 1 = (θ(a) + 1)(θ(b) + 1)− 1

= θ(a)θ(b) + θ(a) + θ(b) = θ(a) ◦ θ(b).

Prove now that if |G : G′| ≤ k, then dimR ≤ 4kp. We will determine the
image of an element [x] = u under the map θ. It is obvious that θ(u) =
xψ(x)+x+ψ(x). If x+ψ(x) 6≡ 0 (mod x2), then (xψ(x)+x+ψ(x))pm

= 0
only when pm > n. Clearly, if pm ≤ n < pm+1, then there exists an element
of order pm in G/G′. However |G/G′| ≤ k. Hence k ≥ pm. This implies
n < kp.

Suppose that x + ψ(x) ≡ 0 (mod x2). In this case

θ(u2) = x2 + (ψ(x))2 + (xψ(x))2 ≡ 2x2 (mod x3).

Hence if 2pm ≤ n and p > 2, then k ≥ |G/G′| ≥ pm. Choose m such that
2pm ≤ n < 2pm+1. If p > 2, then by the above considerations n ≤ 2kp.

Now let p = 2. As before we obtain that ψ(x) ≡ x + x2 (mod x3). In
this case

θ(u3) = x3(ψ(x))3 + x3 + (ψ(x))3 ≡ x3 + (ψ(x))3 (mod x5).

But (x + x2)3 ≡ x3 + x4 (mod x5), so that n < 4kp. The lemma is
proved. ¤

Lemma 2.3. Let R = L + L̂y be a finite nilpotent algebra over a

field of characteristic p with adjoint group G = R◦. If |G : G′| ≤ k, then

dimR ≤ 4kp + 2k + 1.

Proof. By Lemma 2.1 R has a basis {x, x2, . . . , xn, y, xy, . . . , xmy}.
Suppose that dimL = n. Then xmy 6= 0 = xm+1y. Since |G : G′| ≤ k we
have d(G) ≤ k. By Lemma 2.1 this implies that n−m− 1 ≤ kp/(p− 1).
Hence n − m ≤ 2k + 1. It is easy to see that Rm+1 = 〈xm+1, . . . , xn〉 is
an ideal of R with dimension n −m. Hence the adjoint group G1 of the
algebra R/Rm+1 is a homomorphic image of G and so |G1 : G′

1| ≤ k. By
Lemma 2.2 we have dimR/Rm+1 ≤ 4kp. Therefore dimR ≤ 4kp + 2k + 1,
and the lemma is proved. ¤
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3. Some general lemmas

The following lemma generalizes a result of Stack [7] for commutative
nilpotent algebras.

Lemma 3.1. Let R be a nilpotent algebra over an arbitrary field F .

If di ≤ 2 for some i > 1, then dj ≤ di for each j ≥ i and there is an

element x ∈ R such that xRi−1 + Ri+1 = Ri or Ri−1x + Ri+1 = Ri.

Proof. If di = 1, then xRi−1 + Ri+1 = Ri for some x ∈ R. Thus the
lemma is obvious in this case.

Suppose now that di = 2. It is clear that Ri is generated by monomials
of the form x1x2 . . . xj , where x1, x2, . . . , xj ∈ R and j ≥ i. Therefore
there are two monomials e1 = x1x2 . . . xi and e2 = y1y2 . . . yi such that
〈e1, e2〉 ⊕ Ri+1 = Ri. Let x = xi, y = yi and u1 = x1x2 . . . xi−1, u2 =
y1y2 . . . yi−1. Thus e1 = u1x, e2 = u2y.

Suppose that u1 and u2 are linearly independent and Ri 6= Ri−1x +
Ri+1, Ri 6= Ri−1y + Ri+1. Then u1y = µe2 mod Ri+1 and u2x = λe1 mod
Ri+1 with µ, λ ∈ F . If the elements e1 + µe2 and λe1 + e2 are linearly
independent modulo Ri+1, then u1(x + y) and u2(x + y) form a basis
of Ri/Ri+1, so that Ri = Ri−1(x + y) + Ri+1. Hence these elements
are linearly dependent which implies λµ = 1. Now we may assume that
u1x = e1, u1y = e2. In this case we have u1x = x1(x2 . . . xi−1x) and
u1y = x1(x2 . . . xi−1y), which proves that Ri = x1R

i−1 +Ri+1, as claimed.
Show that di+1 ≤ di. By the above considerations we may assume

that Ri = Ri−1x + Ri+1 for some x ∈ R. Then Ri+1 = RRi = R(Ri−1x +
Ri+1) = Rix + Ri+2. Therefore

Ri+1 ⊆ (〈e1, e2〉+ Ri+1)x + Ri+2 ⊆ 〈e1x, e2x〉+ Ri+2.

This shows that di+1 = dim Ri+1/Ri+2 ≤ 2 = di. ¤
Lemma 3.2. Let R be a nilpotent algebra such that di = di+1 =

d ≤ 2 for some 1 < i < n and Ri = xRi−1 + Ri+1 for some x ∈ R.

Then Ri = 〈xi, xi+1, . . . , xn, xi−1y, . . . , xmy〉 for some y ∈ R, m ≤ n,

xn+1 = xm+1y = 0. If di = 1, then Ri = 〈xi, xi+1, . . . , xn〉. Moreover

R = D + S where S = rAnn(xi−1) and D = 〈〈x, y〉〉.
Proof. If d = 1 then clearly Ri = Li = xi−1L for some subalgebra

L = 〈〈x〉〉. The lemma is evident in this case.
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Suppose that d = 2. We have Ri = xRi−1 + Ri+1 for some x ∈ R.
Since di+1 = 2 it follows that Ri = 〈e1, e2〉 + Ri+1 for some e1, e2 ∈ Ri

and Ri+1 = 〈xe1, xe2〉 + Ri+2. On the other hand, there are elements
v1, v2 ∈ Ri−1 such that xv1 = e1, xv2 = e2. Thus w1 = xe1 = x2v1, w2 =
xe2 = x2v2. Choose an element e1 such that e1 = xjba with xjb ∈ Ri−1

and j is the largest possible such exponent. Then we have w1 = xj+1ba

and xj+1b ∈ Ri. If xj+1b ∈ Ri+1, then w1 = xj+1ba ∈ Ri+2, which is
not the case. Therefore we may replace e1 or e2 by xj+1b, which gives a
contradiction. Therefore, we may assume that e1 = xi and w1 = xi+1.
Using the same arguments, we can easily prove that e2 can be chosen
in the form xi−1y for some y ∈ R. Let D = 〈〈x, y〉〉. It is clear that
Ri = xi−1D + Ri+1. It follows by induction that Rj = xj−1D + Rj+1 for
each j ≥ i. In particular, it is easy to see that Ri ⊆ xi−1D = Di. In this
case Ri = 〈xi, . . . , xn, xi−1y, . . . , xmy〉 for some integers m ≤ n such that
xn+1 = 0 = xm+1y. Suppose that h ∈ R. Then we have xi−1h ∈ Ri. It
is obvious that xi−1h = xi−1l for some l ∈ D, since Ri ⊆ Di = xi−1D.
Therefore xi−1(h − l) = 0, i.e. h − l ∈ rAnn(xi−1) = S. In this case
R = D + S, and the lemma is proved. ¤

Lemma 3.3. Let R be a nilpotent algebra containing a subspace

M = L + L̂y for some y ∈ R and L = 〈〈x〉〉 such that Ri ⊆ xi−1M

for some 1 < i. Then R = M + S where S = rAnn(xi−1) and dimS is

(d(R), i)-bounded.

Proof. Suppose that Ri ⊆ M and h ∈ R. Then xi−1h ∈ Ri ⊆
xi−1M and xi−1h = xi−1m for some m ∈ M . It follows that xi−1(h −
m) = 0, so that h ∈ M + rAnn(xi−1). In this case Ri+1 ⊆ xiM and
R/Ri+1 has (d(R), i)-bounded dimension. Hence dim(S + Ri+1)/Ri+1 =
dimS/(S ∩ Ri+1) is (d(R), i)-bounded. On the other hand, S ∩ Ri+1 =
S ∩ xiM . By Lemma 3.2 we may assume that Ri has a basis of the
form {xi, xi+1, . . . , xn, xi−1y, xiy, . . . , xmy} with xn+1 = 0 = xm+1y. If
s ∈ S ∩ Ri+1, then s = l1 + l2y with l1, l2 ∈ L. Since xi−1s = 0 it is clear
that xi−1l1 = xi−1l2y = 0. Hence l1 = xn−i+1l′, l2 = xm−il′′ for m > i,
where l′, l′′ ∈ L. In each case dim(S ∩ Ri+1) ≤ 2i. Therefore dimS is
(d(R)), i)-bounded. The lemma is proved. ¤
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Lemma 3.4. Let R, M , S and i be as in the previous lemma. Then

there exists an ideal T of R such that R = M + T and dimT is (d(R◦), i)-
bounded.

Proof. By Lemma 3.3 we have R = M + S, where S is a right
annihilator of xi−1, whose dimension is (d(R), i)-bounded. Clearly, S is
a right ideal of R. If j ≥ dimS, then SRj = 0. Indeed, if this is not
true, then sz1z2 . . . zj 6= 0 for some z1, z2, . . . zj ∈ R and s ∈ S. By the
well-known Frobenius lemma (see, for instance [5]) the elements

sz1z2 . . . zj , sz1z2 . . . zj−1, . . . , sz1, s

are linearly independent and are contained in S. Since dimS ≤ j this is a
contradiction.

Now S ⊆ lAnn(Rj) = T for some j, which is (d(R), i)-bounded. Since
R = M + S and S ⊆ T , we have R = M + T . It is obvious that T is a left
ideal of R. Clearly, ThRj ⊆ TRj+1 = 0 for every h ∈ R. Hence Th ⊆ T

for each h ∈ R, and so T is also a right ideal of R.
Next we show that dimT is (d(R◦), i)-bounded. Obviously

T ⊆ lAnn(xj). Hence dimT ∩ L ≤ j. By the isomorphisms theorem we
have R/T ' M/M ∩T and M/M ∩T = L1 + L̂1z for some z ∈ M/M ∩T ,
L1 ' L/(L∩T ). It is easy to see that dimL1 = n−j, where n = dim L. By
Lemma 2.1 we have dimR/T = n−j+m1+1 with n−j−m1 ≤ 2d(R◦). On
the other hand, m1 +n− j +1 = dimM/(M ∩T ) = dimM −dim(M ∩T ).
Hence dim(M ∩ T ) = dimM − (m1 + n − j + 1) ≤ n − m1 + j. Since
n − m1 ≤ j + 2d(R◦) it follows that dim(M ∩ T ) is (d(R◦), i)-bounded.
Since S ⊆ T and R = M + S, we have that T = (T ∩M) + S. Therefore
dimT is (d(R◦), i)-bounded. The lemma is proved. ¤

4. Proof of the theorem

Let R be a finite nilpotent p-algebra and G = R◦ its adjoint group.
It follows from the hypothesis of the theorem, that |G : G′| ≤ pk. Hence
d(R) ≤ d(G) ≤ k. We show that there exists an integer i depending only
on k such that di = dim Ri/Ri+1 ≤ 2.

Let n1, n2, n3 denote the number of di = 1, di = 2 or di ≥ 3 re-
spectively. It follows from Lemma 2.1 that if di ≤ 2, then di+1 ≤ di.
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Prove that n1 ≤ k − 1. Denote by n(R) = n the nilpotency class of R.
Suppose that di−1 > 1 and di = 1. It is obvious that n1 = n − i. By
Lemma 3.1 we have R = L + S, where S = lAnn(xi−1) is a left ideal of
R and L = 〈〈x〉〉 for some x ∈ R. However this is also a right ideal since
Slxi−1 = Sxi−1l = 0 for each l ∈ L. Hence there exists a natural homo-
morphism R → L/(L∩S) with kernel S. Note that dim(L∩S) = i−1 and
dimL/(L∩S) = n− i+1. Since L is commutative, then |G : G′| ≥ pn−i+1.
It follows from |G : G′| ≤ pk that n− i + 1 ≤ k and n1 = n− i ≤ k − 1 as
claimed.

Since n = n(R) = n1 + n2 + n3 and dimR ≥ n1 + 2n2 + 3n3, then we
have

n1 + 2n2 + 3n3 = 3n− n2 − 2n1 ≤ dimR ≤ k + 2(m− t),

where t is the number of µi such that µi ≥ 3. Recall that 0 ⊂ Rn ⊂ · · · ⊂
R2 ⊂ R is a lower central series of R and 1 = γm(G) ⊂ · · · ⊂ γ2(G) ⊂
γ1(G) = G = R◦ is the lower central series of G. Hence n ≥ m. Now we
have

n + 2m− n2 − 2n1 ≤ 3n− n2 − 2n1 ≤ k + 2(m− 1) ≤ k + 2m.

Therefore n3 = n − n2 − n1 ≤ k + n1 ≤ 2k − 1. It follows that for some
i ≤ n3 + 1 ≤ 2k we have di ≤ 2. By Lemma 3.4 there exists an ideal T

of R with (k, p)-bounded dimension such that R/T = L + L̂y for some
one-generator subalgebra L of R/T and y ∈ R/T . By Lemma 2.3 the
dimension of R/T is also (k, p)-bounded. The theorem is proved.

5. Proof of the corollary

Let the group G with d(G) ≤ 2 be the adjoint group of a nilpotent
p-algebra R. Then dimR/R2 ≤ 2. Clearly the class of the adjoint group
of R/R3 is at most 2 and its commutator subgroup has order at most 2.
Thus dimR2/R3 ≤ 2 and by Lemma 3.1 we have di ≤ 2 for each i ≥ 2.
Hence the order of G is bounded by Theorem 1.1. The corollary is proved.
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