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Distance functions based on neighbourhood sequences

By BENEDEK NAGY (Debrecen)

Abstract. P. P. Das et al. [2] characterized the periodic neighbourhood
sequences which provide a metric and they gave an algorithm which provides a
shortest path between two arbitrary points with a given neighbourhood sequence
in the n-dimensional digital plane. In [4] Fazekas and his co-authors introduced
the concept of generalized neighbourhood sequences, and investigated their struc-
ture in the finite and also in the ∞-dimensional plane. The purpose of this paper
is to extend the algorithm of [2] to generalized neighbourhood sequences, both in
case of finite and infinite dimension and prove its correctness. Moreover we prove
necessary and sufficient conditions, when distance functions based on generalized
neighbourhood sequences define a metric in arbitrary dimensional digital space.

1. Introduction

In digital geometry we use a discrete space, i.e., points can have
only integer co-ordinates. We say that two different points in Zm are
k-neighbours (k,m ∈ N, k ≤ m), if their corresponding coordinate values
are equal up to at most k exceptions, and the difference of the exceptional
values are at most 1. After fixing k, we may define the distance of two
points as the number of steps of the shortest path between these points,
where a step means moving from a point to one of its k-neighbours. It
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is easy to check that by this definition we get a metric on Zm, for each
k ∈ {1, 2, . . . , m}, and that these metrics are different.

To obtain these metrics we fixed k in the beginning, in other words,
we used the same k in each step for walking from a point p to a point q

in Zm. The situation is more complicated if we may change the value of
k after every step. A sequence (bi)∞i=1 is called a neighbourhood sequence
in Zm, if bi ∈ {1, . . . , m} (i ∈ N). The sequence is periodic, if there is
an l ∈ N, such that bi+l = bi for every i ∈ N. The concept of periodic
neighbourhood sequences was introduced in [2], while the general notion
in [4]. (We mention that the sequences in [2] were called “neighbourhood
sequences” while in [4] “generalized neighbourhood sequences”, but for
simplicity we use the above definition.) By the help of a neighbourhood
sequence (bi)∞i=1 we may define the distance of p, q ∈ Zm in the following
way. We take the length of a shortest path from p to q, but at the i-th
step now we may move from a point to another if and only if they are
bi-neighbours. Certainly this notion is a generalization of the original one,
as we may choose bi = k for each i ∈ N, with any k ∈ {1, . . . , m}.

In [2] the authors gave an algorithm which generates a shortest path
between any p, q ∈ Zm, in case of periodic neighborhood sequences, but
they did not prove that their algorithm works properly. In this paper we
provide an extension of this algorithm, which determines a shortest path
between any p, q ∈ Zm, and if such a path exists, then it works also in
Z∞, with respect to arbitrary neighbourhood sequences. We prove that
our algorithm is correct.

As we mentioned, the neighbourhood sequence (bi)∞i=1 with bi = k

(i ∈ N) generates a metric on Zm (m ∈ N) for any 1 ≤ k ≤ m. However, it
is easy to find neighbourhood sequences, even periodic ones, such that the
distances with respect to these sequences do not provide metrics on Zm. In
[2] the authors gave a nice characterization of the periodic neighbourhood
sequences, for which the above defined distance functions provide a metric
on Zm. In this paper we extend this result to arbitrary neighbourhood
sequences in Zm. It turns out that in fact the same criterion can be used
for the characterization, as in [2]. However, to prove this we use a differ-
ent method, which yields a considerable simplification in the formulation
and proof of the assertion. We generalize our result also to the infinite
dimensional digital plane Z∞.
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2. Notation and definitions

Throughout the paper N will denote an arbitrary element of the set
N∪{∞}. Let ZN be the N -dimensional digital plane, i.e., ZN = {(z(i))N

i=1 :
z(i) ∈ Z}. We shall refer to the elements of ZN as points.

Definition 2.1. A function d : ZN × ZN → R ∪ {∞} is called a metric
on ZN , if it satisfies the following conditions:

a) ∀p, q ∈ ZN : d(p, q) ≥ 0, and d(p, q) = 0 if and only if p = q,

b) ∀p, q ∈ ZN : d(p, q) = d(q, p),

c) ∀p, q, r ∈ ZN : d(p, q) + d(q, r) ≥ d(p, r) (triangle inequality).

We adopt some definitions from [2] and [4].

Definition 2.2. Let p and q be two points in ZN . The i-th coordinate
of the point p is indicated by p(i). Let k be an integer with 1 ≤ k ≤ N .
The points p and q are k-neighbours, if the following two conditions hold:
• |p(i)− q(i)| ≤ 1 for all i,
•

∑N
i=1 |p(i)− q(i)| ≤ k.

And the points p, q ∈ Z∞ are ∞-neighbours, if the first condition holds.

Definition 2.3. In the N -dimensional space the infinite sequence B =
(bi)∞i=1 (1 ≤ bi ≤ N) is called an ND-neighbourhood sequence (or shortly
ND-n.s.). If for some l ∈ N, bi = bi+l holds for every i ∈ N, then B is
called periodic with period l, or simply l-periodic. An ND-n.s. is periodic,
if it is l-periodic with some l ∈ N.

Definition 2.4. Let p and q be two points in ZN and B = (bi)∞i=1 an
ND-n.s. A finite point sequence Π(p, q; B) of the form p = p0, p1, . . . , pm= q,
where pi−1, pi ∈ ZN are bi-neighbours for 1 ≤ i ≤ m, is called a B-path
from p to q. We write m = |Π(p, q;B)| for the length of the path.

Note that the length of the path p = p0 = q is zero independently of
the n.s. B.

Remark 2.5. In case of finite dimension, there is a B-path between
any two points, with any neighbourhood sequence B. However, in Z∞
it is possible that there is no B-path between two points. For example
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if the set {|p(i) − q(i)| : i ∈ N} is unbounded, then there is no neigh-
bourhood sequence B, for which a B-path would exist between the points
p = (p(i))∞i=1 and q = (q(i))∞i=1.

Definition 2.6. Let p and q be two points in ZN and B an ND-n.s. If
there is no B-path between these points, then we put d(p, q; B) = ∞. Oth-
erwise denote by Π∗(p, q; B)a shortest path from p to q, and set d(p, q; B) =
|Π∗(p, q;B)|. We call d(p, q; B) the B-distance of p and q.

Definition 2.7. Let B1 and B2 be two neighbourhood sequences in ZN .
We say that B1 is faster than B2, if

d(p, q; B1) ≤ d(p, q; B2) for all p, q ∈ ZN .

We denote this relation by B1 w∗ B2.

The relation w∗ was introduced by Das [3] in the two dimensional
space, and by Fazekas et al. in [4] for higher dimensions.

For later use we need to introduce some further notations.

Notation 2.8. Let p and q be two points in ZN . Put w(i) = |p(i)−q(i)|
for all i, and w = (w(i))N

i=1. The point w is called the absolute difference
of p and q.

Definition 2.9. Let n ∈ N and B = (bi)∞i=1 an ND-n.s. Put b
(n)
i =

min(bi, n) and B(n) =
(
b
(n)
i

)∞
i=1

. The sequence B(n) is called the n-

dimensional limited sequence of B. Denote by fk(i) the i-th subsums
of the k-dimensional limited sequence of B, i.e., put

fk(i) =





i∑
j=1

b
(k)
j , if 1 ≤ i,

0, if i = 0.

Definition 2.10. Let B = (bi)∞i=1 an ND-n.s. The sequence B(j) =
(bi)∞i=j is called the j-shifted sequence of B.

The following lemma is very useful if we would like to decide numeri-
cally whether an ND-n.s. is faster or not than another one.

Lemma 2.11. Let B1 and B2 be two ND-n.s.-es. Then,

d(p, q; B1) ≤ d(p, q;B2), for all p, q ∈ ZN ,
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if and only if

f
(1)
k (i) ≥ f

(2)
k (i), for all i, k ∈ N, 1 ≤ k ≤ N,

where f
(1)
k (i) and f

(2)
k (i) correspond to B1 and B2, respectively.

Proof. The proof of this result is in [4]. See Theorem 3.2 for finite
N and Theorem 4.10 for the ∞-dimensional digital space. ¤

Remark 2.12. As a simple consequence of the previous lemma we ob-
tain that if B1 and B2 are ∞D-n.s.-s with B1 w∗ B2, then for every i ∈ N
among the first i elements of B1 there are at least as many ∞ symbols as
among the first i elements of B2.

3. Minimal path and path length

In this section we give an algorithm which provides a shortest path
between arbitrary two points in ZN , if such a path exists. As we mentioned
in Remark 2.5 it is possible that there is not path between two given points
with a given n.s. in infinite dimension. The following lemma provides a
criterion for the existence of a path between two points.

Lemma 3.1. Let p and q be given points in Z∞, and B a ∞D-n.s.

There is a B-path between p and q if and only if the following two condi-

tions hold:

• the set {w(i)} is finite, where w is the absolute difference of p and q,

• the sequence B contains the ∞ symbol at least k times, where k is the

maximal value in w, which occurs infinitely many times.

Proof. The statement is a simple consequence of Theorem 4.8. in [4].
¤

Remark 3.2. If the sequence B is periodic, and it contains the ele-
ment ∞, then B contains ∞ at infinitely many positions.

The following algorithm provides one of the shortest B-paths between
two arbitrary points in ZN , if such a path exists. This algorithm is based
on the algorithm in [2], which works in finite dimension with periodic
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sequences only. The main difference between the original algorithm and
the following one is in step 4, where we may use non periodic and/or
∞D-n.s.

Algorithm 3.3. Input: An ND-n.s. B = (bi)∞i=1 and p, q ∈ ZN , such

that d(p, q; B) < ∞.

• step 1. Let w(0) be the absolute difference of p and q, t(i) = sgn(p(i)−
q(i)), for all i, and put j = 0 and Π = (p).

• step 2. If w(j)(i) = 0 for every i then goto step 8, else set j = j + 1.

• step 3. Put w(j) = w(j−1).

• step 4. If bj is finite, then select the largest bj entries of w(j). If bj is

infinite, then select all the entries of w(j).

• step 5. For each selected w(j)(i) with w(j)(i) 6= 0, let w(j)(i) =
w(j−1)(i)− 1.

• step 6. Append to the path Π the point xj defined by xj(i) = q(i) +
w(j)(i)t(i) for all i.

• step 7. Goto 2.

• step 8. Output Π as a minimal B-path between p and q, and j as the

length of this path.

We illustrate our algorithm on the following simple example.

Example 3.4. Let B = (3,∞, 2, 2, 2, . . . ) (bi = 2 for i ≥ 3) an ∞D-n.s.,
and p = (3, 2, 2, 2, 1, 1, 1, . . . ) (p(i) = 1 for i ≥ 5), and q = (0)∞i=1.

The algorithm provides the following path:

Π = ((3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, . . . ) = p,

(2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, . . . ),

(1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, . . . ),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . ) = q).

Thus, the B-distance of p and q is d(p, q; B) = 3.

The following theorem is about the correctness of our algorithm. Since
it is an extension of the algorithm in [2] this theorem proves that the
original algorithm correct also. (In [2] there is not a proof for that.) We
use the term step as step of the algorithm, however some steps are complex.
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Theorem 3.5. Algorithm 3.3 terminates after finitely many steps and

provides a B-path with minimal length between the points p and q.

Proof. Observe that for every j ≥ 0, xj−1 and xj are bj-neighbours.
Moreover, by its definition, w(j) is the absolute difference of xj and q. Let
p = y0, y1, y2, . . . , yj , . . . be any point sequence, where yj−1 and yj are
bj-neighbours for j ≥ 0, and let v(j) be the absolute difference of yj and q.
We show that if v(j) is identically zero for some j ≥ 0, then so is w(j). For
this purpose, put for t ≥ 0

‖v(j)‖t =
N∑

i=1

max(v(j)(i)− t, 0), (j ≥ 0),

and in particular

‖w(j)‖t =
N∑

i=1

max(w(j)(i)− t, 0), (j ≥ 0).

We even claim that for every t ≥ 0 and j ≥ 0 we have ‖w(j)‖t ≤ ‖v(j)‖t.
We proceed by induction. For j = 0, as x0 = y0 = p, we certainly have
w(0) = v(0), whence ‖w(0)‖t = ‖v(0)‖t (t ≥ 0). Suppose, that for some
j ≥ 0 we have

‖w(j)‖t ≤ ‖v(j)‖t (t ≥ 0).

We should prove that the same is valid with j + 1 in place of j. Suppose
the contrary and choose an l such that

‖w(j+1)‖l > ‖v(j+1)‖l.

Now we distinguish three cases.
First, suppose that ||w(j+1)||l = ∞. Then we also have ‖w(j)‖l = ∞.

Hence, by ‖w(j)‖l ≤ ‖v(j)‖l we get ‖v(j)‖l = ∞. Therefore by ‖v(j+1)‖l <

∞, bj = ∞ and ‖v(j)‖l+1 < ∞. Combining this with the induction hy-
pothesis for t = l + 1, we get ‖w(j)‖l+1 < ∞. However, as ‖w(j)‖l+1 < ∞
and bj = ∞, in view of Step 5 of the Algorithm ‖w(j+1)‖l < ∞. This is a
contradiction, so this case cannot hold.

Now, we assume that ‖w(j+1)‖l < ∞, and also ‖w(j)‖l < ∞. Then by
‖v(j+1)‖l < ∞ we have ‖v(j)‖l+1 < ∞. If ‖v(j)‖l < ∞ is also true, then
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combining this with the induction hypothesis for t = l + 1, we obtain

‖v(j)‖l − ‖w(j)‖l ≥ (‖v(j)‖l − ‖v(j)‖l+1)− (‖w(j)‖l − ‖w(j)‖l+1).

Here, the right hand side equals the difference of the numbers of entries in
the sequences v and w, respectively, which are larger than l. In the (j+1)th
step we can modify maximum these amounts of coordinate values in v

and w, respectively. So, this inequality immediately implies ‖w(j+1)‖l ≤
‖v(j+1)‖l, which is a contradiction. On the other hand, if ‖v(j)‖l = ∞, then
by ‖v(j+1)‖l < ∞ we get bj = ∞. In this case, in view of Step 5 of the
Algorithm, we have ‖w(j+1)‖l = ‖w(j)‖l+1. Certainly, ‖v(j+1)‖l ≥ ‖v(j)‖l+1

is also valid. Hence, by the induction hypothesis we get a contradiction,
and our statement is proved in this case.

Finally, assume that ‖w(j+1)‖l < ∞, but ‖w(j)‖l = ∞. Then again
bj = ∞, and by the previous argument we get ‖w(j+1)‖l = ‖w(j)‖l+1 and
‖v(j+1)‖l ≥ ‖v(j)‖l+1. By using the induction hypothesis with t = l + 1 we
get ‖w(j+1)‖l ≤ ‖v(j+1)‖l, which is a contradiction.

Thus, we proved that

‖w(j)‖t ≤ ‖v(j)‖t, for every j ≥ 0, t ≥ 0,

which implies that if v = (0)N
i=1 then so is w. By our assumption

d(p, q; B) < ∞, there is a minimal B-path p = y0, y1, . . . , ym = q between
p and q. Hence, p = x0, x1, . . . , xj = q is also a minimal path, with j = m.
Thus, the algorithm terminates after finitely many steps, and outputs a
minimal B-path between p and q. ¤

4. Condition for a distance to be a metric

The distance based on an arbitrary neighbourhood sequence in general
does not satisfy the conditions of a metric. However, in geometry those
distances are useful, which have this property. In this section we give a
necessary and sufficient condition for a distance based on a neighbourhood
sequence to be a metric.

Lemma 4.1. Let p and q be arbitrary points in Z∞, and let the ∞D-

n.s. B1 be faster than the ∞D-n.s. B2 (i.e., B1 w∗ B2). If there is no

B1-path between p and q, then does not exist B2-path between them, too.
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Proof. From Definition 2.7, if d(p, q;B1) = ∞ and B1 is faster than
B2, then d(p, q; B2) = ∞. ¤

The next theorem is the extension of the result of [2], concerning
periodic neighbourhood sequences in finite dimension, to the general case.
To prove their result, the authors in [2] introduced relatively complicated
geometric notions, such as wave-front of a neighbourhood sequence, etc.
To formulate and prove our result we need only the simple concepts of the
faster relation and the shifted sequence.

Theorem 4.2. The distance function based on an ND-n.s. B is a

metric on ZN , if and only if B(i) is faster than B for all i ∈ N.

Proof. First, we prove sufficiency. The validity of properties a) and
b) of Definition 2.1 is trivial; it can be seen, e.g., following Algorithm 3.3.
Indeed, the distance d(p, q;B) depends only on the absolute difference w

of p and q, and on B. As the definition of w is symmetric in p and q,
thus d(p, q; B) = d(q, p;B). It is clear, that the distance is zero if and
only if the absolute difference of the points has only zero elements, i.e.,
if the points are the same. Otherwise, the distance is a positive integer
or infinite. Therefore all distances generated by a n.s. satisfy these two
properties. Hence enough to deal with the triangle inequality.

Now we prove that property c) is true if and only if B(i) is faster
than B for all i ∈ N. Let p, q, r ∈ ZN , such that their distances are finite.
Then, we can find a B-path Π between p and r which is a concatenation
of a minimal B-path between p and q, and a minimal B(i)-path between
q and r, where i = d(p, q;B) + 1, and B(i) is the i-shifted sequence of B.
Hence,

|Π| = d(p, q; B) + d(q, r;B(i)).

The assumption that B(i) is faster than B means that

d(q, r; B(i)) ≤ d(q, r; B).

Thus,
|Π| ≤ d(p, q; B) + d(q, r;B).

By the definition of the B-distance we have

d(p, r;B) ≤ |Π| ,
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hence
d(p, r; B) ≤ d(p, q; B) + d(q, r;B).

Now, suppose that not all the distances are finite between p, q and r. If
d(p, q; B) = ∞ or d(q, r; B) = ∞ then c) is trivially valid. Assume, that
d(p, r;B) = ∞, but d(p, q; B) = s < ∞. If there would be a B(s)-path
between q and r, then there would also be a B-path between p and r. (We
could concatenate a shortest B-path between p and q, with length s, and
a B(s)-path between q and r.) As the shifted sequence B(s) is faster than
B, by Lemma 4.1 there is no B-path between q and r. So, d(q, r; B) = ∞,
and c) is valid in this case, too.

Now, we prove necessity. Assume that for some j ∈ N, B(j) is not
faster than B, but d(B) has property c). In this case, by Definition 2.7
there exist p, q ∈ ZN such that d(p, q; B(j)) = k, and d(p, q; B) < k. The
B-distance of two points depends only on their absolute difference, so we
may assume that the coordinate values of p are non-negative, and q is the
origin: p(i) ≥ 0 and q(i) = 0, for all i. Define the point r ∈ ZN in the
following way:

r(i) = −|{bl : l ≤ j and bl ≥ i}| (i ≥ 1).

By our algorithm, it is easy to see that d(q, r;B) = j and q is an element
of one of the shortest paths between p and r. Then,

d(p, r; B) = d(q, r;B) + d(p, q; B(j)) = j + k,

as a shortest B-path between p and r can be obtained as a concatenation
of a shortest B(j)-path from p to q and a shortest B-path from q to r.
Thus,

d(p, q; B) + d(q, r; B) < k + j = d(p, r; B).

But we assumed that d(p, q; B) has property c). This is a contradiction,
and the proof is complete. ¤

Remark 4.3. By Lemma 2.11 one can decide, whether an ND-n.s.
defines a metric or not.
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5. Conclusions

In this paper we presented an extended algorithm of finding a short-
est path which works with generalized neighbourhood sequences, both in
case of finite and infinite dimension. Moreover a necessary and sufficient
condition, when distance functions based on generalized neighbourhood se-
quences define a metric in arbitrary dimensional digital space was derived.
Using the results of this paper one can measure distances in arbitrary di-
mensional digital space with arbitrary neighbourhood sequences. In the
case when one is interested only on metrics, s/he can decide which neigh-
bourhood sequences generate metrics by the help of our last theorem.
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