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On some inequalities for positively and negatively
dependent random variables with applications

By PRZEMYSÃLAW MATUÃLA (Lublin)

Abstract. We present elementary proofs of some inequalities for the dif-
ference between a joint distribution or a density function and the product of
their marginals. The inequalities obtained are applied to the consistency results
of the kernel density estimator for positively and negatively dependent random
variables.

1. Introduction

Positively and negatively dependent random variables (r.v.’s) found
applications in statistical mechanics, reliability theory and mathematical
statistics (cf. [3], [7], [8]). In this paper we will focus our attention on
quadrant dependent and associated r.v.’s. Let us recall the notion of posi-
tive and negative quadrant dependence introduced by Lehmann [6]. The
random variables X and Y are said to be positively quadrant dependent
(PQD) if

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x) P (Y ≤ y) (1)
and negatively quadrant dependent (NQD) if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x) P (Y ≤ y) (2)

for all x, y ∈ R.
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These definitions were extended to the multivariate case by Esary

et al. and Joag-Dev and Proschan (cf. [4], [5]) who introduced positive
association (PA) and negative association (NA). The random variables
X1, . . . , Xn are PA if

Cov (f (X1, . . . , Xn) , g (X1, . . . , Xn)) ≥ 0

for any coordinatewise nondecreasing functions f, g : Rn → R for which
this covariance exists. The random variables X1, . . . , Xn are NA if for any
nonempty and disjoint subsets A,B ⊂ {1, 2, . . . , n}

Cov (f (Xi, i ∈ A) , g (Xj , j ∈ B)) ≤ 0

for any coordinatewise nondecreasing functions f : RA → R, g : RB → R,
for which this covariance exists. An infinite collection (Xn)n∈N of r.v.’s is
PA (or NA) if every finite subcollection is PA (NA).

For any absolutely continuous r.v.’s X and Y let us denote by FX,Y (x,y)
and FX(x), FY (y) their joint distribution function (d.f.) and marginal
d.f.’s; furthermore let us denote by fX,Y (x, y) and fX(x), fY (y) the joint
and marginal probability density functions (p.d.f.’s). Let us also introduce
the following notation:

HX,Y (x, y) = P (X ≤ x, Y ≤ y)− P (X ≤ x)P (Y ≤ y)

= FX,Y (x, y)− FX(x)FY (y),

f̃X,Y (x, y) = fX,Y (x, y)− fX(x)fY (y).

For associated random variables X and Y the upper bounds for
supx,y∈R |HX,Y (x, y)| in terms of Cov1/3(X,Y ) were obtained in [1] and
[9]. Bounds for supx,y∈R

∣∣f̃X,Y (x, y)
∣∣ in terms of Cov1/5(X, Y ) were proved

in [10]. These inequalities were applied to problems of kernel estimation
of the density and distribution function and were used in studying con-
vergence of empirical function based on associated r.v.’s. Our goal is to
obtain these inequalities by elementary methods not involving character-
istic functions. As an application we investigate consistency of a kernel
estimator (similar results were studied in [10] and [2]).
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2. Inequalities

Let us denote by

CovH(X, Y ) =
∫ +∞

−∞

∫ +∞

−∞
HX,Y (x, y)dxdy

=
∫ +∞

−∞

∫ +∞

−∞
(P (X ≤ x, Y ≤ y)− P (X ≤ x)P (Y ≤ y)) dxdy

(3)

the so called Hoeffding covariance (cf. [6]) and note that if Cov(X, Y ) =
EXY − EXEY exists, then Cov(X,Y ) = CovH(X,Y ). The Hoeffding
covariance may be finite while the usual covariance is not defined, further-
more for PQD or NQD r.v.’s CovH(X, Y ) always exists, although it may
be infinite (as is further explained in Remark 1).

Theorem 1. Let X and Y be PQD or NQD r.v.’s with densities fX

and fY and such that CovH(X, Y ) is finite. If

‖fX‖∞ < +∞ and ‖fY ‖∞ < +∞ (4)

then

sup
x,y∈R

|HX,Y (x, y)| ≤ C |CovH(X, Y )|1/3 , (5)

where C = 3
2

3
√

2 (‖fX‖∞ + ‖fY ‖∞)2/3 and

‖f‖∞ = inf
{
M : µ{x ∈ R : |f(x)| > M} = 0

}

is the essential supremum of f with respect to the Lebesgue measure µ

on R.

Proof. Assume that X and Y are PQD. It is easy to see that for
continuous r.v.’s

HX,Y (x, y) = P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y). (6)

Let a > 0 be fixed and define the set K as follows:

K = Ka(x, y) =
{
(t, s) ∈ R2 : x− a ≤ t ≤ x, y − a ≤ s ≤ y

}
.
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Now, consider x, y as fixed. For (t, s) ∈ K we have

CovH(X, Y ) =
∫ +∞

−∞

∫ +∞

−∞
HX,Y (t, s)dtds ≥

∫ ∫

K
HX,Y (t, s)dtds

≥
∫ ∫

K
(P (X ≥ t, Y ≥ s)− P (X ≥ x− a)P (Y ≥ y − a)) dtds

≥ a2 (P (X ≥ x, Y ≥ y)− P (X ≥ x− a)P (Y ≥ y − a)) .

(7)

From (7) and by the PQD property we get, for any x, y ∈ R and a > 0,
the following inequality

P (X ≥ x, Y ≥ y)− P (X ≥ x− a)P (Y ≥ y − a) ≤ CovH(X, Y )
a2

. (8)

Now we get, by (4) and (8), the following bounds for HX,Y (x, y):

0 ≤ HX,Y (x, y) = [P (X ≥ x, Y ≥ y)− P (X ≥ x− a)P (Y ≥ y − a)]

+ [P (X ≥ x− a)P (Y ≥ y − a)− P (X ≥ x)P (Y ≥ y)]

≤ CovH(X,Y )
a2

+ P (x− a ≤ X < x) + P (y − a ≤ Y < y)

≤ CovH(X,Y )
a2

+ a(‖fX‖∞ + ‖fY ‖∞).

(9)

Minimizing the right-hand side of (9) with respect to a we get (5). If X,Y

are NQD then X,−Y are PQD and HX,Y (x, y) = −HX,−Y (x,−y) and the
conclusion follows from the part already obtained. ¤

Remark 1. In [1] and [9] (5) was proved for associated r.v.’s with
finite second moments. In [9] we find the explicit form of the constant
C = max(2/π2, 45 ‖fX‖∞ , 45 ‖fY ‖∞). We will give an example which
shows that the bound obtained in [9] may be improved upon. Furthermore
our Theorem 1 is valid for r.v.’s without any moment assumptions. Let
X, Y , ξ be independent r.v.’s such that X, Y have the same d.f.

F (x) =





1− 1
xp

, x ≥ 1

0, x < 1

for some p > 0 and ξ is such that P (ξ = 0) = P (ξ = 1) = 1/2. For some
α > 0 we put

X1 = X + αξ,
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X2 = Y + αξ.

It is obvious that X1 and X2 are associated and we check that

HX1,X2(t, s) =
1
4
P (t− α < X ≤ t)P (s− α < Y ≤ s)

thus
sup
t,s∈R

HX1,X2(t, s) =
1
4

(
sup
t∈R

(
F (t)− F (t− α)

))2

=
1
4

(
1− 1

(1 + α)p

)2

.

(10)

Furthermore

CovH(X1, X2) = lim
a→∞

∫ a

−a

∫ a

−a
HX1,X2(t, s)dtds

=
1
4

lim
a→∞

(∫ a

−a
P (t− α < X ≤ t)dt

)2

(11)

=
1
4

lim
a→∞

(
α−

∫ a

a−α

1
tp

dt

)2

=
1
4
α2.

From (11) we see that CovH(X1, X2) is finite for every p > 0, while
Cov(X1, X2) is defined only for p > 1. Denoting by G(x) the d.f. of X1

and X2, we have

G(x) =
1
2
F (x) +

1
2
F (x− α)

thus the p.d.f. of X1 and X2 for t 6= 1, 1 + α is equal to

g(t) = G′(t) =
1
2
f(t) +

1
2
f(t− α).

We easily find that

‖g‖∞ =
p

2

(
1 +

1
(1 + α)p+1

)
. (12)

Now by choosing α = α(n) = n−6 and p = p(n) = n5, we see that by
(10) the left-hand side of (5) tends to 0 as n → ∞, the bound obtained
in [9] is, by (12), of order ‖g‖∞ α2/3 = O(n), while our bound is of order
‖g‖2/3

∞ α2/3 = O(n−2/3).
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Theorem 2. Let X and Y be integer valued PQD or NQD r.v.’s such

that CovH(X,Y ) is finite, then

sup
x,y∈R

|HX,Y (x, y)| ≤ |CovH(X, Y )| . (13)

Proof. Assume that X and Y are PQD. For x ∈ R define a function

hx(t) =





1, t ≤ x

0, t ≥ x + 1

−t + 1 + x, t ∈ (x, x + 1).

Then, noting that X,Y take only integer values, we get by Remark 4
of [11]:

|HX,Y (x, y)| = ∣∣Cov
(
I[X≤x], I[Y≤y]

)∣∣

=
∣∣Cov

(
h[x](X), h[y](Y )

)∣∣

≤ CovH(X,Y ),

where [ . ] stands for the integer part of a number. The NQD case follows
similarly as in the proof of Theorem 1. ¤

Remark 2. The bound obtained in Theorem 2 is sharp. For the r.v.’s
X, Y = X such that P (X = 1) = p, P (X = 0) = 1 − p we get equality
in (13).

Remark 3. As noted previously, the bound obtained in Theorem 2
is optimal but it is still an open question whether the upper bound in
Theorem 1 may be improved. Let us only note that for any bounded (by 1
say) r.v.’s (not necessarily PQD or NQD) one has

|CovH(X, Y )| = |Cov(X, Y )| =
∣∣∣
∫ +∞

−∞

∫ +∞

−∞
HX,Y (t, s)dtds

∣∣∣

≤
∫ 1

−1

∫ 1

−1
|HX,Y (t, s)| dtds ≤ 4 sup

t,s∈R
|HX,Y (t, s)| .

Now we will turn our attention to inequalities for the difference be-
tween joint density function and the product of its marginal densities. In
the main theorem we do not make any assumptions on the dependence of
the r.v.’s.
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Theorem 3. Let X and Y be any random variables with joint and

marginal p.d.f. fX,Y (x, y), fX(x) and fY (y) respectively. If the function

f̃X,Y (x, y) = fX,Y (x, y)− fX(x)fY (y) satisfies the Lipschitz condition
∣∣∣f̃X,Y (x + ∆x, y + ∆y)− f̃X,Y (x, y)

∣∣∣ ≤ L (|∆x|+ |∆y|) (14)

for some constant L > 0 and every ∆x,∆y ∈ R, then

sup
x,y∈R

∣∣∣f̃X,Y (x, y)
∣∣∣ ≤ 3 3

√
4L2/3

(
sup

x,y∈R
|HX,Y (x, y)|

)1/3
. (15)

Proof. Let x0, y0 ∈ R and a > 0 be fixed. By (14) for x0 ≤ t ≤ x0+a

and y0 ≤ s ≤ y0 + a we have
∣∣∣f̃X,Y (t, s)− f̃X,Y (x0, y0)

∣∣∣ ≤ 2La (16)

thus
∣∣∣
∫ x0+a

x0

∫ y0+a

y0

f̃X,Y (t, s)dtds− a2f̃X,Y (x0, y0)
∣∣∣

=
∣∣∣
∫ x0+a

x0

∫ y0+a

y0

f̃X,Y (t, s)dtds−
∫ x0+a

x0

∫ y0+a

y0

f̃X,Y (x0, y0)dtds
∣∣∣

≤ 2La3.

(17)

Let us observe that
∫ x0+a

x0

∫ y0+a

y0

f̃X,Y (t, s)dtds

= HX,Y (x0 + a, y0 + a)−HX,Y (x0, y0 + a)

−HX,Y (x0 + a, y0) + HX,Y (x0, y0).

(18)

From (17) and (18) we get

∣∣∣f̃X,Y (x0, y0)
∣∣∣ ≤ 4 supx,y∈R |HX,Y (x, y)|

a2
+ 2La (19)

for any x0, y0 ∈ R and a > 0. Minimalization of the right-hand side of (19)
with respect to a completes the proof of (15). ¤

Combining Theorems 1 and 3 yields the following corollary.
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Corollary 1. Let X and Y be PQD or NQD r.v.’s satisfying the

assumptions of Theorem 1 and Theorem 3. Then

sup
x,y∈R

∣∣f̃X,Y (x, y)
∣∣

≤ 34/324/9L2/3 (‖fX‖∞ + ‖fY ‖∞)2/9 |CovH(X,Y )|1/9 .

(20)

3. Applications

In this section we present some applications of Theorem 3 in investi-
gating the weak consistency of kernel-type estimators.

Let the kernel K(u) be a p.d.f. such that
∫ +∞

−∞
K2(u)du < +∞ and uK(u) → 0 as |u| → ∞. (21)

In order to estimate the common p.d.f. of the random variables X1, X2, . . .

we often use the kernel estimator

fn(x) =
1

nhn

n∑

j=1

K

(
x−Xj

hn

)
, (22)

where the bandwidhs hn are such that

0 < hn → 0 and nhn →∞, as n →∞. (23)

Theorem 4. Let (Xn)n∈N be a sequence of r.v.’s with the same

bounded density f(x) such that the functions f̃Xi,Xj (x, y) satisfy the Lip-

schitz condition with the same constant L > 0:

∣∣f̃Xi,Xj (x + ∆x, y + ∆y)− f̃Xi,Xj (x, y)
∣∣ ≤ L (|∆x|+ |∆y|) , (24)

for any x, y, ∆x,∆y ∈ R and i 6= j. Assume that the functions HXi,Xj (x, y)
satisfy

sup
x,y∈R

∣∣HXi,Xj (x, y)
∣∣ ≤ α(|j − i|), i 6= j (25)

and
1
n

n∑

k=1

α1/3(k) → 0, as n →∞. (26)
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If the conditions (21) and (23) are satisfied then

fn(x) P−→ f(x), as n →∞ (27)

for all continuity points of f .

Proof. Let us introduce the following notation

ϕn(x,Xj) =
1
hn

(
K

(
x−Xj

hn

)
−EK

(
x−Xj

hn

))
. (28)

For i 6= j we have

|Cov (ϕn(x,Xi), ϕn(x,Xj))|

=
1
h2

n

∣∣∣∣Cov
(

K

(
x−Xi

hn

)
,K

(
x−Xj

hn

))∣∣∣∣

=
1
h2

n

∣∣∣∣
∫ +∞

−∞

∫ +∞

−∞
K

(
x− u

hn

)
K

(
x− v

hn

)
f̃Xi,Xj (u, v)dudv

∣∣∣∣

=
∣∣∣∣
∫ +∞

−∞

∫ +∞

−∞
K(u′)K(v′)f̃Xi,Xj (x− u′hn, x− v′hn)du′dv′

∣∣∣∣

≤ sup
x,y∈R

∣∣∣f̃Xi,Xj (x, y)
∣∣∣
∫ +∞

−∞

∫ +∞

−∞
K(u′)K(v′)du′dv′,

so that by Theorem 3 and (25) we get

|Cov (ϕn(x,Xi), ϕn(x,Xj))| ≤ C1α
1/3(|j − i|), (29)

where C1 depends only on the constant L.
Furthermore

∥∥fXj

∥∥
∞ = ‖f‖∞ < ∞ so that by (21) we obtain

Var (ϕn(x,Xj)) ≤ 1
h2

n

E

(
K

(
x−Xj

hn

))2

=
1
h2

n

∫ +∞

−∞
K2

(
x− u

hn

)
fXj (u)du

=
1
hn

∫ +∞

−∞
K2(v)f(x− vhn)dv

≤ 1
hn
‖f‖∞

∫ +∞

−∞
K2(v)dv =

C2

hn
.

(30)
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By (29), (30) and (26) we get

Var(fn(x)) =
1
n2

Var
( n∑

j=1

ϕn(x, Xj)
)

=
1
n2

n∑

j=1

Var(ϕn(x, Xj)) +
2
n2

∑∑

1≤i<j≤n

Cov (ϕn(x,Xi), ϕn(x,Xj))

≤ C2

nhn
+

2C1

n

n∑

j=1

α1/3(j) −→ 0, as n →∞. (31)

Let us observe that if x is a continuity point of f then by the Lebesgue
dominated convergence theorem we have

Efn(x) =
1
hn

EK

(
x−X1

hn

)
=

1
hn

∫ +∞

−∞
K

(
x− u

hn

)
f(u)du

=
∫ +∞

−∞
K(v)f(x− vhn)dv −→ f(x), as n →∞.

(32)

From (31) and (32) it follows that for a continuity point x of the density f ,

fn(x) L2−→ f(x)

and the proof is completed. ¤

Corollary 2. Let (Xn)n∈N be a sequence of pairwise PQD or NQD

r.v.’s with the same p.d.f. f(x) such that (24) is satisfied and

|CovH(Xi, Xj)| ≤ α(|j − i|), i 6= j, (33)

where

1
n

n∑

k=1

α1/9(k) −→ 0, as n →∞. (34)

If (21) and (23) are satisfied then (27) holds.

Proof. It is easy to see that, by Theorem 1, (33) and (34) imply (25)
and (26). ¤
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Remark 4. If (Xn)n∈N is a stationary (wide sense) sequence of associ-
ated r.v.’s then from the assumption

∞∑

k=2

Cov(X1, Xk) < +∞

it follows that α(n) = Cov(X1, Xn+1) → 0 so that (34) is satisfied. For
stationary sequences of NA r.v.’s the series

∑∞
k=2 |Cov(X1, Xk)| is auto-

matically convergent (cf. [8]) and therefore (34) holds.

Acknowledgement. I would like to thank the referee for careful
reading of the manuscript and helpful remarks.
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