Modular projective representations of direct products of finite groups

By LEONID F. BARANNYK (Słupsk)

Abstract

Let G be a finite group, S a field of characteristic p or a complete discrete valuation ring of characteristic p. We denote by $S^{\lambda} G$ a twisted group ring of the group G and the ring S with an S-factor system $\lambda \in Z^{2}\left(G, S^{*}\right)$ (see [17], pp. 2-4). Let $p \backslash|G|$ and $G=G_{p} \times B$ be the direct product of a p-subgroup G_{p} and p^{\prime}-subgroup B. In this paper we establish necessary and sufficient conditions that every indecomposable $S^{\lambda} G$-module is the outer tensor product of an indecomposable $S^{\lambda} G_{p}$-module and an irreducible $S^{\lambda} B$-module.

1. Introduction

Let $G=G_{1} \times G_{2}$ be a finite group, S be a Dedekind domain with quotient field T, P a prime ideal in S relatively prime to the order of G_{2}, and

$$
S_{P}=\left\{\frac{a}{b}: a, b \in S, b \notin P\right\}
$$

A. Jones [14] has shown that if T is a splitting field for G_{2}, then every indecomposable $S_{P} G$-module is the outer tensor product $M_{1} \# M_{2}$ of an indecomposable $S_{P} G_{1}$-module M_{1} and an irreducible $S_{P} G_{2}$-module M_{2}. B. Fein [7] has examined the structure of $L G$-modules $M_{1} \# M_{2}$, where L is an arbitrary field, and M_{i} is an irreducible $L G_{i}$-module $(i=1,2)$. In

Mathematics Subject Classification: 16G20, 20C20.
Key words and phrases: twisted group rings, modular representations, projective representations, twisted group algebras.
particular, he proved that $M_{1} \# M_{2}$ is completely reducible and gave criteria for it to be irreducible. In paper [8] B. Fein generalized his results to the case of arbitrary finite dimensional L-algebras. Outer tensor products of irreducible modules over twisted group algebras were investigated as well in [2].

Let F be a field of characteristic $p>0$, and $G=G_{p} \times B$, where G_{p} is a Sylow p-subgroup. H. I. Blau [3] and P. M. Gudivok [10], [11] proved that every finitely generated indecomposable $F G$-module is an outer tensor product $V \# W$ of an indecomposable $F G_{p}$-module V with an irreducible $F B$-module W if and only if either G_{p} is cyclic or F is a splitting field for B. P. M. Gudivor [12] also investigated the similar problem for group rings $K G$, where K is a complete discrete valuation ring of characteristic $p>0$. He proved that if F is the quotient field of K, then every indecomposable $K G$-module is $V \# W$ if and only if either $\left|G_{p}\right|=2$ or F is a splitting field for B.

In this paper we generalize the results of H. I. Blau and P. M. GuDIVOK to the case of twisted group rings $S^{\lambda} G$, where $G=G_{p} \times B, S=F$ or S is a complete discrete valuation ring of characteristic p.

We use the following notations: F is a field of characteristic $p>0$; $F[[x]]$ is a ring of formal power series in x with coefficients in the field $F ; G$ is a finite group and $p \backslash|G| ; G^{\prime}$ is the commutant of $G ; G_{p}$ is a Sylow p-subgroup of G; S is an integral domain with an identity element; $S^{p}=\left\{a^{p}: a \in S\right\} ; S^{*}$ is the multiplicative group of the $\operatorname{ring} S ; Z^{2}\left(G, S^{*}\right)$ is the group of S-factor systems (2-cocycles) of the group G, where we assume that G acts trivially on S^{*} (see [15], Chapter 1). Any S-factor system of G is equivalent to some normalized S-factor system of G. From now on we will assume that S-factor systems of G are normalized. An S-basis $\left\{u_{g}: g \in G\right\}$ of $S^{\lambda} G$ satisfying $u_{a} u_{b}=\lambda_{a, b} u_{a b}$ for all $a, b \in G$ will be called natural. Let e be the identity element of G. We will often identify u_{e} with the identity element of the ring S. That is why, instead of μu_{e}, we will write $\mu(\mu \in S)$. If H is a subgroup of the group G, then the restriction of the S-factor system $\lambda \in Z^{2}\left(G, S^{*}\right)$ to $H \times H$ will also be denoted by λ. In this case $S^{\lambda} H$ is a subring of the ring $S^{\lambda} G$. By an $S^{\lambda} G$-module we understand a unitary left $S^{\lambda} G$-module which is finitely generated and torsion-free as S-module. If M is any $S^{\lambda} H$-module,
then $M^{S^{\lambda} G}$ will denote the induced $S^{\lambda} G$-module of M. Let V be an $S^{\lambda} G$ module. Then we write $E_{S^{\lambda} G}(V)$ for the ring of $S^{\lambda} G$-endomorphisms of V, $\operatorname{rad} E_{S^{\lambda} G}(V)$ for the Jacobson radical of $E_{S^{\lambda} G}(V)$, and $\overline{E_{S^{\lambda} G}(V)}$ for

$$
E_{S^{\lambda} G}(V) / \operatorname{rad} E_{S^{\lambda} G}(V)
$$

Let us briefly present the results obtained. In Section 2, we generalize the result of J. A. Green [9] on induced modules of p-groups (Lemma 2.2). Using this generalization we prove in Propositions 2.1, 2.2 that if G is a p-group and $S=F$ or S is a complete discrete valuation ring of characteristic p, then (under some assumption) for every field K there exists an indecomposable $S^{\lambda} G$-module V such that $\overline{E_{S^{\lambda} G}(V)}$ is isomorphic to a field which contains K. Let G be a finite p-group, $\lambda \in Z^{2}\left(G, F^{*}\right)$, and A be an abelian subgroup of G such that $\operatorname{rad} F^{\lambda} A$ is cyclic. In Proposition 2.4 we show that $M^{F^{\lambda} G}$ is an indecomposable $F^{\lambda} G$-module for every indecomposable $F^{\lambda} A$-module M and

$$
\overline{E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)}
$$

is isomorphic to $F\left(\rho_{1}, \ldots, \rho_{s}\right)$, where ρ_{i} is a root of the polynomial $x^{p}-\gamma_{i}$ with $\gamma_{1} \in F$ and $\gamma_{i} \in F\left(\rho_{1}, \ldots, \rho_{i-1}\right)$ for $i \geq 2$.

Let $G=G_{p} \times B, \lambda \in Z^{2}\left(G, F^{*}\right)$. In Section 3, we establish necessary and sufficient conditions that every indecomposable $F^{\lambda} G$-module is isomorphic to a module $V \# W$, where V is an indecomposable $F^{\lambda} G_{p^{-}}$ module, and W is an irreducible $F^{\lambda} B$-module. In this case we say that the algebra $F^{\lambda} G$ satisfies the TPIM condition. If G_{p} is abelian, then $F^{\lambda} G$ satisfies the TPIM condition if and only if either $\operatorname{rad} F^{\lambda} G_{p}$ is cyclic or F is a splitting field for $F^{\lambda} B$ (Theorem 3.1). If G_{p}^{\prime} is not cyclic and F contains a primitive q th root of 1 for every prime $q \backslash|B|$, such that $p \backslash(q-1)$, then $F^{\lambda} G$ satisfies the TPIM condition if and only if F is a splitting field for $F^{\lambda} B$ (Theorem 3.2).

In Section 4, we study twisted group rings $S^{\lambda} G$ satisfying the TPIM condition for the case when S is a complete discrete valuation ring of characteristic p with residue class field F. If G_{p} is abelian, then we assume that $S=F[[x]]$ and $\lambda=\mu \times \nu$, where $\mu \in Z^{2}\left(G_{p}, F^{*}\right)$ and $\nu \in Z^{2}\left(B, S^{*}\right)$. If G_{p} is nonabelian, then we suppose that $\left|G_{p}^{\prime}\right| \neq 2$ and F contains a primitive q th root of 1 for every prime $q \backslash|B|$ such that $p \backslash(q-1)$. It should be noted
that in Sections 3, 4 we also establish conditions that every indecomposable projective S-representation of a group $G=G_{p} \times B$ is equivalent to a representation $\Gamma \# \Delta$, where Γ is an indecomposable projective S-representation of G_{p}, Δ is an irreducible projective S-representation of B, and S is the field F or a complete discrete valuation ring of characteristic p.

2. On induced modules

This section begins by reformulation of a well-known result about twisted group rings.

Lemma 2.1 ([6], p. 125). Let S be a field or a complete discrete valuation ring, and V be an $S^{\lambda} G$-module. Then V is an indecomposable $S^{\lambda} G$-module if and only if $\overline{E_{S^{\lambda} G}(V)}$ is a skewfield.

Lemma 2.2. Let $S=F$ or S be a complete discrete valuation ring of characteristic p with residue class field F, G be a finite p-group, H a subgroup of G, and M an indecomposable $S^{\lambda} H$-module. Suppose that $\overline{E_{S^{\lambda} H}(M)}$ is isomorphic to a field $K, K \supset F$, and one of the following conditions is satisfied:
(i) $G=H \cdot T$, where T is a subgroup of the center of G.
(ii) K is a finite Galois extension of F and $[K: F]$ is not divisible by p.
(iii) $K=F\left(\rho_{1}, \ldots, \rho_{d}\right)$, where ρ_{i} is a root of the polynomial

$$
x^{p^{n_{i}}}-\alpha_{i}
$$

with $\alpha_{1} \in F$ and $\alpha_{i} \in F\left(\rho_{1}, \ldots, \rho_{i-1}\right)$ for $i \geq 2$.
Then

$$
\overline{E_{S^{\lambda} G}\left(M^{S^{\lambda} G}\right)}
$$

is isomorphic to $K\left(\theta_{1}, \ldots, \theta_{r}\right)$, where θ_{j} is a root of the polynomial $x^{p}-\beta_{j}$ with $\beta_{1} \in K$ and $\beta_{j} \in K\left(\theta_{1}, \ldots, \theta_{j-1}\right)$ for $j \geq 2$.

Proof. The idea of the proof of the lemma is the same as the one seen in Theorem 8 in [9]. We consider several cases.
I. Suppose that $S=F$ and $|G: H|=p$. Let $G / H=\langle a H\rangle$, and $\left\{u_{g}: g \in G\right\}$ be a natural F-basis of $F^{\lambda} G$. Then

$$
M^{F^{\curlywedge} G}=\sum_{i=0}^{p-1} u_{a}^{i} \otimes M
$$

and

$$
u_{h}\left(u_{a}^{i} \otimes m\right)=u_{a}^{i} \otimes\left(u_{a}^{-i} u_{h} u_{a}^{i}\right) m,
$$

for all $h \in H, m \in M$. We denote by N the stabilizer of M in G. It is well known ([4], p. 160) that

$$
\overline{E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)} \cong \overline{E_{F^{\lambda} N}\left(M^{F^{\lambda} N}\right)} .
$$

From this it follows that if $N=H$, then

$$
\overline{E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)} \cong K .
$$

Let $N=G$, and φ be an $F^{\lambda} H$-isomorphism of M onto $u_{a} \otimes M$. Then $\varphi(m)=u_{a} \otimes \psi(m), m \in M$, where ψ is an F-automorphism of M, and $\psi u_{h}=\left(u_{a}^{-1} u_{h} u_{a}\right) \psi$ for any h in H. Let ρ be an F-endomorphism of $M^{F^{\lambda} G}$. Then

$$
\rho\left(u_{a}^{j} \otimes m\right)=\sum_{i=0}^{p-1} u_{a}^{i} \otimes \rho_{i j}(m) \quad(j=0,1, \ldots, p-1 ; m \in M),
$$

where $\rho_{i j}$ is an F-endomorphism of M. Let $\mathcal{L}(M)$ denote the set of F endomorphisms of M. The correspondence $\rho \rightarrow\left(\rho_{i j}\right)$ is an isomorphism of the ring $\operatorname{Hom}_{F}\left(M^{F^{\lambda} G}, M^{F^{\lambda} G}\right)$ onto the ring of all $p \times p$ matrices with coefficients in $\mathcal{L}(M)$.

Direct calculation shows that $\rho \in E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)$ if and only if the following conditions hold:

$$
\begin{aligned}
& \text { 1) } \rho_{i j}\left(u_{a}^{-j} u_{h} u_{a}^{j}\right)=\left(u_{a}^{-i} u_{h} u_{a}^{i}\right) \rho_{i j} \quad \text { for every } h \in H ; \\
& \text { 2) } \rho_{i, j+1} v=w \rho_{i-1, j} \quad(i, j=0,1, \ldots, p-1),
\end{aligned}
$$

where the indices $i-1, j+1$ being reduced $\bmod p$ if necessary, and $v, w \in$ $\left\{u_{e}, u_{a}^{p}\right\}$, moreover $v=u_{a}^{p}$ if and only if $j=p-1$, and $w=u_{a}^{p}$ if and only if $i=0$.

Let $\sigma \in E_{F^{\lambda} H}(M)$, and

$$
\hat{\sigma}=\left(\begin{array}{ccccc}
\sigma & 0 & 0 & \ldots & 0 \\
0 & \sigma & 0 & \ldots & 0 \\
0 & 0 & \sigma & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \sigma
\end{array}\right), \quad \Omega=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & u_{a}^{p} \psi \\
\psi & 0 & \ldots & 0 & 0 \\
0 & \psi & \ldots & 0 & 0 \\
. & . & \ldots & . & . \\
0 & 0 & \ldots & \psi & 0
\end{array}\right)
$$

be $p \times p$ matrices. Then

$$
\begin{equation*}
\left(\rho_{i j}\right)=\hat{\sigma}_{0}+\Omega \hat{\sigma}_{1}+\cdots+\Omega^{p-1} \hat{\sigma}_{p-1}, \quad \Omega^{p}=\hat{\omega}, \tag{2.1}
\end{equation*}
$$

where $\omega=u_{a}^{p} \psi^{p}$ and $\omega, \sigma_{j} \in E_{F^{\lambda} H}(M)$. It should be noted that $\Omega \widehat{\sigma}_{j}=$ $\widehat{\mu}_{j} \Omega$, where $\mu_{j}=\psi \sigma_{j} \psi^{-1}$. The mapping $\sigma \rightarrow \hat{\sigma}$ is an isomorphism of $E_{F^{\lambda} H}(M)$ into $E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)$.

Let $U=\operatorname{rad} E_{F^{\lambda} H}(M), f$ be an isomorphism of $\overline{E_{F^{\lambda} H}(M)}$ onto K,

$$
V=\left\{\sum_{j=0}^{p-1} \Omega^{j} \hat{\sigma}_{j}: \sigma_{j} \in U\right\}
$$

and $t=f\left(u_{a}^{p} \psi^{p}+U\right)$. The set V is a nilpotent ideal of the $\operatorname{ring} E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)$. It follows from the hypotheses (i)-(iii) that the algebra

$$
E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right) / V
$$

is isomorphic to the twisted group algebra

$$
\Lambda=K^{\mu}(G / H)=K+K v+\cdots+K v^{p-1}, \quad v^{p}=t
$$

If $t \notin K^{p}$, then Λ is a field. If $t=l^{p}, l \in K$, then $K(v-l)$ is the radical of Λ. It follows that

$$
\overline{E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)} \cong K .
$$

II. Assume $S=F$ and $|G: H|>p$. Let us make an induction on the index $|G: H|$. The subgroup H is contained in some maximal subgroup N of G. By the induction hypothesis,

$$
L=\overline{E_{S^{\lambda} N}\left(M^{S^{\lambda} N}\right)}
$$

is isomorphic to $K\left(\theta_{1}, \ldots, \theta_{d}\right)$, where θ_{j} is a root of the polynomial $x^{p}-\mu_{j}$ with $\mu_{1} \in K$ and $\mu_{j} \in K\left(\theta_{1}, \ldots, \theta_{j-1}\right)$ for $j \geq 2$. Suppose that the field K satisfies the condition (ii). If g is an F-automorphism of the field L and g^{p} is the identity, then g is the identity mapping of K. It follows from this that g is the identity mapping of $K\left(\theta_{1}\right), K\left(\theta_{1}, \theta_{2}\right), \ldots, K\left(\theta_{1}, \ldots, \theta_{d}\right)$. Using the result obtained in case I, we complete the proof.
III. Let S be a complete discrete valuation ring of characteristic p, P the maximal ideal of $S, S / P=F,|G: H|=p$, and N be the stabilizer of M in G. Arguing as in the proof of Theorem 8 in [9], we obtain that if $N=H$ then $M^{S^{\lambda} G}$ is an indecomposable $S^{\lambda} G$-module. By Lemma 2.1 $E_{S^{\lambda} G}\left(M^{S^{\lambda} G}\right)$ is a local ring. Let d be the S-rank of M, Γ a matrix S representation of $S^{\lambda} H$ realized by M, and $\Gamma^{S^{\lambda} G}$ a matrix S-representation of $S^{\lambda} G$ realized by $M^{S^{\lambda} G}$. We may assume that

$$
\begin{aligned}
\Gamma^{S^{\lambda} G}\left(u_{h}\right) & =\left(\begin{array}{cccc}
\Gamma_{1}\left(u_{h}\right) & 0 & \ldots & 0 \\
0 & \Gamma_{2}\left(u_{h}\right) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \Gamma_{p}\left(u_{h}\right)
\end{array}\right) \\
\Gamma^{S^{\lambda} G}\left(u_{a}\right) & =\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & A \\
E & 0 & \ldots & 0 & 0 \\
0 & E & \ldots & 0 & 0 \\
. & . & \ldots & . & . \\
0 & 0 & \ldots & E & 0
\end{array}\right)
\end{aligned}
$$

where $\Gamma_{j}\left(u_{h}\right)=\Gamma\left(u_{a}^{-j+1} u_{h} u_{a}^{j-1}\right)$ for $j=1,2, \ldots, p, A=\Gamma\left(u_{a}^{p}\right)$, and E is the identity matrix of order d. The representations $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{p}$ of $S^{\lambda} H$ are mutually nonequivalent.

Let

$$
C=\left(\begin{array}{ccc}
C_{11} & \ldots & C_{1 p} \\
\cdot & \ldots & \dot{\cdot} \\
C_{p 1} & \ldots & C_{p p}
\end{array}\right)
$$

where $C_{i j}$ is $d \times d$ matrix over $S(i, j=1, \ldots, p)$. If $C \cdot \Gamma^{S^{\lambda} G}\left(u_{g}\right)=$ $\Gamma^{S^{\lambda} G}\left(u_{g}\right) \cdot C$ for arbitrary $g \in G$, then $C_{11}=\cdots=C_{p p}, C_{11} \Gamma\left(u_{h}\right)=$ $\Gamma\left(u_{h}\right) C_{11}$ for every $h \in H$, and $C_{i j}$ is not invertible for $i \neq j$. It follows
from this

$$
C=\left(\begin{array}{ccc}
C_{11} & & 0 \\
& \ddots & \\
0 & & C_{p p}
\end{array}\right)+B
$$

where B is not invertible and $B \cdot \Gamma^{S^{\lambda} G}\left(u_{g}\right)=\Gamma^{S^{\lambda} G}\left(u_{g}\right) \cdot B$ for arbitrary $g \in G$. Hence, $\overline{E_{S^{\lambda} G}\left(M^{S^{\lambda} G}\right)} \cong K$.

Let $N=G$. By the same arguments as in the case I we can establish existence of the isomorphism $\rho \rightarrow\left(\rho_{i j}\right)$ of the ring $E_{S^{\lambda} G}\left(M^{S^{\lambda} G}\right)$ onto the ring of all $p \times p$ matrices (2.1), where $\sigma_{j} \in E_{S^{\lambda} H}(M)$. Let W be an $S^{\lambda} G$-module, and

$$
\tilde{E}_{S^{\lambda} G}(W)=E_{S^{\lambda} G}(W) / P E_{S^{\lambda} G}(W)
$$

By Proposition 5.22 ([6], p. 112)

$$
\overline{E_{S^{\lambda} G}(W)} \cong \tilde{E}_{S^{\lambda} G}(W) / \operatorname{rad} \tilde{E}_{S^{\lambda} G}(W) .
$$

Therefore after we obtain formula (2.1) we may replace S by residue class field F and then we may argue as in the case I. This completes the proof of the lemma.

Proposition 2.1. Let K be a finite separable extension of the field F, G a finite p-group, $\lambda \in Z^{2}\left(G, F^{*}\right)$, and there exist a noncyclic subgroup H in G, such that $F^{\lambda} H$ is equivalent to the group algebra $F H$. Suppose that either
(i) $G=H T$, where T is a subgroup of the center of G, or
(ii) K is a finite Galois extension of F and $[K: F]$ is not divisible by p.

Then there exists an indecomposable $F^{\lambda} G$-module V such that $\overline{E_{F^{\lambda}}(V)}$ is isomorphic to a field that contains K.

Proof. We will assume $F^{\lambda} H=F H$. By the hypothesis, $K=F(\theta)$, where θ is algebraic over F. We denote by $f(x)$ the monic irreducible polynomial for θ over F. Let d be the degree of $f(x)$. In H there exists a normal subgroup N such that $H / N=(a N) \times(b N)$ is a noncyclic group of order p^{2}. Let $\bar{H}=H / N, U$ be a $F \bar{H}$-module by which the following F-representation of the group \bar{H} is realized:

$$
a N \rightarrow\left(\begin{array}{cc}
E & E \\
0 & E
\end{array}\right), \quad b N \rightarrow\left(\begin{array}{cc}
E & \Gamma \\
0 & E
\end{array}\right),
$$

where E is the identity matrix of order d, and Γ is the companion matrix of $f(x)$. The module U is also an $F H$-module. It is known (see [3], [10], [11]) that $\overline{E_{F H}(U)} \cong K$. Applying Lemma 2.2 to U we conclude that $V=U^{F^{\lambda} G}$ is a required $F^{\lambda} G$-module, and the proof is complete.

Proposition 2.2. Let K be a finite separable extension of the field F, S be a complete discrete valuation ring of characteristic p with residue class field F; G a finite p-group; $\lambda \in Z^{2}\left(G, S^{*}\right) ; H$ a subgroup of G such that $|H|>2$ and $S^{\lambda} H$ be equivalent to the group ring $S H$. Assume that either
(i) $G=H T$, where T is a subgroup of the center of G, or
(ii) K is a finite Galois extension of F and $[K: F]$ is not divisible by p.

Then there exists an indecomposable $S^{\lambda} G$-module V such that $\overline{E_{S^{\lambda} G}(V)}$ is isomorphic to a field that contains K.

Proof. Let $P=(\pi)$ be a maximal ideal of $S, S / P=F, K=F(\bar{\theta})$, and let $f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n} \in S[x]$ such that $\bar{f}(x)=$ $\bar{a}_{0}+\bar{a}_{1} x+\cdots+\bar{a}_{n-1} x^{n-1}+x^{n}, \bar{a}_{j}=a_{j}+P$, be an irreducible polynomial for $\bar{\theta}$ over F. We denote by Γ the companion matrix of $f(x)$. Suppose $S^{\lambda} H=S H$, and either H is cyclic of order $p^{d}>2$ or H is an group of type (2,2). If $H=\langle a\rangle$, then on the basis of [12] (see also [13], p. 87) the mapping

$$
a \rightarrow\left(\begin{array}{ccc}
E & \pi E & \Gamma \tag{2.2}\\
0 & E & \pi E \\
0 & 0 & E
\end{array}\right)
$$

is an indecomposable S-representation of this group. Assume that the representation (2.2) is realized by $S H$-module U. Then by [12] we have $\overline{E_{S H}(U)} \cong K$. If $H=\langle a\rangle \times\langle b\rangle$ is a group of type (2,2), then as U we take an SH -module by which the following representation is realized [12]:

$$
a \rightarrow\left(\begin{array}{cc}
E & E \\
0 & E
\end{array}\right), \quad b \rightarrow\left(\begin{array}{cc}
E & \Gamma \\
0 & E
\end{array}\right) .
$$

Now if we apply Lemma 2.2 to U, then we obtain $V=U^{S^{\lambda} G}$ is a required $S^{\lambda} G$-module. This completes the proof.

Proposition 2.3. Let G be a finite p-group, H a subgroup of G, and $\lambda \in Z^{2}\left(G, F^{*}\right)$. If M is an irreducible $F^{\lambda} H$-module, then $M^{F^{\lambda} G}$ is an indecomposable $F^{\lambda} G$-module.

Proof. The ring $E_{F^{\lambda} H}(M)$ is isomorphic to a field $F\left(\rho_{1}, \ldots, \rho_{d}\right)$, where ρ_{i} is a root of the polynomial

$$
x^{p^{n_{i}}}-\alpha_{i}
$$

with $\alpha_{1} \in F$ and $\alpha_{i} \in F\left(\rho_{1}, \ldots, \rho_{i-1}\right)$ for $i \geq 2$ [2]. Application of Lemma 2.2 completes the proof.

Proposition 2.4. Let G be a finite p-group; $\lambda \in Z^{2}\left(G, F^{*}\right) ; A$ an abelian subgroup of G such that $F^{\lambda} A$ has the cyclic radical. If M is an indecomposable $F^{\lambda} A$-module, then $M^{F^{\lambda} G}$ is an indecomposable $F^{\lambda} G$ module. Furthermore,

$$
\overline{E_{F^{\lambda} G}\left(M^{F^{\lambda} G}\right)}
$$

is isomorphic to a field $F\left(\rho_{1}, \ldots, \rho_{d}\right)$, where ρ_{i} is a root of the polynomial $x^{p}-\alpha_{i}$ with $\alpha_{1} \in F$ and $\alpha_{i} \in F\left(\rho_{1}, \ldots, \rho_{i-1}\right)$ for $i \geq 2$.

Proof. Assume $A=N \times H, H=\langle a\rangle,|a|=p^{n} ; K=F^{\lambda} N$ is a field;

$$
F^{\lambda} A=\bigoplus_{i=0}^{p^{n}-1} K u_{a}^{i}, \quad u_{a}^{p^{n}}=\alpha^{p^{m}},
$$

where $\alpha \in K, \alpha \notin K^{p}$ for $0 \leq m<n$, and $\alpha=1$ for $m=n$. Let

$$
v=u_{a}^{p^{n-m}}-\alpha, \quad v_{t}=v^{p^{m}-t}, \quad V_{t}=F^{\lambda} A \cdot v_{t} .
$$

Then $\operatorname{rad} F^{\lambda} A=F^{\lambda} A \cdot v$. The ideal V_{t} is $F^{\lambda} A$-isomorphic to $F^{\lambda} A /\left(\operatorname{rad} F^{\lambda} A\right)^{t}$.

Any indecomposable $F^{\lambda} A$-module is isomorphic to some V_{t}, where $1 \leq t \leq p^{m}$. The ideals $V_{1}, \ldots, V_{p^{m}}$ are pairwise nonisomorphic. For every t we have $\overline{E_{F^{\lambda} A}\left(V_{t}\right)} \cong K(\theta)$, where θ is a root of the irreducible polynomial

$$
x^{p^{n-m}}-\alpha \in K[x] .
$$

Using Lemma 2.2, the proposition is proved.

3. Indecomposable projective representations of direct products of finite groups over a field

Let S be an integral domain of characteristic p, G a finite group, $\lambda \in Z^{2}\left(G, S^{*}\right), p \backslash|G|$, and $G=G_{p} \times B$. Then $S^{\lambda} G \cong S^{\lambda} G_{p} \otimes_{S} S^{\lambda} B$. If every indecomposable $S^{\lambda} G$-module is isomorphic to a module of the form $V \# W$, where V is an indecomposable $S^{\lambda} G_{p}$-module and W is an irreducible $S^{\lambda} B$-module, then we will say that the ring $S^{\lambda} G$ satisfies the TPIM (Tensor Product of Indecomposable Modules) condition. In this section we study such rings for the case when S is a field of characteristic p.

Lemma 3.1. Let S be a field of characteristic $p>0$ or a complete discrete valuation ring with residue class field of characteristic $p>0$, $G=G_{1} \times G_{2}$ a finite group, $\lambda_{i} \in Z^{2}\left(G_{i}, S^{*}\right), \lambda=\lambda_{1} \times \lambda_{2}$, and $p \times\left|G_{2}\right|$. The following statements are equivalent:
(i) Every indecomposable $S^{\lambda} G$-module is the outer tensor product of an indecomposable $S^{\lambda} G_{1}$-module and an irreducible $S^{\lambda} G_{2}$-module.
(ii) The outer tensor product of any indecomposable $S^{\lambda} G_{1}$-module and any irreducible $S^{\lambda} G_{2}$-module is an indecomposable $S^{\lambda} G$-module.

The proof is similar to that of the corresponding fact for a group ring (see [3], [11], [13]).

Lemma 3.2. Assume that the hypotheses of Lemma 3.1 are satisfied. If V_{i} is an indecomposable $S^{\lambda} G_{i}$-module ($i=1,2$), then

$$
\overline{E_{S^{\lambda} G}\left(V_{1} \# V_{2}\right)} \cong \overline{E_{S^{\lambda} G_{1}}\left(V_{1}\right)} \otimes_{\bar{S}} \overline{E_{S^{\lambda} G_{2}}\left(V_{2}\right)},
$$

where \bar{S} is the residue class field of S.
The lemma follows immediately from Lemma 2.1 and Proposition 2 [3].
Lemma 3.3. Assume that the hypotheses of Lemma 3.1 are satisfied, and T is the quotient field of S. If T is a splitting field for the algebra $T^{\lambda} G_{2}$, then every indecomposable $S^{\lambda} G$-module can be represented uniquely, up to isomorphism, in the form $V \# W$, where V is an indecomposable $S^{\lambda} G_{1}$-module and W is an irreducible $S^{\lambda} G_{2}$-module.

The proof of the lemma is analogous to the one of Theorem 1 [14] (see too [13], p. 84).

Lemma 3.4. Let F be a field of characteristic p, B a finite p^{\prime}-group, and suppose that F contains a primitive q th root of 1 for every prime $q \backslash|B|$ such that $p \backslash(q-1)$. Then for any algebra $F^{\lambda} B$ there exists a splitting field K such that K is a finite Galois extension of F and $[K: F]$ is not divisible by p.

Proof. It is well known ([5], §53) that

$$
\lambda_{a, b}^{|B|}=\frac{\alpha_{a} \alpha_{b}}{\alpha_{a b}}
$$

for all $a, b \in B$. Let K be a splitting field over F of the polynomial

$$
\left(x^{|B|^{2}}-1\right) \prod_{a \in G}\left(x^{|B|}-\alpha_{a}\right)
$$

Then $K^{\lambda} B=K^{\mu} B$, where

$$
\mu_{a, b}^{|B|}=1
$$

for all $a, b \in B$. The algebra $K^{\mu} B$ is a homomorphic image of some group algebra $K H$, where H is a central extension of a cyclic group of order $|B|$ by the group B. Since K is a splitting field for H ([5], $\S 70), K$ is a splitting field for $F^{\lambda} B$.

Let π be an F-automorphism of K and $\pi^{p}=1_{K}$. Denote by ε a primitive q th root of 1 . If $\varepsilon \in K$, then $\pi(\varepsilon)=\varepsilon$. Therefore we may assume that F contains primitive q th root of 1 for every prime $q \backslash|B|$. In K there exists a sequence of fields

$$
L_{0}=F \subset L_{1} \subset \cdots \subset L_{s}=K
$$

such that L_{i+1} is obtained by adjoining a root of the polynomial $x^{q}-\alpha_{i}$ to L_{i}, where $\alpha_{i} \in L_{i}$ and q is a prime divisor of $|B|$. Moving along this sequence from left to right, we find that π is the identity automorphism of K. Then this implies that $[K: F]$ is not divisible by p, and the proof is complete.

Lemma 3.5. Let F be a field of characteristic $p, G=G_{p} \times B, H$ a noncyclic subgroup of $G_{p}, \lambda \in Z^{2}\left(G, F^{*}\right)$ and the restriction of λ to $H \times H$ be a coboundary. Suppose that either
(i) $G_{p}=H \cdot T$, where T is a subgroup of the center of G, or
(ii) F contains a primitive q th root of 1 for every prime $q \backslash|B|$ such that $p \backslash(q-1)$.

Then the algebra $F^{\lambda} G$ satisfies the TPIM condition if and only if F is a splitting field for the subalgebra $F^{\lambda} B$.

Proof. The sufficiency of the lemma follows from Lemma 3.3. Let us prove the necessity. Assume F is not a splitting field for $F^{\lambda} B$. There is an irreducible $F^{\lambda} B$-module W with $D=E_{F^{\lambda} B}(W)$ being a division F-algebra of dimension greater than one. In view of Lemma 3.4 we may find a splitting field K for $F^{\lambda} B$, which is a finite Galois extension of F and satisfies $[K: F] \not \equiv 0(\bmod p)$. On the basis of Proposition 2.1 there exists an indecomposable $F^{\lambda} G_{p}$-module V, for which $\overline{E_{F^{\lambda} G_{p}}(V)}$ is isomorphic to a field $L \supset K$. By Lemma 3.2

$$
\overline{E_{F^{\lambda} G}(V \# W)} \cong L \otimes_{F} D .
$$

Since $L \otimes_{F} D$ is not a skewfield, by Lemma $2.1 V \# W$ is a decomposable $F^{\lambda} G$-module, and the lemma is proved.

Theorem 3.1. Let F be a field of characteristic $p, G=G_{p} \times B$, and $\lambda \in Z^{2}\left(G, F^{*}\right)$. If G_{p} is abelian, then $F^{\lambda} G$ satisfies the TPIM condition if and only if either $\operatorname{rad} F^{\lambda} G_{p}$ is cyclic or F is a splitting field for $F^{\lambda} B$.

Proof. Suppose that the radical of $F^{\lambda} G_{p}$ is cyclic. If V is an indecomposable $F^{\lambda} G_{p}$-module, then by Proposition $2.4 \overline{E_{F^{\lambda} G_{p}}(V)}$ is isomorphic to a field K which is a purely inseparable extension of the field F. Let W be an irreducible $F^{\lambda} B$-module, and $D=E_{F^{\lambda} B}(W)$. Since the algebra $F^{\lambda} B$ is separable, the center of the division ring D is a separable extension of $F([5], \S 71)$. The index of D is relatively prime to $[K: F]$ (see [5], $\S 68$ and [16]). From this we obtain that $K \otimes_{F} D$ is a division ring. Applying Lemmas 2.1 and 3.2 , we conclude that $V \# W$ is an indecomposable $F^{\lambda} G$ module. On the basis of Lemma 3.1 the algebra $F^{\lambda} G$ satisfies the TPIM condition.

Now we come to the case when the radical of $F^{\lambda} G_{p}$ is not cyclic. Let \bar{G}_{p} be the socle of G_{p}. The radical of $F^{\lambda} \bar{G}_{p}$ is also not cyclic. Arguing as in the proof of Theorem 2.4 [1], we obtain $F^{\lambda} \bar{G}_{p}=F^{\mu} N$, where N is an elementary abelian p-group of order $\left|\bar{G}_{p}\right|$ and N contains a noncyclic subgroup H such that $F^{\mu} H$ is equal to the group algebra $F H$. We may
assume that H is a subgroup of G_{p}. By Lemma $3.5 F^{\lambda} G$ satisfies the TPIM condition if and only if F is a splitting field for $F^{\lambda} B$. Thus the proof is finished.

Lemma 3.6. Let S be an integral domain of characteristic $p>0, G$ a finite group, and H a p-subgroup of G^{\prime}. Then the restriction of every cocycle $\lambda \in Z^{2}\left(G, S^{*}\right)$ to $H \times H$ is a coboundary.

The lemma follows immediately from Corollary 4.10 ([15], p. 42).
Let $t_{p}=\sup \{0, m\}$, where m is a natural number such that for some $\gamma_{1}, \ldots, \gamma_{m} \in F^{*}$ the algebra

$$
F[x] /\left(x^{p}-\gamma_{1}\right) \otimes_{F} \cdots \otimes_{F} F[x] /\left(x^{p}-\gamma_{m}\right)
$$

is a field. If F is a perfect field, then $t_{p}=0$. We also remark that for any natural number d there exists a field F for which $t_{p}=d$.

Proposition 3.1. Let F be a field of characteristic $p, G=G_{p} \times B$, and $\lambda \in Z^{2}\left(G, F^{*}\right)$. If G_{p} / G_{p}^{\prime} decomposes into a direct product of no less than $t_{p}+2$ cyclic subgroups, then the algebra $F^{\lambda} G$ satisfies the TPIM condition if and only if F is a splitting field for $F^{\lambda} B$.

Proof. By Lemma 3.6 $F^{\lambda} G_{p}^{\prime}$ is equivalent to the group algebra $F G_{p}^{\prime}$. Let $F^{\lambda} G_{p}^{\prime}=F G_{p}^{\prime}$, and $U=F^{\lambda} G\left(\operatorname{rad} F G_{p}^{\prime}\right)$. Then $F^{\lambda} G / U \cong F^{\mu} H$, where $H=H_{p} \times B, H_{p} \cong G_{p} / G_{p}^{\prime}$, and $F^{\mu} B \cong F^{\lambda} B$. It follows from the hypothesis that the radical of $F^{\mu} H_{p}$ is not cyclic. From this and Theorem 3.1 we conclude that if $F^{\lambda} G$ satisfies the TPIM condition, then F is a splitting field for $F^{\lambda} B$. This proves the necessity. The sufficiency of the proposition follows from Lemma 3.1.

Theorem 3.2. Let F be a field of characteristic $p, G=G_{p} \times B$, and $\lambda \in Z^{2}\left(G, F^{*}\right)$. Suppose that G_{p}^{\prime} is not cyclic, and that F contains a primitive q th root of 1 for every prime $q \backslash|B|$ such that $p \backslash(q-1)$. The algebra $F^{\lambda} G$ satisfies the TPIM condition if and only if F is a splitting field for $F^{\lambda} B$.

The theorem follows from Lemmas 3.5 and 3.6.
Proposition 3.2. Let F be a field of characteristic p, K a perfect subfield of $F, G=G_{p} \times B$. If $\lambda \in Z^{2}\left(G, K^{*}\right)$, then the algebra $F^{\lambda} G$
satisfies the TPIM condition if and only if either G_{p} is cyclic or F is a splitting field for $F^{\lambda} B$.

Since $F^{\lambda} G_{p}$ is equivalent to $F G_{p}([15]$, p. 68), the proposition follows from Lemma 3.5 and Theorem 3.1.

Proposition 3.3. Let F be a field of characteristic p, and $G=G_{p} \times B$. Every indecomposable projective F-representation of G is equivalent to an outer tensor product of an indecomposable projective F-representation of G_{p} with an irreducible projective F-representation of B if and only if either G_{p} is cyclic or any irreducible projective F-representation of B is absolutely irreducible.

The proposition follows immediately from Theorem 3.1 and Proposition 3.2.

4. Indecomposable projective representations of direct products of finite groups over a complete discrete valuation ring

Let S be a complete discrete valuation ring of characteristic p, T the quotient field of S, and $G=G_{p} \times B$.

Theorem 4.1. Let $S=F[[x]], p \neq 2, G_{p}$ be abelian, and $\lambda=\mu \times \nu$, where $\mu \in Z^{2}\left(G_{p}, F^{*}\right)$ and $\nu \in Z^{2}\left(B, S^{*}\right)$. The ring $S^{\lambda} G$ satisfies the TPIM condition if and only if either $F^{\lambda} G_{p}$ is a field or T is a splitting field for $T^{\lambda} B$.

Proof. Let $K=F^{\lambda} G_{p}$. If K is a field, then $S^{\lambda} G_{p}=K[[x]]$ is a principal ideal ring. Because of this, every indecomposable $S^{\lambda} G_{p}$-module is isomorphic to the left regular module. We may further observe that $\overline{E_{S^{\lambda} G_{p}}\left(S^{\lambda} G_{p}\right)} \cong K$ and K is a purely inseparable extension of F. Arguing as in the proof of Theorem 3.1, we obtain that $S^{\lambda} G$ satisfies the TPIM condition.

Suppose now that K is not a field and T is not a splitting field for $T^{\lambda} B$. There exists an irreducible $S^{\lambda} B$-module W such that a division ring $D=\overline{E_{S^{\lambda} B}(W)}$ is not isomorphic to $F([5], \S 76)$. By Lemma 3.4 we can find a splitting field L^{\prime} for D, which is a finite Galois extension of F and
satisfies $\left[L^{\prime}: F\right] \not \equiv 0(\bmod p)$. In view of Proposition 2.2 there exists an indecomposable $S^{\lambda} G_{p}$-module V, for which $\overline{E_{S^{\lambda} G_{p}}(V)}$ is isomorphic to a field L with $L^{\prime} \subset L$. By Lemmas 3.2 and $2.1 V \# W$ is a decomposable $S^{\lambda} G$-module. We now use Lemma 3.1 to complete the proof.

Theorem 4.2. Let $S=F[[x]], p=2, G_{2}$ be abelian, and $\lambda=\mu \times \nu$, where $\mu \in Z^{2}\left(G_{p}, F^{*}\right)$ and $\nu \in Z^{2}\left(B, S^{*}\right)$. The ring $S^{\lambda} G$ satisfies the TPIM condition if and only if either $\operatorname{dim}\left(F^{\lambda} G_{2} / \operatorname{rad} F^{\lambda} G_{2}\right) \geq \frac{\left|G_{2}\right|}{2}$ or T is a splitting field for $T^{\lambda} B$.

Proof. The necessary part of the theorem may be proved by arguments similar to those in the proof of Theorem 4.1. Let us prove the sufficiency. On the basis of Lemma 3.3 and the proof of Theorem 4.1 we may assume $\operatorname{dim}\left(F^{\lambda} G_{2} / \operatorname{rad} F^{\lambda} G_{2}\right)=\frac{\left|G_{2}\right|}{2}$. Then there exists a factorization $G_{2}=H \times A$, with $A=\langle a\rangle$ a cyclic group of order 2^{n}, such that $K=F^{\lambda} H$ is a field, and

$$
F^{\lambda} G_{2}=\bigoplus_{i=0}^{2^{n}-1} K u_{a}^{i}, \quad u_{a}^{2^{n}}=\gamma^{2}
$$

where $\gamma \in K$ and $\gamma \notin K^{2}$. One can consider the ring $S^{\lambda} G_{2}$ as a twisted group ring $R^{\sigma} A$ with $R=K[[x]]$. Let M be a finitely generated S-torsion free $S^{\lambda} G_{2}$-module. Then M is finitely generated R-torsion free $R^{\sigma} A$ module. The isomorphism and the indecomposability of $S^{\lambda} G_{2}$-modules are equivalent to those of $R^{\sigma} A$-modules.

Let ρ be a root of the irreducible polynomial

$$
y^{2^{n-1}}-\gamma \in K[y],
$$

and $\tilde{\rho}$ the matrix corresponding to the operator of the multiplication by ρ in the R-basis

$$
1, \rho, \ldots, \rho^{2^{n-1}-1}
$$

of the ring $R[\rho]$. Then up to equivalence the indecomposable R-representations of the ring $R^{\sigma} A$ are the following [1]:

$$
\Delta: u_{a} \rightarrow \tilde{\rho} ; \quad \Gamma_{j}: u_{a} \rightarrow\left(\begin{array}{cc}
\tilde{\rho} & \left\langle x^{j}\right\rangle \\
0 & \tilde{\rho}
\end{array}\right) \quad(j=0,1,2, \ldots)
$$

where $\left\langle x^{j}\right\rangle$ is the matrix in which all columns but last one being zero, and the last column consisting of $x^{j}, 0, \ldots, 0$.

Let L be the quotient field of R. Continuing every representation Γ_{j} to an L-representation of the algebra $L^{\sigma} A$, we obtain a representation which is equivalent to the left regular representation of $L^{\sigma} A$. It follows from this, Lemma 3.1, and Theorem 3.1 that the ring $S^{\lambda} G$ satisfies the TPIM condition.

Theorem 4.3. Let S be a complete discrete valuation ring of characteristic p with residue class field $F, G=G_{p} \times B,\left|G_{p}^{\prime}\right|>2, \lambda \in Z^{2}\left(G, S^{*}\right)$, and F contain a primitive q th root of 1 for every prime $q \backslash|B|$ such that $p \backslash(q-1)$. The ring $S^{\lambda} G$ satisfies the TPIM condition if and only if T is a splitting field for $T^{\lambda} B$.

The proof of the theorem is analogous to one of Theorem 4.1.
Proposition 4.1. Let S be a complete discrete valuation ring of characteristic p, K a perfect subfield of S, and $G=G_{p} \times B$. If $\mu \in Z^{2}\left(G_{p}, K^{*}\right)$, $\nu \in Z^{2}\left(B, S^{*}\right)$ and $\lambda=\mu \times \nu$, then the ring $S^{\lambda} G$ satisfies the TPIM condition if and only if either $\left|G_{p}\right|=2$ or T is a splitting field for $T^{\lambda} B$.

The proposition follows from [12], and Lemmas 3.1-3.3.
Proposition 4.2. Let S be a complete discrete valuation ring of characteristic $p, G=G_{p} \times B$, and $\left|G_{p}\right|>2$. Every indecomposable projective S-representation of G is equivalent to an outer tensor product of an indecomposable projective S-representation of G_{p} and an irreducible projective S-representation of B if and only if any irreducible projective T-representation of B with S-factor system is absolutely irreducible.

References

[1] L. F. Barannyk and D. Klein, Crossed group rings with a finite set of degrees of indecomposable representations over Dedekind domains, Demonstr. Math. 34, no. 4 (2001), 771-782.
[2] L. F. Barannyk and K. Sobolewska, On modular projective representations of finite nilpotent groups, Colloq. Math. 87, no. 2 (2001), 181-193.
[3] H. I. Blau, Indecomposable modules for direct products of finite groups, Pacific J. of Math. 54, no. 1 (1974), 39-44.
[4] S. B. Conlon, Twisted group algebras and their representations, J. Austral. Math. Soc. 4 (1964), 152-173.
[5] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962, (2nd edn.: 1966).
[6] C. W. Curtis and I. Reiner, Methods of representation theory with applications to finite groups and orders, Vol. 1, Willey, New York, 1981.
[7] B. Fein, Representations of direct products of finite groups, Pacific J. of Math. 20, no. 1 (1967), 45-58.
[8] B. Fein, The Schur index for projective representations of finite groups, Pacific J. of Math. 28, no. 1 (1969), 87-100.
[9] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430-445.
[10] P. M. Gudivok, On modular and integral representations of finite groups, Dokl. Akad. Nauk SSSR 214, no. 5 (1974), 993-996 (in Russian).
[11] P. M. Gudivok, On modular and integral P-adic representations of direct product of groups, Ukrain. Mat. J. 29, no. 5 (1977), 580-588 (in Russian).
[12] P. M. Gudivok, On representations of direct product of groups over complete discrete valuation rings, Dokl. Akad. Nauk SSSR 237, no. 1 (1977), 25-27 (in Russian).
[13] P. M. Gudivok and V. P. Rudko, Tensor products of representations of finite groups, Educational Text, Uzhgorod Univ., 1985 (in Russian).
[14] A. Jones, Integral representations of the direct product of groups, Canad. J. Math. 15 (1963), 625-630.
[15] G. Karpilovsky, Group representations, Vol. 2, North-Holland Mathematics Studies 177, North-Holland, 1993.
[16] H. N. NG, Degrees of irreducible representations of finite groups, J. London Math. Soc. (2)10 (1975), 379-384.
[17] D. S. Passman, Infinite crossed products, Pure and Applied Mathematics, Vol. 135, Academic Press, Boston, Inc., 1989.

LEONID F. BARANNYK
INSTITUTE OF MATHEMATICS
PEDAGOGICAL ACADEMY
ARCISZEWSKIEGO 22B
76-200 SLUPSK
POLAND
E-mail: barannykleo@poczta.onet.pl

