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Connections for singular foliations on stratified manifolds

By ROBERT A. WOLAK (Krakow)

Abstract. In the paper we introduce the notions of a foliated stratified
manifold and of a connection adapted to such a stratified manifold. We study
the influence of the existence of an adapted connection on the properties of the
singular foliation.

In their works from late eighties R. S. Palais and C. Terng studied
proper actions of Lie groups which on the principal stratum admitted an
integrable transverse subbundle. The leaves of this foliation are totally
geodesic sections for the action restricted to the principal stratum. More-
over, the existence of such a section is equivalent to the integrability of the
normal bundle. They conjectured that such sections can be extended to
global immersed sections of the action, [13]. This conjecture was proved
by H. Boualem in a more general case of transversely integrable singular
Riemannian foliations (SRF), cf. [4], [3].

The aim of this short note is to present a more general setting in which
the Boualem theorem is true. We consider singular foliations on stratified
manifolds and we introduce the notion of an adapted connection for such
singular foliations, whose properties generalise those of SRF.

In the regular case the Levi–Civita connection of a bundle-like metric is
the model of an adapted (foliated or transversely projectable) connection,
cf. [7], [6], [17], [19]. The most important property of this connection

Mathematics Subject Classification: 53C05, 53C15, 57R30.
Key words and phrases: foliation, stratification, section, connection, singular.
Supported by the KBN grant 5 PO3A 040 20.



624 Robert A. Wolak

is the fact that a geodesic orthogonal to leaves of the foliation at one
point remains orthogonal at any point of its connected domain. Moreover,
as the bundle-like metric induces a Riemannian metric on any transverse
manifold, any orthogonal geodesic projects to a geodesic on this transverse
manifold. Under an additional assumption that the bundle-like metric is
complete this ensures that the orthogonal bundle to the tangent bundle (to
leaves of the foliation) is an Ehresmann connection, cf. [2]. The existence of
an Ehresmann connection is sufficient to prove many important properties
of the foliation, cf. [9], [18], [1], [21].

We assume that all objects, manifolds, bundles, foliations, vector
fields, etc., are smooth, i.e. of class C∞. If (M,F) is a foliated mani-
fold, x a point of M , then by Lx we denote the leaf of F passing through
the point x.

1. Basic properties of foliations admitting
adapted connections

Let F be a singular foliation on a stratified manifold (M, Σ), cf. [14],
[15], [9], [16]. As the foliation F is singular the dimension of its leaves
can vary from 0 to n = dimM . The codimension of the foliation is the
codimension of its leaves of maximal dimension. To develop a meaningful
theory we must have some relation between the foliation and the stratifi-
cation Σ of the manifold M .

We say that the stratification {Σr}k
r=1 is adapted to the foliation F if

F induces a regular foliation Fr on each stratum Σr and the dimensions
of the foliations Fr vary from stratum to stratum. The stratum Σk on
which the leaves of the foliation have the maximal dimension is called the
principal stratum.

Definition 1. We call (M, Σ,F) a foliated stratified manifold if

i) the stratification Σ is adapted to the foliation F ;

ii) the principal stratum Σk is open and dense in M .

In a foliated stratified manifold the set Σs = M−Σk is a closed subset
and is called the singular set of the foliation F .
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Remark. The definition of a foliated stratified manifold formalises the
basic property of a SRF on a compact manifold, cf. [9], [10], see also [20].

Theorem 1 (Molino). Let F be a SRF on a compact manifold M .

The foliation F defines a stratification of M and (M, Σ,F) is a foliated

stratified manifold.

Let (M, Σ,F) be a foliated stratified manifold.

Definition 2. A stratified transverse bundle Q to the foliation F is a
family Q of subbundles Qr of dimension qr on the strata Σr supplementary
to TFr, i.e. TFr ⊕Qr = TM |Σr , satisfying the compatibility condition:

(C) for any open neighbourhood (a, b) of o in R and any embedding
γ : (a, b) → M such that γ(t) ∈ Σr for t > 0 and γ(0) = x0 ∈ Σp

the limit of Qr
γ(t) as t goes to 0 exists in GR(M ; qr) and limn→∞Qr

γ(t) =
Q0(∈ GRx0(M ; qr)) ⊂ Qp

x0 .

Let L be any leaf of F , L is a submanifold of a stratum Σr and a leaf of
the regular foliation Fr. The subbundle Qr restricted to L can be identified
with the normal bundle N(L) of L in M . The infinitesimal action of vector
fields tangent to the leaves of the foliation F define a foliation FL in the
normal bundle Qr|L. The leaves of the foliation FL have the dimension
at least equal to the dimension of L. Any curve in L can be lifted to a
leaf curve in Qr|L starting at the chosen vector. The relation between the
foliation FL and the foliation F in a neighbourhood of L is an important
one. If the exponential mapping with respect to some connection is a
foliation preserving diffeomorphism of some open neighbourhood of the
zero section (i.e. L) of Qr|L onto the image (a neighbourhood of L in M)
we say that the foliation F is linearisable in a neighbourhood of L. For
the discussion of this condition for SRFs see [10].

A curve (geodesic) γ : (a, b) → M is called a Q-curve (geodesic) if for
any t ∈ (a, b) the fact that γ(t) ∈ Σr implies that γ̇(t) ∈ Qr.

Definition 3. A connection∇ on a stratified foliated manifold (M, Σ,F)
is said to be adapted if there exists a stratified supplementary subbundle
Q such that:

i) Let γ : (a, b) → M be a geodesic of∇. If for some t0 ∈ (a, b) γ(t0) ∈ Σr

and γ̇(t0) ∈ Qr then γ is a Q-geodesic;
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ii) Let α : [a, b] → Σr ⊂ M be any leaf curve and let γ : [c, d] → M

be a Q-geodesic such that γ(c) = α(a). Let v = γ̇(c) ∈ Qr and let
αv be a lift of α to v. Then the mapping σ : [a, b] × [c, d] → M ,
σ(t, s) = exp∇(sαv(t)) is defined on the entire rectangle [a, b] × [c, d],
where exp∇ is the exponential mapping defined by the connection ∇,
has the following properties:

a) σs : [a, b] → M , σ|[a,b]×{s} is a leaf curve for any s ∈ [c, d];

b) σt : [c, d] → M , σ|{t}×[c,d] is a Q-geodesic for any t ∈ [a, b].

On the principal stratum Σk the connection ∇ is adapted to the reg-
ular foliation Fk, the restriction of ∇ to the transverse bundle Qk is a
transversely projectable connection.

Lemma 1. Let ∇ be an adapted connection on the stratified foliated

manifold (M, Σ,F). Then the subbundle Qk is an (reduced) Ehresmann

connection for the regular foliation Fk on the principal stratum Σk.

Proof. It is a straightforward consequence of the definition of an
adapted connection and the fact that the singular set Σs is a closed. ¤

Corollary 1. The leaves of the regular foliation Fk have the same

universal covering space.

Before passing to more advanced problems let us look once again at a
Q-geodesic say γ; it passes through points of various strata, through points
of leaves of different dimensions, let us choose a point γ(t) which belongs
to a leaf of the greatest dimension along γ − p . So the point γ(t) belongs
to the stratum Σq. As the dimension of leaves is lower semi-continuous the
set Γp of the parameters of points of the trace of the geodesic γ belonging
to the stratum Σq is open in R. We call these points the regular points of
the geodesic, the others the singular ones. The trace of the geodesic γ is
in the closure of the stratum Σq.

The following lemmas are simple but useful technical results.

Lemma 2. Let x be any point of a stratum Σr. The exponential map-

ping exp |Qr
x

: Qr
x → M is a diffeomorphism onto the image Vx when re-

stricted to some ball Bx(O, ρ) in Qr
x. Taking a sufficiently small contractible

neighbourhood Px of x in the leaf Lx the restriction of exp to Qr|Px =
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Px × Qr
x defines a tubular neighbourhood of Px. Then exp(Px × {v}) is

contained in a leaf of F (for any v ∈ Qr
x).

Proof. It is a straightforward consequence of the definition of an
adapted connection. ¤

Lemma 3. Let σ : [a, b] × [c, d] → M be a smooth mapping as in

the definition of an adapted connection. Then for any s0 ∈ [c, d] the curve

α̂s0 : t 7→ ∂/∂sσ(t, s) t ∈ [a, b] is a leaf curve in N(Ls).

Proof. We have to prove that the vectors of the curve α̂s are in the
orbit of the vector α̂s(0). Let k be the maximal dimension of leaves for
parameters near s and k0 the dimension of the leaf passing through the
point γ(s). If k = k0 the geodesics are in a stratum Σq (locally) and
our supposition is a well-known fact. It k > k0 we define a mapping
Φk : Rk × R → M such that Φ(t1, . . . , tk, s) = ϕk

tk
. . . ϕ1

t1(γ(s)) where ϕi

is the flow of the vector field Xi – the vector fields locally spanning the
bundle tangent to the leaves of the foliation. For any s Φk(Rk × {s}) is a
neighbourhood of γ(s) in the leaf. Using this mapping it is not difficult to
show that if σ(t, s) = Φ(t1(s), . . . , tk(s), s) for some (t1(s), . . . , tk(s)), then
α̂s(t) =Q Φ(t1(s), . . . tk(s), s)(γ̇(s)); Q denotes the induced action on the
bundle Q. ¤

Finally, we can formulate and demonstrate the homothety lemma.

Lemma 4 (The Homothety Lemma). Let x be any point of a stra-

tum Σr. The exponential mapping exp |Qr
x

: Qr
x → M is a diffeomorphism

onto the image Vx when restricted to some ball Bx(O, ρ) in Qr
x. Tak-

ing a sufficiently small contractible neighbourhood Px of x in the leaf Lx

the restriction of exp to Qr|Px = Px × Qr
x defines a tubular neighbour-

hood of Px. Then for any t ∈ (0, 1] the leaves passing through the points

exp(x, tv) belong to the same stratum.

Proof. Let y = exp(x, v) and γy : [0, 1] → M be the geodesic with
the initial condition v; let Py be a small contractible neighbourhood of y in
Ly. The geodesic γy joins x to y. Any point z of Py can be reached from y

by a short leaf curve αz : [0, ε] → M . Consider the rectangle σz defined by
the pair (αz, γ

−1
y ). The geodesics σs end in the plaque Px and the vectors

σ̇s
z(1) ∈ Qr. For Py sufficiently small all σ̇s

z(1) ∈ Px × Bx(0, ρ). Then the
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geodesics starting at these vectors do not intersect, so the plaque Py is
mapped by the mapping (homothety) Ht, Ht(exp(x, v)) = exp(x, tv), into
an open neighbourhood of the point Ht(y) in the corresponding plaque.
Therefore the dimension of the leaf passing through the point Ht(y) is
greater or equal to the dimension of the leaf passing through the point y.
However, owning to Lemma 3, the inverse mapping H−1

t maps plaques
into plaques in a neighbourhood of the point Ht(y), thus the leaves Ly and
LHt(y) are of the same dimension. ¤

We have just demonstrated that any point x ∈ Σr ⊂ M admits an
open neighbourhood U diffeomorphic to Px × Br

x(O, ρ) where Px is an
open contractible neighbourhood of x in the leaf Lx and Br

x(O, ρ) is a ball
in Qr

x. Therefore any curve in U is homotopic relative to its ends to a curve
of the form β∗α where α is a leaf curve and β a geodesic tangent to Q. Let
γ be any curve in M , then γ can be covered by a finite number of open
sets of the form of Lemma 2. It means that γ is homotopic relative to its
ends to a piecewise regular curve of the form βk∗αk∗ . . . ∗β1∗α1 where αi

are leaf curves and βi are segments of geodesics tangent to Q.

Example 1. Let G be a group isometries of a semi-Riemannian mani-
fold M . Consider the foliation defined by the action of the group G on M .
If the orbits are space-like then the Levi–Civita connection is an adapted
connection for the bundle Q defined as the orthogonal complement of the
tangent spaces to the orbits.

Example 2. Let (M, D) be an affine manifold and G a group of affine
transformations of (M, D). First, assume that the orbits are of the same
dimension and that it admits a supplementary invariant and integrable to-
tally geodesic subbundle. The so-called Atiyah–Molino class of this action
supplies an obstruction to the existence of such a transverse subbundle,
cf. [8], [18]. Then, of course, our subbundle is adapted to the foliation by
orbits. The study of such group actions and associated foliations (often
transversely affine) is of practical interest as such structures are natural
generalisations of bilagrangian structures – when one retains only the affine
structures, cf. [5], [11], [22], [23], [12]. One can call such foliations singular
transversely affine foliations.
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2. Transversely integrable foliations

Following Boualem we call an adapted connection ∇ on the foliated
stratified manifold (M, Σ,F) transversely integrable if the transverse sub-
bundle Qk on the principal stratum Σk is integrable, i.e. on Σk we have
a pair of transverse regular foliations and Qk is a (reduced) Ehresmann
connection for Fk. Therefore we have the following, cf. [1], [2]:

– the universal coverings of leaves of Fk (resp. Qk) are diffeomorphic;
– any leaf of Fk intersects any leaf of Qk.
Let x be any point of M and let Lx be a leaf of the stratum Σr. When

restricted to some ball B(O, ρ) in Qr
x, the mapping expx |Qr

x
: Qr

x → M is a
diffeomorphism onto the image. The image is a qr-dimensional submanifold
Vx of M containing the point x such that TxVx = Qr

x. The following
lemma formulates a very important property of these “sections”; compare
“Lemme fondamental” 1.2.1 of [3].

Lemma 5. Let y be a regular point of Vx (i.e. y ∈ Vx ∩ Σk). Then

Qk
y ⊂ TyVx.

Proof. Let γ : [0, 1] → M be a geodesic joining x to y, γ̇(0) = v ∈
B(O, ρ) y = γ(1) = expx(v). γ is traced in Vx. The homothety lemma
ensures that the points γ(t) t ∈ (0, 1], are regular, so they belong to the
same leaf Ky of Qk passing through the point y. It is worth recalling that
the foliation Qk is totally geodesic with respect to ∇.

In a neighbourhood of the origin there exists exactly one vector Yt ∈
Qk

γ(t) such that expγ(t)(Yt) = y.
Obviously

[TYt expγ(t)](TYtQ
k
γ(t)) = TyKy = Qk

y .

Thus

TYtQ
k
γ(t) = [TYt expγ(t)]

−1(TyKy).

Let us go to 0 with t. Then γ(t) → x, Yt → v. Thus TYtQ
k
γ(t) goes to

a qk-dimensional subspace W ⊂ TvTxM , but we know that limt→0 Qk
γt) =

W0 ⊂ Qr
x. Hence W ⊂ TvQ

r
x, but [Tv expx]−1(Qk

y) = W . Therefore
Qk

y ⊂ Tv expx(Tv(Qr
x)) = TyVx. ¤
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As in the case of SRFs the homothety lemma and the above lemma
ensure that the trace of the singular stratum Σs on Vx is the image of a
closed vector subspace X of W ⊂ Qr

x, i.e.

Σs ∩ Vx = expx(X).

Thus the traces of leaves of Qk on Vx are of the form expx(W−X) (the
sets W − X are connected unless the subspace X is of codimension 1 in
W ). Thus any leaf of Qk can be extended to a generalised section, i.e. an
immersed submanifold of M which meets any leaf of F , compare [3], [13].
The above considerations permit us to formulate the following theorem:

Theorem 2. Let (M, Σ,F) be a foliated stratified manifold. If ∇ is a

transversely integrable adapted connection on (M, Σ,F), then the foliation

admits generalised sections.

Proof. We adopt the notation of Lemma 5. Let us take a leaf of Qk.
Then its trace on Vx is of the form expx(W − X). We extend it over
the singular stratum by taking expx(W ). So the extension remains a sub-
manifold. Problems appear when the leaf returns to the section Vx. The
extension at this stage can intersect our previous extension, so the result
is an immersed submanifold K only.

Our extended immersed submanifold K meets any leaf of Fk. We have
only to check that it meets any leaf of F in the singular stratum.

Let L be any leaf in the singular set Σs and let x be a point of L. Let
γ : [a, b] → M be a Q-geodesic starting at x and ending at a point y of the
regular stratum Σk. Then there exists a leaf curve α : [0, 1] → Ly ⊂ M

starting at the point y and ending at a point z of K ∩Σk (it is true as any
leaf L of F in the regular stratum meets any leaf of Qk). Let us extend
the pair (α, γ−1) to the rectangle σ. The curve σb is a leaf curve in Lx

ending at the point σ1(b) which is a point of K, as σ1 is a Q-geodesic and
as such it must be a curve in the leaf of Qk passing through the point z,
and thus contained in K. ¤

To complete our study of foliated stratified manifolds with adapted
connections we would like to investigate the structure of the universal
covering of the manifold, compare [1], [3].

We have already demonstrated that leaves of F have the same uni-
versal covering space. Let us have a look at the generalised section of
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Theorem 2, the extensions of leaves of Qk. Let K be such a generalised
section and let x be a point of Σk ∩K. Then any curve γ in K starting
at x is homotopic to piecewise regular curve whose pieces are Q-geodesics
with ends in the regular stratum with the possible exception of the last
piece if the end point of the curve is in the singular stratum. Moreover
if two such curves are homotopic relative to its ends, one can construct a
homotopy between these curves consisting of curves of the same type.

Therefore the standard procedure of the theory of Ehresmann connec-
tions, cf. [2], [3], permits us to prove that the generalised sections have the
same universal covering space K̃.

Let us take the Cartesian product M̂ = L̃ × K̃ of L̃ the universal
covering space of leaves of Fk and K̃ the universal covering space of gener-
alised section of Theorem 2. Let us choose a point x0 ∈ Σk ⊂ M . Let L0

be the leaf of F passing through x0 and K the generalised section passing
through the point x0. We identify L̃ with the universal covering of the
leaf L0 and K̃ with the universal covering of K. Then any point of M̂ is
represented by a pair of curves (α, β) such that

i) α : [a, b] → L0;

ii) β : [0, 1] → K0;

iii) α(a) = β(0) = x0 ∈ L0 ∩K0;

iv) β is a piece-wise Q-geodesic.

We can define a “natural” smooth mapping h from M̂ into M̃ : Let
σ(α,β) be the rectangle defined by the pair (α, β), σ : [a, b] × [0, 1] → M .
Put h((α, β)) = σb∗α . It is not difficult to see that the mapping h is well
defined and smooth. Moreover h is surjective due to the considerations
following Lemma 4.

Directly from the definition of an adapted connection one gets that the
mapping h is foliated for the natural product foliation of M̂ with leaves of
the form L̃× {k}, k ∈ K̃.

Therefore we have the following theorem.

Theorem 3. Let (M, Σ,F) be a stratified foliated manifold with a

transversely integrable adapted connection ∇. Then there exists a blow-

up M̂ of M diffeomorphic to the foliated manifold L̃× K̃, where L̃ is the

universal covering space of leaves of the foliation on the regular stratum
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and K̃ is the universal covering space of generalised sections, and there is

a smooth foliated mapping h : M̂ → M sending L̃× {k} into leaves of F .
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Comp. Math. 95 (1995), 101–125.
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