Publ. Math. Debrecen **63/4** (2003), 635–641

Some global properties of quasi Einstein manifolds

By M. C. CHAKI (Calcutta) and P. K. GHOSHAL (Calcutta)

Abstract. In this paper some global properties of a compact, orientable quasi Einstein manifold without bourdary are obtained.

Introduction

The notion of a quasi Einstein manifold was introduced in a recent paper [1] by the first author M. C. CHAKI and R. K. MAITY. According to them a non-flat Riemannian manifold (M^n, g) $(n \ge 3)$ is said to be a quasi Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the condition

$$S(X,Y) = ag(X,Y) + bA(X)A(Y), \quad X,Y,\dots \in \mathfrak{X}(M)$$
(1)

where a, b are scalars of which $b \neq 0$ and A is a non-zero 1-form such that

$$g(X,U) = A(X), \quad \forall X,$$
(2)

U being a unit vector field. In such a case, a, b are called the associated scalars, A is called the associated 1-form and U is called the generator of the manifold. Such an n-dimensional manifold is denoted by the symbol $(QE)_n$.

In this paper some global properties of a compact orientable $(QE)_n$ without boundary are obtained.

Mathematics Subject Classification: 53C25.

Key words and phrases: quasi-Einstein manifold, compact orientable manifold of this kind without boundary.

1. Preliminaries

From (1) we get

$$S(X,X) = ag(X,X) + bA(X)A(X) = a|X|^2 + b[g(X,U)]^2 \quad \forall X.$$
(1.1)

Let θ be the angle between U and any vector X. Then

$$\cos \theta = \frac{g(X,U)}{\sqrt{g(U,U)}\sqrt{g(X,X)}} = \frac{g(X,U)}{\sqrt{g(X,X)}} [\because \text{ by hypothesis } g(U,U) = 1].$$

Hence $[g(X,U)]^2 \leq g(X,X) = |X|^2$. Therefore

$$|X|^2 \ge [g(X,U)]^2 \tag{1.2}$$

Hence if a > 0, then $a|X|^2 \ge a[g(X,U)]^2$. Adding $b[g(X,U)]^2$ on both sides we get

$$a|X|^2 + b[g(X,U)]^2 \ge (a+b)[g(X,U)]^2.$$

Hence $S(X,X) \ge (a+b)[g(X,U)]^2$. Again if b > 0, then from (1.2) we get $b|X|^2 \ge b[g(X,U)]^2$. Adding $a|X|^2$ on both sides we have

$$(a+b)|X|^2 \ge a|X|^2 + b[g(X,U)^2 \ge S(X,X).$$

Thus

$$S(X,X) \ge (a+b)[g(X,U)]^2 \quad \text{when} \quad a > 0$$

and

$$S(X,X) \le (a+b)|X|^2$$
 when $b > 0.$ (1.3)

Next, contracting (1) over X and Y we get

$$r = na + b, \tag{1.4}$$

where r is the scalar curvature.

These results will be used in the sequel.

2. Sufficient condition for a compact orientable $(QE)_n$ to be conformal to a sphere in E_{n+1}

We begin with the definition of conformality of one Riemannian manifold to another.

636

Let (M, g) and (M', g') be two *n*-dimensional Riemannian manifolds. If there exists a one-one differentiable mapping $(M, g) \to (M', g')$ such that the angle between any two vectors at a point p of M is always equal to that of the corresponding two vectors at the corresponding point p' of M', then (M, g) is said to be conformal to (M', g'). Y. WATANABE [2] has given a sufficient condition of conformality of an *n*-dimensional Riemannian manifold to an *n*-dimensional sphere immersed in E_{n+1} . Its statement is as follows:

If in an n-dimensional Riemannian manifold M, there exists a non parallel vector field X such that the condition

$$\int_{M} S(X,X)dv = 1/2 \int_{M} |dX|^{2}dv + n - 1/n \int_{M} (\partial X)^{2}dv$$
(2.1)

holds, then M is conformal to a sphere in E_{n+1} , where dv is the volume element of M and dX and ∂X are the curl and divergence of X respectively.

In this section we consider a compact and orientable quasi Einstein manifold $(QE)_n = M$ without boundary having associated scalars a, b and generator U. It satisfies (1) and (2). Hence

$$S(U,U) = a + b.$$

In virtue of this and by taking U for X the condition (2.1) takes the following form

$$\int_{M} (a+b)dv = 1/2 \int_{M} |dU|^2 dv + (n-1)/n \int_{M} (\partial U)^2 dv.$$
(2.2)

We now suppose that $U = \operatorname{grad} f$. Then U cannot be parallel, for othetwise $\nabla U = 0$ or $\nabla \operatorname{grad} f = 0$ or $\Delta f = 0$, where Δ denotes Laplacian of f, and ∇ denotes the covariant differentiation with respect to the metric of M. Hence by Bochner's lemma [3, p. 39], f is constant, which implies that U = 0 which is not admissible.

Since by assumption $U = \operatorname{grad} f$, $|dU|^2 = 0$. Hence (2.2) takes the form

$$\int_{M} (a+b)dU = (n-1)/n \int_{M} (\partial U)^{2} dv.$$
 (2.3)

Thus if in an *n*-dimensional compact orientable quasi Einstein manifold M without boundary the generator U is grad f, then U is a non-parallel vector field. If in such a case the condition (2.3) is satisfied, then by Watanabe's condition (2.1) M is conformal to a sphere in E_{n+1} . We can therefore state the following.

Theorem 1. If in a compact, orientable quasi Einstein manifold $M = (QE)_n$ $(n \ge 3)$ without boundary having a, b as associated scalars, the generator U is the gradient of a function and satisfies the condition (2.3), then the manifold $(QE)_n$ is conformal to a sphere immersed in E_{n+1} .

3. Killing vector field in a compact orientable $(EQ)_n$ $(n \ge 3)$ without boundary

In this section we consider a compact, orientable $(QE)_n = M$ $(n \ge 3)$ without boundary with a, b as associated scalars and U as the generator.

It is known ([2] or [3] p. 43) that in such a manifold M the following relation holds.

$$\int_{M} [S(X,X) - |\nabla X|^2 - (\operatorname{div} X)^2] dv = 0, \quad \forall X$$
(3.1)

If X is a Killing vector field, then div X = 0 ([3], p. 43). Hence (3.1) takes the form

$$\int_{M} [S(X,X) - |\nabla X|^2] dv = 0.$$
(3.2)

Let b > 0. Then by (1.3) $(a + b)|X|^2 \ge S(X, X)$. Therefore $(a + b)|X|^2 - |\nabla X|^2 \ge S(X, X) - |\nabla X|^2$. Consequently,

$$\int_{M} [(a+b)|X|^{2} - |\nabla X|^{2}] dv \ge \int_{M} [S(X,X) - |\nabla X|^{2}] dv$$

and by (3.2)

$$\int_M (a+b)|X|^2 - |\nabla X|^2 dv \ge 0$$

If a + b < 0, then

$$\int_{M} [(a+b)|X|^{2} - |\nabla X|^{2} dv = 0.$$

638

Therefore X = 0. This leads to the following result:

Theorem 2. If in a compact, orientable $(QE)_n$ $(n \ge 3)$ without boundary the associated scalars are such that b > 0 and a + b < 0, then there exists no nonzero Killing vector field in this manifold.

We now state the following two corollaries of the above theorem which follow easily from it.

Corollary 1. If in a compact, orientable $M = (QE)_n$ $(n \ge 3)$ without boundary, the generator U is a Killing vector field, then the following relation holds.

$$\int_M [(a+b) - |\nabla U|^2] \, dv \ge 0.$$

Corollary 2. If in a compact, orientable $M = (QE)_n$ $(n \ge 3)$ without boundary b > 0 and a+b < 0, then the generator U of the manifold cannot be a Killing vector field.

4. Killing *p*-form in a compact, orientable conformally flat $M = (QE)_n \ (n > 3)$ without boundary

Let ω be a *p*-form in a compact orientable conformally flat $M = (QE)_n$ (n > 3) without boundary and $F_p(\omega, \omega)$ be the well known [3] quadratic form given by

$$F_p(\omega,\omega) = S_{ij}\omega^{ii_2\dots i_p}\omega^j_{i_2\dots i_p} + \frac{p-1}{2}R_{ijk\ell}\omega^{iji_3\dots i_p}\omega^{k\ell}i_3\dots i_p, \qquad (4.1)$$

where $R_{ijk\ell}$ and S_{ij} are the components of the curvature tensor R of type (0, 4) and the Ricci tensor S of type (0, 2) of the $(QE)_n$.

Since $(QE)_n$ is conformally flat the tensor R can be expressed as follows ([4], p. 234; [5], p. 40]:

$$R(X, Y, Z, W) = \frac{1}{n-2} [g(Y, Z)S(X, W) - g(X, Z)S(Y, W) + g(X, W)S(Y, Z) - g(Y, W)S(X, Z)]$$
(4.2)
$$-\frac{r}{(n-1)(n-2)} [g(Y, Z)g(X, W) - g(X, Z)g(Y, W)].$$

M. C. Chaki and P. K. Ghoshal

By (1)

$$R(X, Y, Z, W) = a'[g(Y, Z)g(X, W) - g(Y, W)g(X, Z)] + b'[g(X, W)A(Y)A(Z) - g(X, Z)A(Y)A(W) + g(Y, Z)A(X)A(W) - g(Y, W)A(X)A(Z)],$$

where

$$a' = \frac{a}{n-1} - \frac{b}{(n-1)(n-2)}, \qquad b' = \frac{b}{n-2}.$$
 (4.3)

In virtue of (1) and (4.2) we can express (4.1) as follows:

$$F_p(\omega,\omega) = [(n-p)a' + b']|\omega|^2 + (n-2p)b'[U.\omega]^2,$$
(4.4)

where the components of ω are $\omega_{i_1i_2...i_p}$, those of U are U^i and $U.\omega$ is a tensor of type (0, p - 1) with components $U^j \omega_{ji_1...i_{p-1}}$ and $|\omega|^2 = \omega_{i_1i_2...i_p} \omega^{i_1i_2...i_p}$.

Using (4.3) the relation (4.4) can be expressed as follows:

$$F_p(\omega,\omega) = \frac{[(n-p)(n-2)a+b(p-1)]}{(n-1)(n-2)} |\omega|^2 + (n-2p)\frac{b}{n-2} [U.\omega]^2 \quad (4.5)$$

We now suppose that ω is a Killing *p*-form. Then it is known [3] that

$$\int_{(QE)_n} [F_p(\omega,\omega) - |\nabla \omega|^2] dv = 0.$$
(4.6)

In virtue of (4.5) we can express (4.6) as follows:

$$\int_{(QE)_n} \left[\frac{(n-p)(n-2)a + b(p-1)}{(n-1)(n-2)} |\omega|^2 + \frac{n-2p}{n-2} b[U.\,\omega]^2 - |\nabla\omega|^2 \right] dv = 0.$$
(4.7)

If (n-2p)b < 0 and (n-p)(n-2)a+b(p-1) < 0 then from (4.7) it follows that $\omega = 0$. This leads to the following result.

Theorem 3. If in a compact, orientable conformally flat $(QE)_n$ (n>3) without boundary, (n-2p)b < 0 and (n-p)(n-2)a + b(p-1) < 0, where p > 1 but < n, then there exists no nonzero Killing p-form in such a manifold.

640

References

- M. C. CHAKI and R. K. MAITY, On quasi Einstein manifolds, *Publ. Math. Debrecen* 57 (2000), 297–306.
- [2] Y. WATANABE, Integral inequalities in compact orientable manifold, *Riemannian or Kählerian. Kodai Math. Sem. Report* 20 (1968), 264–271.
- [3] K. YANO, Integral formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
- [4] M. C. CHAKI, A Text book of tensor Calculus. 3rd, Ed., Calcutta Publishers, 2000.
- [5] K. YANO and M. KON, Structures on manifolds, World Scientific, 1994.

M. C. CHAKI and P. K. GHOSHAL 27, SASHIBHUSAN DE STREET CALCUTTA - 700 012 INDIA

(Received May 28, 2002)