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On some iterative roots on the circle

By PAWEL SOLARZ (Krakéw)

Abstract. The aim of this paper is to investigate the problem of the exis-
tence of continuous iterative roots of a homeomorphism F : S! — S! such that
F™ =idg:1, where n > 2 is a fixed integer.

Let S' = {# € C : |2|] = 1} be the unit circle with the positive
orientation. Let u,w,z € S!, then there exist unique t1,t3 € [0,1) such
that we?™ = z, we?™*2 = y. Define

u<w=z ifandonlyif 0<t; <t

(see [1]). Moreover, if u,w € S' and u # w, then there exist t,,t, € R
. . D E—
such that ¢, < t, < t, + 1 and e?™ = g, ?™v = . Put (u,w) :=
{e*™ .t € (ty,tw)} (resp. (u,w) := {€*™ : ¢ € (t,,tyw)}). This set is said
to be an open arc (resp. a closed arc). Let F': S! — S! be a continuous
mapping, then there exist a continuous function f : R — R called a
lift of F' and an integer k such that F (e*™*) = 2™ @) and f(z +1) =
f(x) 4+ k for x € R. Moreover, if F' is a homeomorphism, then so is f and
k = 1if f increases, k = —1 if f decreases (see [4] Chapter 2). We say
that a homeomorphism F' preserves orientation if f is increasing (reverses
orientation if f is decreasing) (see for example [7]). Let u,w,z € S' and
— . . . ey ——

w € (u, z), then if F' preserves orientation F'(w) € (F(u), F(z)). However,
. . . e — N

if F' reverses orientation, then we have F(w) € (F(z), F(u)).

Mathematics Subject Classification: Primary 39B12; Secondary 26A18.
Key words and phrases: lift, iterative root.
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First we prove some properties of a homeomorphism F : S' — St
such that

F" =idg, (1)
where n is a positive integer number.
Theorem 1. Let F : S' — S' be an orientation-preserving homeo-

morphism satisfying (1) for an integer n > 0. If F' has a fixed point, then
F(z) =z for all z € SL.

PRrROOF. To obtain a contradiction, suppose that zg is a fixed point of
F and there exist z € S and an integer 7, 1 < r < n such that z # F(2) #
F2(2) # -+ # F™71(2) and F"(2) = z. Define a; € {2, F(2),...,F"71(2)}

for i € {0,1,...,r — 1} in the following manner ay = z and
O<Argﬂ <Arg% < <Argar_1.
ap ag ag

Note that F(z) # zo for every i € {0,1,...,7 — 1}. Set a, := ag, there-
T :

fore zy € (aj,a;4+1) for some i € {0,1,...,7 — 1}. Because F preserves

orientation we have

20 € (F(az), F(ai+1)).
Thus

(@i, ait1) N (F(ai), F(ait1)) # 0.
As F(a;) # a; we obtain

(aiaip1) # (F(ai), F(ait1))

and consequently by the definition of a;,

(s air1) C (Flaiv1), Flas)).

—_—
Hence a; € (F(a;), F(ai+1)), so F~Y(a;) € (a;,ai+1), but F~1(a;) = a; for
an j € {0,1,...,7 — 1} and we have the contradiction. O

As an immediate consequence of above theorem we have

Corollary 1. If F : S' — S'is an orientation-preserving homeo-
morphism such that (1) holds for an integer n > 2 and F # idg1, then
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for every integer m > 2 there is no orientation-reversing homeomorphisms
® : S — S satisfying equation

™ = F, (2)

PROOF. Suppose, contrary to our claim, that ®"(z) = F(z) for all
z € S'. Hence m = 21, where [ is a positive integer. Let us observe that
P2 : S — S! preserves orientation and (<I>2)ln = idg1. Moreover, ® has a
fixed point since its lift ¢ : R — R is a decreasing homeomorphism, thus
®? has a fixed point and by Theorem 1 ®2? = idg:, which is impossible. [0

Corollary 2. Let F : S' — Sland ® : S' — S' be orientation-
reversing homeomorphisms. Assume that (1) holds for some n > 2. If
there exists m > 2 such that ® satisfies (2), then ®(z) = F(z) for all
z e St

PRrROOF. Since &™ = F and F, @ reverse orientation we get m = 2[+1
for some integer I. On the other hand, there exists an integer k such that
n = 2k. Thus

((I)Q)k(2l+1) —idg,
so by Theorem 1 ®? = idg1, since similary as in the previous proof ® has
a fixed point. Therefore, F = &2+ = % 0 & = . O

We are left with the task of determining orientation-preserving solu-
tions of the equation (2), where F' is an orientation-preserving homeomor-
phism. The following remark is well known.

Remark 1. Let positive integers m,n fulfil m < n and ged(m,n) = 1.
Then there exists a unique k € {1,...,n — 1} such that 1 = km (mod n).

Definition 1. Let integers g, n satisfy 1 < g < n. By My, define the
set of all orientation-preserving homeomorphisms F : S' — S1 such that

F(z) = o (627"'%\1/(2)) 7 (3)

where z € S! and ¥ : S — S! is an orientation-preserving homeomor-
phism.

Remark 2. Suppose that F € Mg, and F € My, than ¢ = ¢'.
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PROOF. By Definition 1 we have
F(z) =0 (e%i%xy(z)) — AL (627"'% (z)), ze S,
where U, A : S — S are orientation-preserving homeomorphisms. Thus
q = ¢ + jn for some integer j. But 0 < g < n, so q =¢'. O
Remark 3. Let F' € Mg, then n is the minimal number such that
F" =idg: if and only if ged(g,n) = 1.

PROOF. Assume that ged(q,n) = p > 1. By Definition 1 we have
ap q

F(z) = 0! (e“’”nii\y(z)) v (TR, ze s

where ¥ : S — S is an orientation-preserving homeomorphism and ¢ =
q1p, n = nyp. Thus F™ =idg1 and n; < n. Conversely, let ged(g,n) =1
and F* = idg: for some positive integer k < n. Hence

FF(z) =07t (egm%\lf(z» =2, zeSh

so the factor % is integer, which is impossible. (Il

Proposition 1 (see [3]). Assume that n > 2 is an integer. For every
homeomorphism F : S' — S! without fixed points satisfying (1) there
exists an integer q, 1 < q < n such that F' € Mg,

Suppose that F: S1 — S! satisfies (1), where n > 2 is the minimal
such a number. Then by Theorem 1 and Proposition 1 F' € M,,, for some
integer ¢ such that

ged(g,n) = 1. (4)

Fix a by € St, then from (3) F(bg) # FI(by) for i # j, 4,5 €4{0,1,...,n—1}.
By (4) and Remark 1 we know that there exists a unique d € {1,...,n—1}
such that 1 = ¢d (mod n). Define by, := F*(by) for k € {1,...,n — 1}.
Using (3) we have

. qkd .
by, = Frd(py) = v (em%\y(bo)) — ! (62’”%\11(1)0))
and, in consequence, since W preserves orientation

Argb—k<Argbk—+l, ke{0,1,...,n—2}. (5)
bo bo
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Let w:{0,1,...,n —1} — {0,1,...,n — 1} be defined by
u(k) =(k+¢q) (mod n).

Function v is a bijection. Moreover, u(k + 1) = u(k) + 1 for u(k) #n —1
and u(k + 1) = 0 for u(k) =n — 1. Now, note that

F(bk> = \Il_l (627”'%\:[1(170)) = bu(k:)7 ke {07 17 sy 1} (6)

and since F' preserves orientation

-
F | (b = B (), Fbrrn) = (bugeysbuge1) (7)
for k € {0,1,...,n —2}. Thus we have proved the following

Lemma 1. Let integers 1 < q¢ < n be relatively prime and F' € M.
Then for every by € S* there exist unique by, ..., b, 1 € S satisfying (5)
and (6).

Now note a few simple facts about an orientation-preserving home-
omorphism ® : S! — S! satisfying (2), where F € M,,, and m is a
positive integer.

Lemma 2. Assume that F' € Mg,, where 1 < ¢ < n are relatively
prime. If an orientation-preserving homeomorphism ® : S' — S! sat-
isfies (2) for some integer m > 2, then there exists a unique j = j(®) €
{0,1,...,m — 1} such that

q) & Mq-‘-jn’mn- (8)
Moreover, m is the minimal number for which (2) holds if and only if
n > ged(q + jn, m).

Proor. Note that ™" = idg1. Hence by Proposition 1 and Remark 2
® € My for some unique ¢’ € {1,...,mn—1}. By Definition 1 and (2)
we have .
™ () = r*l(e%i%r(z)) ze S
and by (2) since F' € M,

2"y =T oy ! (eQﬂi%\II o F_l(z)) , zeSh
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where U, T : §1 — S are orientation-preserving homeomorphisms. Thus
q = q+ jn, for some j € {0,...,m — 1}. Hence, since ¢’ is unique, we get
that j is also unique.

Since ged(g,n) = 1 we have ged(q + jn,n) = 1 taking

and .
= ey + ) 10
we obtain
D € Mytjnmn = Mgy kon and  ged(ge, kon) = 1.
From this and Remark 3 we get that
Pren —idg (11)

and kgn is the minimal number such that (11) holds.
Note that ¢¢, ko do not depend on j and m. Indeed, if ® € Mgy mm
for some j' € {0,...,m' — 1}, j/ # j and m' # m, then

®e My pn and  ged(ge, kon) =1,

where
!

q+]/n k/ — m
ged(g +4'n,m’,)” " ged(q + j'n,m’)

o =
It follows that k&)n is the minimal number such that
PFen = idg,

thus k} = ko and by Remark 2 ¢4 = go.

Now we can prove the second assertion. Suppose that n < ged(q +
jn,m). Of course, n # gcd(q + jn,m), since ged(q + jn,n) = 1. Con-
sequently, from (9) kgn < m. On the other hand, by (11) and (2) we
obtain

F(z) = ®™(z) = ®F*m o @M Fen(z) = @mhen(z) 2 e SN,
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Conversely, suppose that there exists a positive integer m’ < m such that
d™ (2) = F(z) for z € S*. Consequently, by (2) we get

J— / .
(I)m m :ldsl .

Since kgn is the minimal number such that (11) holds we get m—m' > ken,
so m > ken. Hence by (9) n < ged(q + jn, m). O

Corollary 3. Let F, ® satisfy the assumptions of Lemma 2 and kg
be defined by (9), then

p m
m =m —thken, t=|— 12
o =], (12)
where [z] denotes the entire part of z, is the minimal number such that

(2) holds.
PROOF. From (8) and (9) we obtain that ® satisfies (11). Thus

F(z) = ®"(2) = @™ Hthen(5) = ™' (2), 2z e S

Hence by Lemma 2 there exists j/ € {0,...,m’ — 1} such that ® €

Mt jinmm. Similary as in the previous proof we get ko = m

Moreover, by (12) kgn > m/, therefore n > ged(q + j'n,m’) and by

Lemma 2 we get our claim. ]

The factor ged(q + jn,m) has another property, it determines the
number of solutions of the equation (2). Indeed, when ged(q+ jn,m) = m
for some j € {0,...,m — 1}, then there is exactly one solution of (2). To
show this fact we first prove the following

Lemma 3. Let (G, x) be a group, a,b €G be elements of order n,
n > 2. If a™ = b for some positive integer m, then there exists a unique
l€{l,...,n— 1} such that b! = a.

PROOF. Since b is an element of order n we have
V£V, 1<i<j<n-—1.
Thus
a™#£adV, 1<i<j<n-—1,

but the order of a is n, so there exists [ € {1,...,n — 1} such that '™ =a.
]



684 Pawel Solarz

As a simple consequence of above lemma we have

Corollary 4. Let FF € My, and ® € My ,, where gcd(q,n) =
ged(¢',n) = 1. Let (2) holds for some integer m > 0, then there exists an
integer [ > 0 such that

d(z) = Fi(z), zeSh

To avoid solutions described in Corollary 4 from now on we define the
following set. Let integer ¢,n be such that 0 < g < n, ged(g,n) = 1. For
every m > 2 put

A ={j€{0,...,m —1} : ged(q + jn,m) # m} . (13)

Since ged(n,q) = 1, we get ged(q + jn,m) < m for at least one j €
{0,...,m—1},s0 A, #0.
Let F' € My, ged(g,n) =1 and j € Ay,. By Remark 1 there exists a
unique d € {1,...,n — 1} such that ¢gd =1 (mod n). Set
m

i —— 14
7 ged(g + jn,m) (14)

Define the following sequence (Ci)z‘e{o,...,kjn—l} satisfying two conditions

(G1) €05 Cly - -+ Ch;—1 € St are arbitrary fixed and such that
e s
co<cp < <cp-1and cp, ..., 0p-1 € (co,Fd(c0)>,

(G2) Citk; = F(¢;) for i € {0,...,kj(n—1) —1}.
Let {/;}ic{o,....k;n—1} be a family of arcs such that
—_—
(H) I = <Cvi(0)acvi(1)>a
where v(l) = (I + ¢;) (mod kjn), I € {0,...,kjn—1} and

q+gn
o 4Tin 15
U ged(q + jn, m) (15)

Now we can prove our main result.

Theorem 2. Assume that F' € Mg, ged(g,n) =1, m > 2 and j €
Ap. Let (Ci)iE{O,...,k]-n—l} satisties (G1), (Ga), {Ii}iE{O,...,kjn—l} fulfils (H)
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and ®; : I; — I; 4y fori € {0,...,k; —2} be orientation-preserving home-
omorphisms. Then there exists a unique orientation-preserving homeo-
morphism ® : S — S! satisfying (2) and such that

(I)|Iz:q)l fOI’iE{O,...,kj*Q}.

Moreover, j = j(®).

PROOF. Since j € A,,, we have k; # 1. Of course, by (14) and (15)
ged(kjn, q;) = 1. It follows by (14) and (15) that

]
g+jn m’
thus
kjqg =mgq; (mod kjn). (16)
Let
m
m':=m—tjkjn, t;= [k)n] , (17)

than k;jn > m/. By (17) and (16) we conclude that
kjg=m'g; (mod kyn). (1)
Let d € {1,...,n—1} and g¢d = 1 (mod n). From (G2) and (1) we have
Fd (ci+kj(n,1)> = Flo FA=D(¢)) = FI"(¢;) = ¢;
for i € {0,...,k; — 1}. From this and (G2) it follows that
FUci) = Cisky) (mod kyn)s € {0, kjm — 1}, (19)
Hence since gd =1 (mod n) and F™ = idg1
F(ei) = (FN(¢;) = Clishyq) (mod kynys 8 € {0, kjn — 1}, (20)
Moreover, by (19), (G1) and (Gz), since F'¢ preserves orientation, we get

cp<cp << Ck;—1 < Fd(c()) = Ck; < Fd(cl) = Ckj+1

<o < FYepyno1)-1) = Cynat < FU ey (no1)) = co,
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thus o o
Arg = < Arg L e {0,1,...,kjn—2}.
Co C
From (14) and (17) follows that there exists an integer h such that
m' = hk;. (21)

Since kjn > m/ we conclude that hkjn > hm' and n > h. Put b/ :=
ged(m, g + jn). As ged(n,q + jn) = 1 we must have ged(n,h’) = 1. On
the other hand, by (17) h = h' — t;jn, so we see that ged(h,n) = 1. Thus
from Remark 1 there exists a unique pair of integers a, a’ such that

ah =a'n+ 1. (22)

Define
1 1 g1
D= Flo® ;o080 (23)

for i € {kj — 1,kj,...,kjn —1}. It is easy to see that ®;, defined above,
preserve orientation. Next observe that, by (23) fori € {k;—1,...,kjn—2}

(I)Z'[Ii] = [ [Ii—kj—H] = |:<Cvi—k:j+1(0), Cvi—kj+1(1)>:|

= <Fa(cvi*’€j+1(0))vFa(cvi*’“j+1(1))>’
but from the definition of v and (20) we get
F*(c,i=r+1(g)) = C((i—k;+1)g;+aksq) (mod kyn)-
Applying (18) we see that
((i — kj + 1)g; + akjq) (mod kjn) = ((i — kj + 1)gj + am’q;) (mod k;n).
Hence by (21) and (22)
(i — kj 4+ 1)g; + am'q;) (mod k;n)
= ((i — kj + 1)g; + kjq; + d'qjkjn) (mod kjn) = ((i +1)g;) (mod kjn).

Thus
Fe <Cvi—kj+1(0)) = Cvi+1(0).
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Similary F“(cvi_kj+1(1)) = Cyit1(1), SO
(I)Z‘[Ii] =11, iE{kj—l,...,kjn—2}. (24)

In the same manner we can show that, if i = k;jn — 1 we get

Ppin—1[Ik;n—1] = lo- (25)
From (23) we have
Fil =0 0 0® o0 o® (26)

forie{kj—1,...,kjn—1}. Fixani € {kj,...,kjn — 1}, thus combining
(23) with (26) we obtain
q)i =F%o (I)i—k]- o (P;_lk] o (PA_l ..0 (PA_12 o (pz_—ll

i—k;+1 O i—
_ 1a ) —a
iF oq)lfijFjui.

(27)

We may write the index ¢ in the form ¢ = pk; +r, where p > 1 is an integer
and r € {0,1,...,k; — 1}. Using (27) p times we get

P, =FP?o0d, 0 Flipa (28)

for i € {k;,...,kjn—1}.
Define
(I)(Z) = (I)Z(Z) zel;, i€ {0, e kjn — 1} (29)

It follows from the properties of ®;, i € {0,...,k;n— 1} and the definition
of I; for i € {0,...,kjn — 1} that ® is an orientation-preserving homeo-
morphism. We next prove that ®™ = F. For this purpose note that from
(26) we get

Fj =®ipp—10-0PipgoPip10®; (30)

for i € {0,...,kj(n—1)}. Now fix a z € I}, 1 € {0,...,nk; —m’}, then by
(29), (30), (22) and (21) we obtain
q)ml(Z) = ((I)l+m/71 O-+++0 (I)l+m/7kj) O (¢l+m/7kj71 O-+«++0 (I)l+m/72kj)
00 (Dpipy_1 00 By 0By) (2) = F(2) = FI™H(2)
= F(2).
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Let I € {nkj —m/ +1,...,kjn — 1} and z € I;, then by (24) and (25) we
can get

‘I)m/(z) = (q’m'—kjn+l—1 ©---0 (I)m’—kj(n+1)+l> 0---0 (‘I’kj—l ©---0 (I)o)

o (‘?kjnq 0---0 (pkj(nfl)) Or---0 ((I)ij—l ©---0 ‘I’l) (2)
or
(I)ml(z) = ((I)m’—k]-n+l—l ©---0 (pm/fkj(nJrl)Jrl)
00 (Ppgo-0PgoPpy g0 0Py 1)) (31)
0---0 (‘I)l+kj—10"'0‘1)l)(z),

where r € {1,2,...,k; — 1}. In the first case, similary as above, we have
" (2) = F(2), z € I, straight from (30), (22) and (21). In the second
case it suffices to show that ®%i(z) = F?(z), where z € Tin—1)k;4r for
re{l,...,k;j — 1}, thus

®Fi(z) =010 P90 0Dy 0 DGO Py 100Dy (1)1 (2),

S Ik:j (n—1)+r-

Replacing all ®; for i € {kj(n—1)+r,...,kjn—1} by (28) withp=n—1
we obtain

ki (2) =P, 10D, 90...P10Pp0 Fn=ba Pp; 10 F~(n—1a
° F(nfl)a ° (I)kj—2 o Ff(nfl)a 0.0 F(nfl)a 0®, 0 Ff(nfl)a(z)
=®,_10P,_90---0P; oCI)OOFn“oF_aoCI)kj,l oDy, o
0 0B 0P 0 FT () 2 € Iy 1)ir
Now using (1) and (26) for i = k; — 1 we get
@kj(z) = (q)r,loq)r,Qo...@lo@oo(Palo@flo---oq)rill)
o (@;1 ool 0By oy 500 <1>r) o F=(n=Da(y)
=F~("02) = P 0 F2) = F(2), 2 € Iyj(n_1)4r-

Applying this and (30) to (31) in view of (21) and (22) we get & = F.
From (30) and (29) we see that F® = ®*i. Hence by (1)

Phin = Fan — idg . (32)
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Finally, using (17) we have ®™ = @™ +hitin = 7,

The proof is completed by showing that j = j(®). To do this note
that (H), the definition of the function v and (31) give ® € Mg, x.,, but
according to (14) and (15) we obtain My, k.n = Mgt jnmn, S0 j = j(P).

O

Theorem 3. Let F' € Mg, ged(g,n) =1, d € {1,...,n — 1} be
such that gd =1 (mod n) and ® : S' — S be an orientation-preserving
homeomorphism satisfying (2), where integer m > 2 is the minimal such
a number and such that ®" # idg: or ®* = idg: for an integer k < n.
Then for every ¢y € S' there exists a sequence cy, . .. s Chon—1 € St fulfils
co < c1 = -+ < Chgn—1 and (Gg), where k; = ko and ke is given by (9)
for some j = j(®) ¢ Am. Moreover, if {Ii};cqq  pon—1y fulfils (H) with
¢j = qo, then ® [Iz] = I(i+1); 1 € {0,...,kq>n — 2}, (I)[qum—l] = Iy, and
taking ®; := ®|;, we get

-1 -1
= Flo® 5 008,
fori € {ko —1,...,kon — 1} and some integer a.
PRrROOF. From Lemma 2 we get ®€ M4 jn mn for some je{0,...,m—1}.

Thus ® € Mgy, kyn, Where ged(ga, kon) = 1 and kg, go are defined in (9)
and (10). Fixacyg € S*. From Lemma 1 we get co < ¢; < - -+ < Chgn—1 = €O
and

®(ci) = Clitgp) (mod ken) 1 €10, ken — 1}
It follows from (9) and (10) that (mge = keq) (mod ken), thus
F(ci) = ®™(¢i) = C(i+mge) (mod ken) = C(i+kaq) (mod ken)
for i € {0,...,ken — 1}. Hence
FU¢i) = Clitkadg) (mod kan) = Clitka) (mod kan)ys 0 € {0,... kon — 1},

as kodg = ko (mod ken), so (Gz2) holds. Moreover, by (7)

D [I] = ((cyi(o)), Plevi(r))) = (Bleyiti(o)), Bleyiti(r)))
= I(i+1) (mod ken)s € 1{0,..., ken —1}.
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Now let us observe that, since ®" # idg1 we get kg > 1. On the other
hand, from Lemma 2, as m is the minimal number such that (2) holds we

have kgn > m. Thus, symilary as in the proof of Theorem 2, we know

that ah = a’n + 1 for some unique integer a, a’ and h = %. It follows

from (2) that
drel(2) = F(z), zeSh

But ®**¢" = idg: since ® € My, gy, thus
FO(z) = dFeha(z) = phed'nthe (1) = gke(z), 2 S
Using the definition of ®; we get
F2) = ®jtpp—10 Pigrg—20---0Pi(2),

where z € I;, i € {0,...,(n — 1)kg}. Put | :=i+ ke — 1, then

Oy(2) = Flo® o0 hod ! (2)
for z€ I and | € {k¢ — 1,...,ken — 1}. This ends the proof. O

Corollary 5. Every orientation-preserving homeomorphic solution
of (2) may be obtained in the manner described in proof of Theorem 2
or by Corollary 4.

Theorem 4. Let F' € Mg, and ged(g,n) = 1. A homeomorphism
® : S — St satisfies (2) for some integer m > 2 if and only if there
exist j € {0,...,m — 1} and an orientation-preserving homeomorphism
v : R — R such that

o (627rix) _ e?ﬂiyfl(qtr{n—s—’y(ac)), reR (33)
and 7y is an increasing solution of
—1

v (PE@ =P —s@ 41 s, (39)

where f is the lift of F' such that 0 < f(0) < 1,p <mnandpg=1 (mod n).

PROOF. Since ® fulfils (2), then by Lemma 2 there exists a unique
j€{0,...,m —1} such that ® € Mg jn mn. Hence and from Definition 1

;gtin

@@y:m*(émmnmag, ze s, (35)
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where ¥ : 81 — S is an orientation-preserving homeomorphism. Using
(2) once more we get

F(z) =0 (e%i%\p(z)) , zeSh (36)

Let f: R — R be the lift of F' such that 0 < f(0) < 1, than by (36) we

have
2T(f(@) — v+t R (37)

and q
(f2)) =)+~ +k zER, (38)
where k is an integer and ¢ : R — R is an increasing lift of ¥ such that
Pe+1)=¢x)+1, zeR. (39)

Since 0 < f(0) < 1 from the properties of ¢ follows that ¢(0) < ¢(f(0)) <
(1) = 9(0) + 1, thus

0 < w(f(0) ~¥(0) < L.
We conclude from this and (38) that k = 0. Therefore (38) gives
b(f@) =)+ weR. (40)
Put
7=, (41)
then by (39) and (40) we have
vz +1)=y(z)+n, z€eR,
Wf@) =)+, aeR.

According to Lemma 7 in [8] the above system of equations is equivalent
to the equation (34), where p < n is such that p¢g =1 (mod n). It follows
from (35) and (41) that ® satisfies (33). Let us note that if j ¢ A, i.e.
ged(q + jn,m) = m, than g + jn = mh for some integer h and (33) gives

(42)

¢ (627Tiilj) — 627ri’771(h‘+7(x))7 €T E R

Now suppose that ® satisfies (33) and ~ fulfils (34). Thus

o™ (627rix) _ 627Ti—y*1(q+jn+’}/(m‘)), r e R.
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But (34) and (42) are equivalent, so using (42) we get

o™ (627ri;t) _ 627ri7’1(q+’y($)) _ eQTrif(:v) - F (627riac) , TER,
which proves the thorem. O
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