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On solutions of a conditional generalization of the
Golab—Schinzel equation

By ANNA MURENKO (Rzeszéw)

Abstract. We determine the functions f : Ry — R satisfying equation (1),
continuous at a point @ € Ry such that f(a) # 0. As a consequence we obtain a
solution of a problem of P. Kahlig and J. Matkowski and a partial solution of a
problem of J. Brzdek.

Let N and R denote, as usual, the sets of positive integers and reals.
Motivated by a problem of P. KAHLIG, arising from meteorology and fluid
mechanics (cf. [14]), J. AczEL and J. SCHWAIGER [3] have determined the
continuous solutions f : R — R of the following conditional version of the
well known Golab—Schinzel functional equation

flx+ f(x)y) = f(2)f(y) for x>0, y>0.

Some further conditional generalizations of the Gotab—Schinzel equation
have been considered in [9], [17] and [18].

In connection with those results, at the 38th International Sympo-
sium on Functional Equations (Noszvaj, Hungary, June 11-17, 2000), J.
BRZDEK (see [8]) raised, among others, the problem of solving the condi-
tional equation

f@+ f(x)y) = f(x)f(y) whenever z,y,z+ f(z)y € Ry, (1)

Mathematics Subject Classification: 39B22.
Key words and phrases: Golab—Schinzel functional equation, solution continuous at a
point.



694 Anna Mureniko

in the class of functions f : Ry — R that are continuous at a point, where
R4 = (0,00). A first partial answer to the problem has been given in [15],
where equation (1) has been solved in the class of functions f : Ry —
[0,00), continuous at a point @ € Ry such that f(a) > 0. In this paper
we improve that outcome by solving equation (1) in the class of functions
f : Ry — R that are continuous at a point a € Ry such that f(a) # 0.
Thus we also give an answer to Problem 1 in [14] (see Remark 2) and
generalize the results in [3], [9], [17] and (to some extent) [18]. Let us
mention that our result is closely related to that of [17], where L. REICH
has determined the continuous solutions f : R — R of the conditional
equation

[z + f(x)y) = f(x)f(y) whenever z,y,z + f(z)y > 0. (2)

For more information on the Gotab—Schinzel functional equation, some
recent results, applications, generalizations and further references see also
11, [2), [4)-[7), [10]-[13] and [16].

From now on we assume that f : R4 — R is a solution of equation (1)
and lim,_,o+ f(z) = 1, unless explicitly stated otherwise.

Let us start with some lemmas.

Lemma 1. Suppose that f(y2) = f(y1) # 0 for some yo > y; > 0.
Then there exists xo > 0 such that f(xg) = 1 and f(t + x9) = f(t) for
t>0.

PRrROOF. First assume that f(y2) = f(y1) < 0. Then there exists a
point zp > 0 such that y1 = y2 + zof(y2). Thus

f) = f(y2 + 20f(y2)) = f(y2) f(z0) = f(y1)f(20),

whence f(zg) = 1.
Further, in the case f(y1) = f(y2) > 0, there exists a point z¢g > 0
such that yo = y1 + 2o f(y1). Since

f(y2) = fyr +2of(y1)) = f(y1) f(zo) = f(y2) f(20),

again we have f(zg) = 1.
Consequently, in either of the cases, by (1) we have

ft+z0) = f(zo+1t) = f(zo+ f(20)t) = f(20) f(t) = f(t) fort>0.0
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Lemma 2. Let y1,y2 € R, yo > y1 > 0 and f(y1) = f(y2) > 0. Then
fE+ (y2—w1)) = f(t) fort > 0.

PROOF. On account of (1) we have

f@+(wynw=fgu+§@§f@n>
t— . t—y1
(e ) = st () 5
t—y1\ t—y o
f@ﬁ<ﬂy»—i<m+ﬂwfm0—f®
for t > 1

Fix tg > 0. According to Lemma 1 there exists zo € Ry with f(xg) =1.
Take n € N such that tg + nxo > yi1. Then, in view of (3), f(to + nzg) =
f(to+mnxo+ (y2 —y1)). This and Lemma 1 imply

f(to) = f(to +nzo) = f(to + (y2 —y1) +nwo) = f(to+ (y2 —w1)). O

Lemma 3. Suppose that there exists y1,y2 € R with y2 > y; > 0 and
f(y1) = f(y2) > 0. Then there exists ¢ > 0 such that
(a) f(t+ f(2)zo) = f(t) fort >0, z >0 with f(z) >0
(b) if z1, z2 > 0 and f(22) > f(z1) > 0, then

[+ (f(z2) = f(z1))zo) = f(t) fort>0.
PROOF. (a) According to Lemma 1 there exists g > 0 with f(zg) = 1.
Since f(z + f(2)zo) = f(2)f(x0) = f(2) > 0, Lemma 2 yields
F(t) = F(t+ 2+ 20f(2) — 2) = F(t+20f(2)) for t > 0.
(b) Note that t+ (f(z2) — f(z1))xo > 0 for t > 0. Thus using (a) twice,
for z = z1 and z = 23, for every ¢ > 0 we have
ft+(f(z2) = f(21)0) = f(t+ (f(22) — f(21))20 + f(21)0)
= f(t+ f(z2)w0) = f(1). O
Lemma 4. Suppose that there exist yi,ys € R with yo > y; > 0 and

f(y1) = f(y2) # 0. Then, for every d > 0, there exists ¢ € (0,d) with
flt+c)= f(t) fort > 0.
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PROOF. First suppose that there exists ¢ > 0 such that f(x) = const
for x € U := (0,6]. Since lim, .o+ f(z) =1, f(z) > 0 for z € U. Hence,
in view of Lemma 2, we have

Ft+ @ —z)=f(t) fort>0,zel.

Now assume that there does not exist any § > 0 such that f(z) = const
for z € U := (0,6]. Take € € (0,1). Since lim, o+ f(x) = 1, there exists
d > 0 such that f(z) € (1 —¢,1+¢) for z € Uy := (0,9). Take 1,22 € Uy
with f(z1) < f(z2). Then f(z2) — f(z1) < 2¢ and f(x1) > 0. Moreover,
according to Lemma 3(b), there is ¢ > 0 with

ft+ (f(z2) — f(x1))mo) = f(t) fort > 0.

To complete the proof it is enough to observe that the point xy may
chosen independently of the values of x1 and x5 and therefore, by a suitable
choice of e, the value ¢ := (f(x2) — f(x1))zo can be made arbitrarily
small. |

Lemma 5. If there exist y1,yo € R such that yo > y; > 0 and
f(y2) = f(y1) #0, then f =1.

PRroOOF. For the proof by contradiction suppose that there exists ¢t > 0
with f(t) # 1. Put € := |f(t) — 1|. Since lim,_,g+ f(z) = 1, there exists
d > 0 such that |f(x) — 1| < e for x € (0,6). From Lemma 4 we infer that
there is 1 € (0,9) with f(x1) = f(t), which means that |f(t) — 1] < ¢,
contrary to the definition of e. O

Lemma 6. There is ¢ € R such that f(x) € {cx + 1,0} for all x > 0.

PROOF. The case where f=1is trivial. Therefore assume that f(x) #1
for some = > 0. First we show that there exists ¢ € R with

flz) =1

. =¢ for x >0 with f(x) > 0. (4)

For the proof by contradiction suppose that z >y > 0, f(z), f(y) > 0

flx) -1 ” fly -1
x y

r+yf(z) #y+xf(y),

and

Then
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and

[ +yf(@) = f@)f(y) = fly+2f(y) # 0.

Thus, by Lemma 5, f = 1, a contradiction.
Now suppose that there exists x > 0 with f(x) < 0 and

flz) -1
—_— . )
il (5)
Since lim,,_,o+ f(z) = 1, there exists d > 0 with f(d) > 0 and z+df(x) > 0.

Next, by (4) f(df.)l_l = c¢. This and (5) imply that

f(@) -1 ” fld)—1
T d
Thus
z +df(z) # d+z f(d),
and

flz+df(x)) = f(x)f(d) = f(d+zf(d)) #0.

Hence on account of Lemma 5, f = 1, a contradiction.
In this way we have shown that there is ¢ € R such that % c
for z > 0 with f(x) # 0, which implies the statement. O

Lemma 7. Suppose that there exists y > 0 with f(y) # 0 and ¢ :=

% =% 0. Then the following statements are valid:

I) (a) In the case c <0, f(z) =cx + 1 forz € (0,—1).
(b) In the case ¢ >0, f(z) =cx + 1 for x > 0.

IT) In the case ¢ < 0, either f(z) = cx + 1 for x > —1 or f(z) = 0 for
T > —

o=

PRrROOF. I) Since lim,_,o+ f(z) = 1, there exists h; > 0 such that
f(xz) >0 forz e (0,h]. (6)
Define a sequence {h,} by

hn+1 =h1 + f(hl)hn forne N
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and let U, := (0, hy,]. Note that f(hpt1) = f(h1+ f(h1)hyn) = f(h1)f(hy)
for n € N. Thus, by induction, we get

F(h) = (f(h1))" forn €N, (7)
Next we prove that
f(x) >0 forzxzeU,. (8)
So fix n € N and assume (8). Define a function g : U,, — Up4+1 by
g(z) =h1+ f(h1)x for z € U,.
Then g(Us) = g((0, hu]) = (b1, A1) = Vis1 and

f(Vn—i-l) = f(g(Un)) = f(hl)f(Un) C R4

Since Up41 = U1 U Vyy1, f(Up+1) C Ry Consequently, in view of (6), (8)
holds for every n € N.
Observe that (6) and Lemma 6 imply f(h1) = chi1+1. Moreover ¢ # 0
and hy # 0; whence f(h1) # 1. Two cases may occur:
1) f(h1) <1 (then ¢ < 0);
2) f(h1) > 1 (then ¢>0).

In the first case, by (7), we have

Jim f(hy) = lim (f(h1))" = 0. (9)
Further, on account of (8), f(hy) > 0 for n € N. Thus, according to
Lemma 6, f(h,) = ch, + 1. This and (9) imply lim,_, ch, + 1 = 0.
Therefore lim,,—o0 by, = —% and consequently from (8) and Lemma 6 we
infer that f(z) = cz +1 for z € (0,—1).
Now consider case 2). Then, by (7), we get
lim f(h,) = lim (f(h1))" = oc. (10)
n—oo n—oo
On the other hand f(hy) = chy, + 1. Hence from (10) we derive
limy,, 00 chy, + 1 = 00, which means that lim,, .. h, = co. Consequently
(8) and Lemma 6 yield f(x) = cx + 1 for z > 0.
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I) According to I) f is continuous on the interval (0,—1) and, by
Lemma 6, f(—%) = 0. Suppose that there is a point by > —% with f(b2) =0.
Take by > —% and consider first the case where by < by. Let

9(@) = 3+ bof(z) forze <o,1> .

Cc

Since f(z) = cx + 1 for x € (0, —1), we get

T

Jim g(z)=by and lim, g{z)=—_. (11)

Moreover by the continuity of f on (0, —%), g is continuous. This and (11)
imply that there exists x; € (0, —%) with g(x1) = b1. Consequently

f(b1) = f(g(x1)) = f(@1 +baf(21)) = f(21)f(b2) = 0.

If by > by we put g(z) = z + b1 f(z) for z € (0,—1) and obtain, in
a similar way, g(z2) = by for some 2o € (0,—1). Hence 0 = f(b2) =
f(z2)f(b1), which implies f(b;) = 0.

Thus we have shown that either f(z) = 0 for > —1 or f(z) # 0 for
T > —%. In the latter case, in view of Lemma 6, we get f(z) = cx + 1 for

T > —%. This completes the proof. [l

Lemma 8. Suppose that f(z) € {0,1} for x > 0. Then f(x) =1 for
x> 0.

PROOF. Since lim,_,y+ f(x) = 1, there exists § > 0 such that f(x) # 0
for z € (0,6), which means that f(z) =1 for = € (0,d). Hence, according
to Lemma 5, we get f(z) =1 for > 0. O

Finally we have the following.
Theorem 1. Suppose that a function f : Ry — R satisfies (1) and
one of the subsequent three conditions holds.
(a) lim,_, .+ f(x) = f(a) for some a € Ry with f(a) >0
(b) lim,_,,- f(z) = f(a) for some a € Ry with f(a) <0
(€) Timy o+ () = 1.
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Then
f(z) = max{cx + 1,0} for every x € R4,

or
f(x)=cx+1 foreveryxz e R,.

PROOF. Assume (a) ((b), respectively) and fix ¢ > 0. Then there
exists 0 € (0,a) such that |f(t) — f(a)| < e|f(a)| for t € (a,a +6) (t €
(a — d,a), respectively). Let §; := Wsa)' and take 1 € (0,01). Notice
that z1|f(a)] < § < a, which means —a < f(a)x; and consequently = :=

a+ f(a)x; > 0. Since
[z —a = la+ f(a)z1 — o] = |fla)aa] = [f(a)|z1 < |f(a)[6r =4,
[f(z) = f(a)| <elf(a)l- (12)
From (1) and (12) we have

[f(a)f(z1) = fa)] = [f(a+ fla)zr) — f(a)| = |f(z) — fla)| <elf(a)l

Hence
|f(z1) — 1] <e.

Thus we have proved that, for every € > 0, there exists §; > 0 such
that |f(x1) — 1| < € for x; € (0,61). This means that lim, g+ f(z) = 1.
Now from Lemmas 6, 7 and 8 we get the statement. [l

Remark 1. Let f : Ry — R be given by: f(z) = 1 for z € N and
f(z) =0 for x € Ry \ N. Then it is easily seen that f satisfies (1). This
example shows that continuity at a point ¢ € Ry does not need to imply
continuity of a solution f: Ry — R of (1), unless f(a) # 0.

Remark 2. P. KAHLING and J. MATKOWSKI (see [14], Problem 1)
have raised the problem to determine all functions f : [0,00) — [0,00),
satisfying the following conditional Gotab—Schinzel functional equation

flx+ f(x)y) = f(z)f(y) forz,y >0, (13)

that are differentiable at some point yo > 0 with f(yo) # 0. A solution
to the problem can be easily derived from Theorem 1. Namely let f :
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[0,00) — [0,00) satisfy (13) and be differentiable at a point yo > 0 with
f(yo) # 0. Then f is continuous at yo. Next, with z = y = 0, from (13)
we get f(0) = (£(0))2, which means that f(0) € {0,1}. Now it is easily
seen that in the case yo = 0 we have lim, g+ f(z) = 1. Therefore one of
conditions (a)—(c) of Theorem (1) are fulfilled, whence we obtain the form

of f.
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