Publ. Math. Debrecen
63/4 (2003), 703-714

## Note on a Jensen type functional equation

By WILHELMINA SMAJDOR (Kraków)

$$
\begin{aligned}
& \text { Abstract. We look for solutions } f: M \rightarrow S \text { and examine the stability of } \\
& \text { the functional equation } \\
& \qquad \begin{array}{c}
3 f\left(\frac{x+y+z}{3}\right)+f(x)+f(y)+f(z) \\
=2\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right]
\end{array}
\end{aligned}
$$

where $M$ is an Abelian semigroup in which the division by 2 and 3 is performable and $S$ is an abstract convex cone. Some applications to a multivalued version of this equation are given.

## 1. Introduction

Let $(S,+)$ be an Abelian semigroup, written additively. Suppose that $S$ contains the identity element 0 and for each $\lambda \geq 0$ and $s \in S$, an element $\lambda s$ in $S$ is defined, for which the following axioms hold

$$
1 s=s, \quad \lambda(\mu s)=(\lambda \mu) s, \quad \lambda(s+t)=\lambda s+\lambda t, \quad(\lambda+\mu) s=\lambda s+\mu s
$$

where $s, t \in S$ and $\lambda, \mu \geq 0$. Then $S$ is said to be an abstract convex cone.
If $s, t, t^{\prime} \in S, t+s=t^{\prime}+s$ always implies that $t=t^{\prime}$, then $S$ is said to satisfy the cancellation law.

Mathematics Subject Classification: 39B52, 39B82.
Key words and phrases: Jensen type functional equation, multifunctions, Hausdorff distance, Hyers-Ulam stability

Suppose that an invariant with respect to translations and positively homogeneous metric $\varrho$ is given in $S$, i.e.,

$$
\varrho\left(t+s, t^{\prime}+s\right)=\varrho\left(t, t^{\prime}\right)
$$

and

$$
\varrho(\lambda s, \lambda t)=\lambda \varrho(s, t)
$$

for $\lambda>0$ and $s, t, t^{\prime} \in S$.
It is easy to see that the mappings $[0, \infty) \times S \ni(\lambda, s) \longmapsto \lambda s \in S$ and $S \times S \ni(s, t) \longmapsto s+t \in S$ are continuous in the metric topology.

Let $(M,+)$ be an Abelian semigroup with the identity element 0 in which the division by 2 and 3 is performable.

We are going to look for all solutions $f: M \rightarrow S$ of the functional equation

$$
\begin{align*}
& 3 f\left(\frac{x+y+z}{3}\right)+f(x)+f(y)+f(z) \\
= & 2\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right] . \tag{1}
\end{align*}
$$

The inequality

$$
\begin{aligned}
& 3 f\left(\frac{x+y+z}{3}\right)+f(x)+f(y)+f(z) \\
\geq & 2\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right]
\end{aligned}
$$

appeared in T. Popoviciu's paper [3] in connection with the following theorem: The real continuous function $f$ defined on an interval $I$ is convex (i.e. the second divided differences of $f$ are non-negative) if and only if the above inequality holds true for every triples $x, y, z$ in $I$.

Tiberiu Trif [7] solved equation (1) in the class of functions $f$ : $X \rightarrow Y$, where $X, Y$ are real vector spaces. His considerationes cannot be applied in our reality as subtraction in vector spaces was used.

The main objective of this note is to find all solutions $f: M \rightarrow S$ of (1) and to examine its stability. The natural range of equation (1) is a commutative semigroup. If we consider its stability then the semigroup ought to be endowed with a metric. Restrictions of the second part of
the paper (the range of $f$ is an abstract convex cone with the cancellation law and endowed with a complete metric invariant under translations and positive homogeneous) enable us to prove Theorem 1. The family $\operatorname{clb}(X)$ of all non-empty convex closed and bounded subsets of a real Banach space fulfils these conditions and we can apply Theorem 1 to study equation (1) in the multivalued case. The similar results associated with the Jensen and Pexider functional equations were obtained in [5].

## 2. Solutions and Hyers-Ulam stability of (1)

We shall assume that
(i) $M$ is a commutative semigroup with zero in which the division by 2 and 3 is performable;
(ii) $S$ is an abstract cone satisfying the cancellation law;
(iii) $(S, \rho)$ is a complete metric space and $\rho$ is invariant with respect to translations and positively homogeneous.
Let $a: M \rightarrow S$ be an additive function which means $a(x+y)=$ $a(x)+a(y)$ for all $x, y \in M$. It is easily seen that for every $b \in S$, the function $f(x)=a(x)+b, x \in M$, satisfies (1). The converse follows from the following

Theorem 1. Assume that conditions (i)-(iii) are fulfilled. If $\varepsilon \geq 0$ and if $f: M \rightarrow S$ satisfies

$$
\begin{gather*}
\varrho\left(3 f\left(\frac{x+y+z}{3}\right)+f(x)+f(y)+f(z),\right. \\
\left.2\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right]\right) \leq \varepsilon \tag{2}
\end{gather*}
$$

for all $x, y, z \in M$, then there exists a unique additive function $a: M \rightarrow S$ such that

$$
\begin{equation*}
\varrho(f(x), a(x)+f(0)) \leq \varepsilon \tag{3}
\end{equation*}
$$

for $x \in M$.
Proof. Setting in (2) $y=x$ and $z=0$ we obtain

$$
\varrho\left(3 f\left(\frac{2}{3} x\right)+2 f(x)+f(0), 2 f(x)+4 f\left(\frac{1}{2} x\right)\right) \leq \varepsilon
$$

Since the metric $\varrho$ is invariant with respect to translation and positively homogeneous, we have

$$
\begin{equation*}
\varrho\left(\frac{3}{4} f\left(\frac{4}{3} x\right)+\frac{1}{4} f(0), f(x)\right) \leq \frac{1}{4} \varepsilon \tag{4}
\end{equation*}
$$

Replacing $x$ by $\frac{4}{3} x$, multiplying by $\frac{3}{4}$ both the sides of (4) we infer

$$
\varrho\left(\left(\frac{3}{4}\right)^{2} f\left(\left(\frac{4}{3}\right)^{2} x\right)+\frac{3}{4^{2}} f(0), \frac{3}{4} f\left(\frac{4}{3} x\right)\right) \leq \frac{3}{4^{2}} \varepsilon
$$

whence

$$
\varrho\left(\left(\frac{3}{4}\right)^{2} f\left(\left(\frac{4}{3}\right)^{2} x\right)+\frac{1}{4}\left(1+\frac{3}{4}\right) f(0), \frac{3}{4} f\left(\frac{4}{3} x\right)+\frac{1}{4} f(0)\right) \leq \frac{3}{4^{2}} \varepsilon
$$

Hence in virtue of (4) follows

$$
\varrho\left(\left(\frac{3}{4}\right)^{2} f\left(\left(\frac{4}{3}\right)^{2} x\right)+\frac{1}{4}\left(1+\frac{3}{4}\right) f(0), f(x)\right) \leq \frac{1}{4}\left(1+\frac{3}{4}\right) \varepsilon
$$

By induction we can show that for every positive integer $n$ the inequality

$$
\begin{gather*}
\varrho\left(\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} x\right)+\frac{1}{4}\left[1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{n-1}\right] f(0), f(x)\right) \\
\leq \frac{1}{4}\left(1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{n-1}\right) \varepsilon \tag{5}
\end{gather*}
$$

holds. Write

$$
\begin{equation*}
f_{n}(x):=\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} x\right), \quad x \in M, n \in \mathbb{N} . \tag{6}
\end{equation*}
$$

It follows by (5) that for arbitrary $n, m \in \mathbb{N}$, and $x \in M$ we have

$$
\begin{aligned}
& \varrho\left(f_{n+m}(x), f_{n}(x)\right)=\varrho\left(\left(\frac{3}{4}\right)^{n+m} f\left(\left(\frac{4}{3}\right)^{n+m} x\right),\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} x\right)\right) \\
& =\left(\frac{3}{4}\right)^{n} \varrho\left(\left(\frac{3}{4}\right)^{m} f\left(\left(\frac{4}{3}\right)^{n+m} x\right)+\frac{1}{4}\left[1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{m-1}\right] f(0)\right.
\end{aligned}
$$

$$
\begin{aligned}
f & \left.\left(\left(\frac{4}{3}\right)^{n} x\right)+\frac{1}{4}\left[1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{m-1}\right] f(0)\right) \\
\leq & \left(\frac{3}{4}\right)^{n} \varrho\left(\left(\frac{3}{4}\right)^{m} f\left(\left(\frac{4}{3}\right)^{m}\left(\frac{4}{3}\right)^{n} x\right)\right. \\
& \left.+\frac{1}{4}\left[1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{m-1}\right] f(0), f\left(\left(\frac{4}{3}\right)^{n} x\right)\right) \\
& +\left(\frac{3}{4}\right)^{n} \varrho\left(f\left(\left(\frac{4}{3}\right)^{n} x\right), f\left(\left(\frac{4}{3}\right)^{n} x\right)\right. \\
& \left.+\frac{1}{4}\left[1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{m-1}\right] f(0)\right) \\
\leq & \left(\frac{3}{4}\right)^{n} \frac{1}{4}\left[1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{m-1}\right] \varepsilon \\
& +\left(\frac{3}{4}\right)^{n} \frac{1}{4}\left[1+\frac{3}{4}+\cdots+\left(\frac{3}{4}\right)^{m-1}\right] \varrho(0, f(0)) \\
< & \left(\frac{3}{4}\right)^{n}[\varepsilon+\varrho(0, f(0))] .
\end{aligned}
$$

Thus for every $x \in M,\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Let

$$
\begin{equation*}
a(x)=\lim _{n \rightarrow \infty} f_{n}(x), \quad x \in M \tag{7}
\end{equation*}
$$

Letting $n \rightarrow \infty$, we obtain by (5)

$$
\varrho(a(x)+f(0), f(x)) \leq \varepsilon
$$

We have by (2)

$$
\begin{aligned}
& \varrho\left(3\left(\frac{3}{4}\right)^{n} f\left(\frac{1}{3}\left[\left(\frac{4}{3}\right)^{n} x+\left(\frac{4}{3}\right)^{n} y+\left(\frac{4}{3}\right)^{n} z\right]\right)\right. \\
& \quad+\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} x\right)+\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} y\right)+\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} z\right) \\
& 2\left[\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} \frac{x+y}{2}\right)+\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} \frac{y+z}{2}\right)\right. \\
& \left.\left.\quad+\left(\frac{3}{4}\right)^{n} f\left(\left(\frac{4}{3}\right)^{n} \frac{z+x}{2}\right)\right]\right) \leq\left(\frac{3}{4}\right)^{n} \varepsilon
\end{aligned}
$$

i.e.,

$$
\begin{gathered}
\varrho\left(3 f_{n}\left(\frac{x+y+z}{3}\right)+f_{n}(x)+f_{n}(y)+f_{n}(z),\right. \\
\left.2\left[f_{n}\left(\frac{x+y}{2}\right)+f_{n}\left(\frac{y+z}{2}\right)+f_{n}\left(\frac{z+x}{2}\right)\right]\right) \leq\left(\frac{3}{4}\right)^{n} \varepsilon .
\end{gathered}
$$

Passing to the limit as $n \rightarrow \infty$ we get

$$
\begin{align*}
& 3 a\left(\frac{x+y+z}{3}\right)+a(x)+a(y)+a(z) \\
= & 2\left[a\left(\frac{x+y}{2}\right)+a\left(\frac{y+z}{2}\right)+a\left(\frac{z+x}{2}\right)\right] \tag{8}
\end{align*}
$$

for $x, y, z \in M$, which means that $a$ satisfies equation (1). Since $a(0)=$ $\lim _{n \rightarrow \infty}(3 / 4)^{n} f(0)$ by $(7)$ and $(6)$, we have $a(0)=0$. Now we shall prove that $a$ is an additive function. Putting in (8) $y=x$ we get

$$
\begin{equation*}
3 a\left(\frac{2 x+z}{3}\right)+a(z)=4 a\left(\frac{x+z}{2}\right) . \tag{9}
\end{equation*}
$$

If we put $u=\frac{2 x+z}{3},(9)$ turns into

$$
\begin{equation*}
3 a(u)+a(z)=4 a\left(\frac{3 u+z}{4}\right), \quad u, z \in M . \tag{10}
\end{equation*}
$$

Substitute $z=0$ in (10). Then $a\left(\frac{3}{4} u\right)=\frac{3}{4} a(u)$ or

$$
\begin{equation*}
a(3 u)=\frac{3}{4} a(4 u) . \tag{11}
\end{equation*}
$$

Setting $u=0$ in (10) we obtain $a(z)=4 a\left(\frac{1}{4} z\right)$ or $a(4 z)=4 a(z)$. Hence and by (11), $a(3 u)=3 a(u)$. Now formula (10) may be rewritten in the form $a(3 u)+a(z)=a(3 u+z)$, whence the additivity of $a$ follows.

To end the proof we have to show the uniqueness of $a$.
Suppose that (3) holds with an additive function $\tilde{a}: M \rightarrow S$. We have for arbitrary $n \in \mathbb{N}$
$\varrho(a(x), \tilde{a}(x))=\left(\frac{3}{4}\right)^{n} \varrho\left(\left(\frac{4}{3}\right)^{n} a(x),\left(\frac{4}{3}\right)^{n} \tilde{a}(x)\right)$

$$
\begin{aligned}
= & \left(\frac{3}{4}\right)^{n} \varrho\left(a\left(\left(\frac{4}{3}\right)^{n} x\right), \tilde{a}\left(\left(\frac{4}{3}\right)^{n} x\right)\right) \\
= & \left(\frac{3}{4}\right)^{n} \varrho\left(a\left(\left(\frac{4}{3}\right)^{n} x\right)+f(0), \tilde{a}\left(\left(\frac{4}{3}\right)^{n} x\right)+f(0)\right) \\
\leq & \left(\frac{3}{4}\right)^{n} \varrho\left(a\left(\left(\frac{4}{3}\right)^{n} x\right)+f(0), f\left(\left(\frac{4}{3}\right)^{n} x\right)\right) \\
& +\left(\frac{3}{4}\right)^{n} \varrho\left(f\left(\left(\frac{4}{3}\right)^{n} x\right), \tilde{a}\left(\left(\frac{4}{3}\right)^{n} x\right)+f(0)\right) \leq 2\left(\frac{3}{4}\right)^{n} \varepsilon,
\end{aligned}
$$

whence $a(x)=\tilde{a}(x), x \in M$.
Taking $\varepsilon=0$ in Theorem 1 we obtain the following
Theorem 2. Assume that conditions (i)-(iii) are fulfilled. If $f: M \rightarrow S$ satisfies (1), then there exists an additive function $a: M \rightarrow S$ and $b \in S$ such that $f(x)=a(x)+b, x \in M$.

## 3. Multivalued solutions of (1)

Let $X$ be a real Banach space and let $\operatorname{clb}(X)$ denote the set of all non-empty convex closed and bounded subsets of $X$. Introduce a binary operation $\stackrel{*}{+}$ in $\operatorname{clb}(X)$ by the formula

$$
A \stackrel{*}{+} B=\operatorname{cl}(A+B)=\operatorname{cl}(\operatorname{cl} A+\operatorname{cl} B),
$$

where $A+B$ denotes the usual Minkowski sum of $A$ and $B$ while $\mathrm{cl} A$ denotes the closedness of the set $A$. The second operation in $\operatorname{clb}(X)$ is given by

$$
\lambda A=\{\lambda a: a \in A\}
$$

for all $\lambda \geq 0$ and $A \in \operatorname{clb}(X)$. It is easily seen that $\operatorname{clb}(X)$ is an abstract convex cone with the identity element $0:=\{0\}$.

The proof of the following generalization of the RADSTRÖM lemma (cf. [4]) can be found in [6].

Lemma 1. If a set $B \subset X$ is a non-empty and bounded and $C \subset X$ is convex and closed, then for every $A \subset X$,

$$
A+B \subset C \stackrel{*}{+} B \Longrightarrow A \subset C
$$

From Lemma 1, we derive that the cancellation law holds in the abstract convex cone $\operatorname{clb}(X)$.

The set $\operatorname{clb}(X)$ is a metric space with the Hausdorff distance $h$ defined as follows

$$
h(A, B)=\max \{\sup \{d(a, B): a \in A\}, \sup \{d(b, A): b \in B\}\}
$$

where $d(a, B)=\inf \{\|a-b\|: b \in B\}$. The metric space $(\operatorname{clb}(X), h)$ is complete (cf. e.g. [1]).

Lemma 2. If $A, B, C \in \operatorname{clb}(X)$ and $\lambda \geq 0$, then

$$
\begin{equation*}
h(A \stackrel{*}{+} B, C \stackrel{*}{+} B)=h(A+B, C+B)=h(A, C) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
h(\lambda A, \lambda B)=\lambda h(A, B) \tag{13}
\end{equation*}
$$

The first equality in (12) is easy to verify, the proof of the second one can be found in [2]. Formula (13) is well known. Thus the abstract cone $\operatorname{clb}(X)$ satisfy assumptions (ii) and (iii).

A multifunction $F_{0}: M \rightarrow \operatorname{clb}(X)$ is said to be $(*)$-additive if

$$
F_{0}(x+y)=F_{0}(x) \stackrel{*}{+} F_{0}(y)
$$

for all $x, y \in M$.
From Theorem 1 we derive the following result.
Theorem 3. Let $(M,+)$ satisfy condition (i) and let $X$ be a real Banach space. We assume that $\varepsilon \geq 0$ and that $F: M \rightarrow \operatorname{clb}(X)$ satisfies the inequality

$$
\begin{array}{r}
h\left(3 F\left(\frac{x+y+z}{3}\right) \stackrel{*}{+} F(x) \stackrel{*}{+} F(y) \stackrel{*}{+} F(z),\right. \\
\left.2\left[F\left(\frac{x+y}{2}\right) \stackrel{*}{+} F\left(\frac{y+z}{2}\right) \stackrel{*}{+} F\left(\frac{z+x}{2}\right)\right]\right) \leq \varepsilon
\end{array}
$$

then there exists a unique $(*)$-additive multifunction $F_{0}: M \rightarrow \operatorname{clb}(X)$ such that

$$
h\left(F(x), F_{0}(x) \stackrel{*}{+} F(0)\right) \leq \varepsilon
$$

for all $x, y \in M$.

In particular, putting $\varepsilon=0$, we have the following result.
Theorem 4. Let $(M,+)$ satisfy assumption (i) and let $X$ be a real Banach space. If $F: M \rightarrow \operatorname{clb}(X)$ satisfies the functional equation

$$
\begin{align*}
& 3 F\left(\frac{x+y+z}{3}\right) \stackrel{*}{+} F(x) \stackrel{*}{+} F(y) \stackrel{*}{+} F(z) \\
= & 2\left[F\left(\frac{x+y}{2}\right) \stackrel{*}{+} F\left(\frac{y+z}{2}\right) \stackrel{*}{+} F\left(\frac{z+x}{2}\right)\right], \tag{14}
\end{align*}
$$

then there exists a $(*)$-additive multifunction $F_{0}: M \rightarrow \operatorname{clb}(X)$ such that

$$
F(x)=F_{0}(x) \stackrel{*}{+} F(0)
$$

for all $x \in M$. Conversely, every multifunction $F(x)=F_{0}(x) \stackrel{*}{+} B$, where $F_{0}: M \rightarrow \operatorname{clb}(X)$ is a $(*)$-additive multifunction and $B \in \operatorname{clb}(X)$ is an arbitrary set, actually satisfies (14).

Remark 1. Every additive multifunction $F_{0}: M \rightarrow \operatorname{clb}(X)$ which means

$$
\begin{equation*}
F_{0}(x+y)=F_{0}(x)+F_{0}(y) \quad \text { for all } x, y \in M \tag{15}
\end{equation*}
$$

is $(*)$-additive. In fact by (15), $F_{0}(x+y)=\operatorname{cl}\left(F_{0}(x+y)\right)=\operatorname{cl}\left(F_{0}(x)+\right.$ $\left.F_{0}(y)\right)=F_{0}(x) \stackrel{*}{+} F_{0}(y)$.

Remark 2. A (*)-additive multifunction $F_{0}: M \rightarrow \operatorname{clb}(X)$ does not have to be additive. To see that take $A, B \in \operatorname{clb}(X)$ such that $\operatorname{cl}(A+B) \neq$ $A+B$. The authoress believes that an example such sets $A, B$ is known but we will construct one below for convenience of a reader. The multifunction $F:[0, \infty)^{2} \rightarrow \operatorname{clb}(X)$ given by the formula

$$
F\left(t_{1}, t_{2}\right)=\operatorname{cl}\left(t_{1} A+t_{2} B\right)
$$

is $(*)$-additive. Indeed,

$$
\begin{aligned}
& F\left(\left(t_{1}, t_{2}\right)+\left(s_{1}, s_{2}\right)\right)=F\left(t_{1}+s_{1}, t_{2}+s_{2}\right)=\operatorname{cl}\left[\left(t_{1}+s_{1}\right) A+\left(t_{2}+s_{2}\right) B\right] \\
& \quad=\operatorname{cl}\left[t_{1} A+t_{2} B+s_{1} A+s_{2} B\right]=\operatorname{cl}\left[\operatorname{cl}\left(t_{1} A+t_{2} B\right)+\operatorname{cl}\left(s_{1} A+s_{2} B\right)\right] \\
& \quad=F\left(t_{1}, t_{2}\right) \stackrel{*}{+} F\left(s_{1}, s_{2}\right)
\end{aligned}
$$

for all $t_{1}, t_{2}, s_{1}, s_{2} \in[0, \infty)$. However, $F$ is not additive, as

$$
F(1,0)+F(0,1)=\mathrm{cl} A+\mathrm{cl} B=A+B
$$

and

$$
F((1,0)+(0,1))=F(1,1)=\operatorname{cl}(A+B) \neq A+B=F(1,0)+F(0,1) .
$$

The following example has been suggested by Dr Anna Kucia (Katowice), the authoress wish to thank her for that in this place. Let $X=l_{1}$ denote the space of all summable sequences real numbers. For each $i \in \mathbb{N}$, let $e_{i}$ be the vector in $l_{1}$ with zeros in all its coordinates except the $i^{\text {th }}$ coordinate which is equal to one. Define

$$
A_{1}=\left\{\left(1+\frac{1}{i}\right) e_{i}: i \in \mathbb{N}\right\}, \quad B_{1}=\left\{\left(-1+\frac{1}{i}\right) e_{i}: i \in \mathbb{N}\right\}
$$

and

$$
A=\overline{\mathrm{co}} A_{1}, \quad B=\overline{\mathrm{co}} B_{1},
$$

where $\overline{\operatorname{co}} A_{1}$ denotes the intersection of all convex closed sets containing $A_{1}$. At first we observe that

$$
\begin{aligned}
A_{0}:= & \left\{\left(2 p_{1}, \frac{3}{2} p_{2}, \frac{4}{3} p_{3}, \ldots, \frac{i+1}{i} p_{i}, \ldots\right): \sum_{i=1}^{\infty} p_{i}=1, p_{i} \geq 0\right\} \\
& \subset A=\operatorname{cl}\left(\operatorname{co} A_{1}\right)
\end{aligned}
$$

for every element of $A_{0}$ is a limit of some sequence of points belonging to co $A_{1}$.

Next, we shall show that $A \subset A_{0}$. Take an arbitrary $a=\left(2 p_{1}, \frac{3}{2} p_{2}, \frac{4}{3} p_{3}, \ldots, \frac{i+1}{i} p_{i}, \ldots\right) \in A$. Of course $p_{i} \geq 0, i \in \mathbb{N}$. It is enough to prove that $\sum_{i=1}^{\infty} p_{i}=1$. We can find
$a^{n}=\left(2 p_{1}^{n}, \frac{3}{2} p_{2}^{n}, \ldots, \frac{i+1}{i} p_{i}^{n}, \ldots\right) \in \operatorname{co} A_{1}, n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} a^{n}=a$ and $r_{m}^{n}:=1-\sum_{i=1}^{m} p_{i}^{n} \longrightarrow 0$ as $m \rightarrow \infty$ for each $n \in \mathbb{N}$. Since

$$
\frac{i+1}{i}\left|p_{i}^{n}-p_{i}\right| \leq \sum_{i=1}^{\infty} \frac{i+1}{i}\left|p_{i}^{n}-p_{i}\right|=\left\|a^{n}-a\right\|
$$

and $\lim _{n \rightarrow \infty}\left\|a^{n}-a\right\|=0$,

$$
\sum_{i=1}^{m} p_{i}^{n} \longrightarrow \sum_{i=1}^{m} p_{i} \quad \text { as } n \rightarrow \infty
$$

for every $m \in \mathbb{N}$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty} r_{m}^{n}=1-\sum_{i=1}^{m} p_{i}=: r_{m} \tag{16}
\end{equation*}
$$

exists for each $m \in \mathbb{N}$. Now we shall show that the sequence $\left(r_{m}^{n}\right)_{n \in \mathbb{N}}$ satisfies the Cauchy condition uniformly with respect to $m$. We have for all $m, k, n \in \mathbb{N}$,

$$
\left|r_{m}^{n}-r_{m}^{k}\right|=\left|\sum_{i=1}^{m} p_{i}^{k}-\sum_{i=1}^{m} p_{i}^{n}\right| \leq \sum_{i=1}^{m}\left|p_{i}^{k}-p_{i}^{n}\right| \leq \sum_{i=1}^{\infty}\left|p_{i}^{k}-p_{i}^{n}\right| .
$$

Let us fix $\varepsilon>0$. Since $\left(a^{n}\right)$ is convergent, there exists a positive number $\alpha$ such that

$$
\sum_{i=1}^{\infty} \frac{i+1}{i}\left|p_{i}^{k}-p_{i}^{n}\right|<\varepsilon
$$

for all $n, k>\alpha$. Hence

$$
\left|r_{m}^{n}-r_{m}^{k}\right|<\varepsilon, \quad n, k>\alpha \quad \text { and } \quad m \in \mathbb{N}
$$

Now, when $k \rightarrow \infty$, the sequence $\left(r_{m}^{k}\right)_{k \in \mathbb{N}}$ tends to $r_{m}$ and

$$
\left|r_{m}^{n}-r_{m}\right| \leq \varepsilon, \quad \text { for } n>\alpha \quad \text { and } m \in \mathbb{N}
$$

Fix arbitrarily $n>\alpha$. Since for every $m \in \mathbb{N}$,

$$
0 \leq r_{m} \leq\left|r_{m}-r_{m}^{n}\right|+r_{m}^{n},
$$

letting $m \rightarrow \infty$, we obtain $\lim \sup _{m \rightarrow \infty} r_{m} \leq \varepsilon$. Consequently, $\lim _{m \rightarrow \infty} r_{m}=0$ and by (16), $\sum_{i=1}^{\infty} p_{i}=1$. We have proved that $A=A_{0}$. Similarly we can show that

$$
B=\left\{\left(0,-\frac{1}{2} q_{2},-\frac{2}{3} q_{3}, \ldots,-\frac{i-1}{i} q_{i}, \ldots\right): \sum_{i=2}^{\infty} q_{i}=1, q_{i} \geq 0\right\}
$$

We observe that $0 \in \operatorname{cl}(A+B)$. Indeed the set $A+B$ contains points of the form $2\left(p_{1}, \frac{1}{2} p_{2}, \ldots, \frac{1}{i} p_{i}, \ldots\right)$, where $p_{i} \geq 0$ and $\sum_{i=1}^{\infty} p_{i}=1$. Thus this set has elements of arbitrarily small norms. To show that $0 \notin A+B$ we argue by contradiction: if for each $i \in \mathbb{N}, \frac{i+1}{i} p_{i}-\frac{i-1}{i} q_{i}=0$ and $\sum_{i=1}^{\infty} p_{i}=1$, $\sum_{i=1}^{\infty} q_{i}=1$, we would have then

$$
1=\sum_{i=1}^{\infty} p_{i}=\sum_{i=1}^{\infty} \frac{i-1}{i+1} q_{i}=1-2 \sum_{i=1}^{\infty} \frac{1}{i+1} q_{i}<1
$$

## References

[1] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
[2] F. S. De Blasi, On differentiability of multifunctions, Pacific J. Math. 66 (1976), 67-81.
[3] T. Popoviciu, Sur certaines inégalités qui caractérisentles fonctions convexes, An. Ştiinţt. Univ. "Al. I. Cuza" Iaşi Seç̧. I a Mat. (N.S.) 11 (1965), 155-164.
[4] H. RÅdström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[5] W. Smajdor, Note on Jensen and Pexider functional equation, Demonstratio Math. 32 (1999), 363-376.
[6] R. Urbański, A generalization of Minkowski-Rådström-Hörmander theorem, Bull. Acad. Pol. Sci. 24, 9 (1976), 709-715.
[7] T. Trif, Hyers-Ulam-Rassias stability of a Jensen type functional equation, $J$. Math. Anal. Appl. 250 (2000), 579-588.

```
WILHELMINA SMAJDOR
INSTITUTE OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
PODCHORA̧ŻYCH 2, PL-30-084 KRAKÓW
POLAND
E-mail: wsmajdor@wsp.krakow.pl
```

(Received August 28, 2002; revised February 24, 2003)

