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Some examples of semi-nodal perfect 4-polytopes

By GÁBOR GÉVAY (Szeged) and KOJI MIYAZAKI (Kyoto)

Abstract. Existence of a semi-nodal perfect polytope means that there is
a perfect polytope P such that both P and its polar P ∗ has vertices of not only
zero degree of freedom. Yet, it is perfect, i.e. its shape cannot be changed without
changing the action of its symmetry group on its face-lattice. In this paper three
new 4-dimensional examples of such polytopes are constructed. A peculiar feature
of them is that all types of their facets are non-perfect 3-polytopes.

1. Introduction and preliminaries

The notion of a perfect polytope, introduced by S. A. Robertson

[16], generalizes that of a regular (convex) polytope. Intuitively, a poly-

tope is perfect if it cannot be deformed to a polytope of different shape

without altering its symmetry properties. The classification problem of

perfect polytopes is settled in dimension 2 and 3, but it is still open from

4 on. Namely, the perfect 2-polytopes are just the regular (convex) poly-

gons, and the class of perfect 3-polytopes includes the Platonic solids, the

cuboctahedron and icosidodecahedron along with their polars, the rhom-

bic dodecahedron and rhombic triacontahedron. There was an attempt to

classify the perfect 4-polytopes, the main point of which seemed giving a

proof for Rostami’s conjecture [12]. However, some errors in the proof was
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pointed out in [8], and in fact the conjecture is by now disproved by the

existence of several classes of counter-examples [8], [9]. Without going into

the details, which can be found in the two cited papers of the first author,

we only remark that the perfect 4-polytopes allowed by the conjecture form

a rather limited class of Wythoffian polytopes. Contrary to that, now it is

known that not only the class of Wythoffian perfect 4-polytopes is wider,

but there exist even non-Wythoffian examples as well. In the gradual ex-

tension of the set of perfect polytopes, the notion of a semi-nodal perfect

polytope represents an even greater conceptual distance from the original

one.

Now we briefly summarize the most important definitions. For more

details, see [8] and the references therein.

Let G(P ) and F (P ) denote the symmetry group and the face-lattice

of a polytope P , respectively. Two (convex) n-polytopes P and Q are

symmetry equivalent if and only if there exists an isometry ϕ of E
n and a

lattice isomorphism λ : F (P ) → F (Q) such that for each g ∈ G(P ) and

each A ∈ F (P ), λ
(

g(A)
)

= (ϕgϕ−1)
(

λ(A)
)

. Each symmetry equivalence

class is called a symmetry type.

A polytope P is said to be perfect if and only if all polytopes symmetry

equivalent to P are similar to P .

Let G be a finite group of isometries of E
n and denote e the identity

in G. Then the symmetry scaffolding of G is the union of the fixed point

sets of all transformations in G\{e} and is denoted by scaf G. Here we

prefer using the same term (and notation) for the intersection of this set

with the unit sphere S
n−1 (centered at the origin); however, when the

distinction is important, the attribute spherical will be used for the latter.

Likewise, we will also use the spherical variant of a polytope as follows.

For a given n-polytope P , take a unit sphere S
n−1 centered at the centroid

of P . Then project P radially to S
n−1. The image of the set of facets of P

under this projection forms a tessellation of S
n−1, which we shall refer to

as the spherical image of P .

For a given group G and a point A in scaf G, the fixed point set of A is

defined as the set fixA = {x ∈ E
n : g(x) = x, ∀g ∈ GA}, where GA is the

stabilizer of A in G. Then dim(fixA), the dimension of fixA, is called the

degree of freedom of A. A point in the spherical symmetry scaffolding of G

is called a node in exactly the case it has zero degree of freedom. A vertex
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of a polytope P is called nodal if in the spherical image of P it coincides

with a node in scaf G(P ). A nodal polytope is a polytope whose vertices

are all nodal.

A nodal polytope need not be perfect (for an instance, see the deltoidal

dodecahedron used in Section 5), but in a special case we have

Theorem 1.1. Every vertex-transitive nodal polytope is perfect.

Proof. [8, p. 245]. �

Thus transitivity properties are important in investigating perfection

of polytopes. Hence a useful notion is the the orbit vector of a polytope P

which is θ(P ) =
(

θ0, . . . , θn−1

)

, where θi is the number of orbits of i-faces

of P , for each i = 0, . . . , n − 1, under the action of G(P ).

The polar of a polytope P is P ∗ = {y ∈ E
n : ∀x ∈ P , 〈x,y〉≤ 1},

provided that the origin coincides with the centroid of P . Note that this

is a restriction of a more general notion of polarity of polytopes, for which

usually only the condition is required that the origin be contained in the

interior of P . In our case G(P ) = G(P ∗) holds and perfection of P implies

perfection of P ∗.

Now we are ready to define the following notion introduced in [8,

p. 258]:

Definition 1.2. A polytope P such that both P and P ∗ has non-nodal

vertex is called semi-nodal.

Numerous examples, including that mentioned above, show that per-

fection can be perished even by the existence of more than one transitivity

classes of nodal vertices. Thus it is somewhat counter-intuitive to suppose

for a perfect polytope P the existence of vertices having non-zero degree

of freedom both in P and P ∗. Yet, such strange example was found as a

by-product through the construction of a series of non-Wythoffian perfect

4-polytopes in [9].

Here we report on 3 new examples. Our starting point is the per-

fect (and uniform) 10-cell, since knowledge of its facet structure and the

symmetry scaffolding of its symmetry group is needed for the following

constructions.
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2. The structure and symmetry

of the perfect 10-cell

The perfect 10-cell is described by Coxeter as a uniform 4-polytope

[5] which is denoted by him as t1,2α4 = • ©• ©• • . It can be ob-

tained by Wythoff’s construction, however, there is no Coxeter group such

that a vertex of its fundamental domain would serve as an initial point of

the construction. For this reason, it was one of the first counter-examples

to Rostami’s conjecture which were described by the first author [8]. It

has already been used for obtaining new, non-Wythoffian 4-polytopes as

well [9]. Here we recall some of its properties described in these papers

completed with further data. For its notation, we continue using the sym-

bol X introduced in [9].

X is bounded by 10 congruent Archimedean truncated tetrahedra (in

what follows the abbreviation ATT will be used). Its f -vector and orbit

vector is f = (30, 60, 40, 10) and θ = (1, 1, 2, 1), respectively.

Its face structure is represented in Figure 1, where identical numbers

denote identical vertices. Using an appropriate positioning in 5-space of

the regular 4-simplex from which it can be derived, cf. [5, p. 573], the

coordinates of its vertices take the simple form (1, 1, 0,−1,−1)P , where

the superscript means all permutations. Assignation of coordinates to the

vertices is given in an earlier paper [9, Table 2].

Its symmetry group can be obtained from the symmetry group [3, 3, 3]

of the regular 4-simplex as follows. The spherical fundamental domain D

of [3, 3, 3] is symmetrical by a half-turn ρ about the join of the midpoints

of two opposite edges. These are the edges A0A3 and A1A2, where Ai are

the vertices of D indexed according to the opposite mirror walls which are

associated to the generating reflections (note that we use the convention of

numbering the generators represented by the nodes of a Coxeter diagram

of form • • • •
p

from 0 to 3 from left to right). Now the initial

point of Wythoff’s construction for obtaining X is the midpoint of A1A2.

Hence the symmetry group of X is an extension of [3, 3, 3] by the group of

order 2 generated by ρ, namely, it is [[3, 3, 3]] ∼= [3, 3, 3]o〈ρ〉 (split extension,

semi-direct product).

For a better understanding of its symmetry scaffolding, we show that

this group of order 240 can be obtained in the following way as well. Let π
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Figure 1

be a symmetry operation that cyclically permutes the vertices (or equiv-

alently, the cells) of the regular 5-cell. Let γ denote the central inversion

in the origin, then the product δ = πγ is a “square root” of π, thus it is a

symmetry operation of order 10. δ cyclically permutes the 10 cells of X.

Accordingly, either of the cells of X may serve as a fundamental domain

for the cyclic group 〈δ〉 (considering in the spherical image). Taking the

symmetry group [3, 3] ∼= S4 of such a cell, not only that cell but the whole

spherical image of X is invariant to this group (S4 denotes the symmetric

group of degree 4). From purely algebraic point of view, this is a conse-

quence of the following fact. The group 〈δ〉 ∼= C10 is generated by δ, δ3,

δ7 and δ9, and the action of S4 on the set of these generators induces an
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action of S4 on C10. Thus [3, 3] acts as a group of (outer) automorphisms

of 〈δ〉. Hence we have the semi-direct decomposition [[3, 3, 3]] ∼= 〈δ〉o [3, 3].

Thus a cell of X can be subdivided to
∣

∣[3, 3]
∣

∣ = 24 congruent pieces

such that either of them may serve as a fundamental domain D1 for [[3, 3, 3]]

(in the spherical image). The Euclidean variant of D1 and its location in

an ATT cell is shown in Figure 2. We note that in accordance with our

former decomposition for [[3, 3, 3]], D1 can also be obtained by a dissection

of D. The dissecting plane is lying on the axis of the half-turn ρ and is

intersecting exactly 4 edges of the spherical tetrahedron D. In the figure

the axis is indicated by a broken line. We remark that, conversely, the ATT

cells of X can be obtained from the fundamental tessellation belonging

to the group [[3, 3, 3]], in accordance with the factor tessellation method

described in [7].

Figure 2

Now we have an overview on the symmetry scaffolding of the group

[[3, 3, 3]] and its node structure. There are altogether 4 transitivity classes of

nodes. They coincide with certain special points of X and will be referred

to as various types. The stabilizer in [[3, 3, 3]] of the node of a particular

type can easily be established from the structure of [3, 3, 3]. Namely, we

have:

• type V : vertices of X, with stabilizer isomorphic to [4, 2+] ∼= D2d;

• type T : centroids of the triangular faces, with stabilizer isomorphic to

[3, 2] ∼= D3h;

• type H: centroids of the hexagonal faces, with stabilizer isomorphic

to [6, 2+] ∼= D3d;

• type C: centroids of the cells, with stabilizer isomorphic to [3, 3] ∼= Td.
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A representative of each class is indicated in Figure 2. Note that the

point indicated by C coincides with the vertex A0 of the fundamental

domain D, and that indicated by T with vertex A1. We remark that

we shall use a further type of points, namely type E consisting of the

midpoints of edges, although these points are not nodes.

3. A scalenohedral polytope derived

from the 10-cell

Take the 2 triangular faces incident to a chosen vertex of X, say V27.

Let their centroids be denoted by T34 and T57, where the subscript indicates

the cells which have the respective triangular face in common. Let GT be

the centroid of the pair (T34, T57). Take the 4 edges incident to V27.

Let their midpoints be denoted by E345, E347, E357 and E457, where the

subscripts obey a similar rule as before. Let GE be the centroid of this

quadruple of points. It is checked by some calculation that GT and GE do

not coincide. Both of them lie, however, on the straight line connecting

the centroid O of X and the vertex V27. This is a consequence of the local

symmetry around V27 which corresponds to the stabilizer [4, 2+] ∼= D2d of

the vertex. To bring them together, we shift each point Eijk along a line

segment of type EC (i.e. a line segment with endpoints of type E and C)

to a suitable extent, so that each get in the interior of a cell into a new

position E ′

ijk. For a point Eijk the cell is chosen so that it be the i-th cell

which does not have the point Tjk on its boundary. Besides, the extent

of shifting must be the same for all the four points in order to preserve

symmetry.

Now it is clear that the quadruple (E345, E347, E357, E457) forms the

set of vertices of a tetrahedron, actually, a tetragonal disphenoid bounded

by congruent isosceles triangles. The same is true for the quadruple (E ′

345,

E′

347, E′

357, E′

457). Furthermore, this latter, new tetrahedron and the points

T34 and T57 are lying in a common hyperplane. In fact, this is the hyper-

plane that is invariant with respect to the stabilizer of V27 and passes

through GT as well as the new centroid G′

E coinciding with GT . It is

checked again by calculation that each of the points E ′

345, E′

347, E′

357 and
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E′

457 fulfilling this condition of coincidence are in fact located in the inte-

rior of an appopriate cell. On the other hand, we obtain as well that T34

and T57 are located outside of our new tetrahedron.

This latter condition, together with that the arrangement of these six

points exhibits a symmetry corresponding to the group D2d, implies that

the convex hull of this sextuple of points is a facet-transitive polyhedron

called a tetragonal scalenohedron. This polyhedron is bounded by 8 con-

gruent scalene triangles and its symmetry type is well-known in geometric

crystallography as a crystal form [2], [11]. Its shape, obtained by calcula-

tion, is shown in Figure 3. Observe that it is combinatorially equivalent to

a regular octahedron, or to a tetragonal dipyamid. Referring to this latter

equivalence, we shall call its edges starting from a vertex of type T apical,

and the edges connecting its vertices of type E ′ medial.

Figure 3

Perform now the construction of a scalenohedron in the same way

around each vertex of X and take the convex hull of the whole figure that

is obtained. This results in a new polytope, of which the scalenohedra

are in fact facets, as we shall see below. Hence we denote this “scaleno-

hedral polytope” obtained from the 10-cell by ScP10. In what follows we

determine its facet structure.

First consider the points of type E ′ obtained by shifting those of type

E as described above. Take 6 of them that are obtained from the midpoints

of the sides of a hexagonal face of X. Since the stabilizer of such a hexagon

is isomorphic to the group D3d, it is seen that these six points form the

vertices of a trigonal antiprism. Such antiprisms can be constructed in the

vicinity of the centroids of all hexagonal faces and we shall see as well that

they form in fact the next type of facets of ScP10.



Some examples of semi-nodal perfect 4-polytopes 723

Take now 6 points of type E ′ and 4 points of type T that all belong

to a cell of X. The symmetry of the cell implies that the shape of the

convex hull of these points is obtained in the following way. Consider

the regular octahedron the vertices of which are the points of type E ′

and take alternately four of its faces. Take such a face as a base and

erect a small trigonal pyramid onto it such that the apex of the pyramid

coincides with a suitable point of type T . Perform this on all of the four

alternating faces. The polyhedron obtained this way will provide the third

type of facets of ScP10. Now the polyhedron that is obtained by erecting

small pyramids onto its all the eight faces in the same way, provided that

convexity is preserved, is called a triakisoctahedron. Hence our new figure

can be called a semi-triakisoctahedron.

Now it is seen that all the three kinds of these polyhedra have a trian-

gular face which is not a common face with any other of them. In fact, the

scalenohedron is bounded by scalene triangles of type E ′E′T , the side faces

of the antiprism are isosceles triangles of type E ′E′E′ and the triangular

faces of the semi-triakisoctahedron are isosceles triangles of type E ′E′T

(where the type is denoted by using the type of the vertices). Hence there

are gaps among these polyhedra, and the facets of the fourth type can

be considered as just “to fill in” these gaps. In fact, take e.g. the convex

hull of the following quadruple of points: (E ′

357, E′

359, E′

345, T34). This

is a tetrahedron with mirror symmetry and it can directly be checked in

Figure 1 that it has just the faces mentioned before. It is adjacent to 2

distinct scalenohedra through its scalene triangular faces. The hyperplane

spanned by it cannot coincide with a hyperplane containing either of these

scalenohedra. For otherwise, due to symmetry, all the three hyperplanes

would coincide, which is impossible. It has its face of type E ′E′E′ and

E′E′T in common with an antiprism and a semi-triakisoctahedron, re-

spectively. All these three latter polyhedra belong to distinct hyperplanes,

since the degree of their common edge of type E ′E′ cannot be reduced, for

convexity and symmetry reasons. (By the degree of an edge we mean the

number of facets meeting in that edge).

Thus we have polyhedra of altogether four distinct types. We obtained

that any two of them belonging to distinct types are contained in no com-

mon hyperplane. On the other hand, any two of them do not overlap, apart

from their possibly common 2-face. It follows that each of these polyhedra
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is in fact a facet of our polytope ScP10, as we promised above. Moreover, it

is directly seen that these types coincide just with the transitivity classes of

facets of ScP10. The number of facets of the various types can be obtained

from the f -vector of X. Namely, there are 10 semi-triakisoctahedron, 20

antiprism, 30 scalenohedron and 120 tetrahedron facets.

As a result of the arguments above, taking into consideration the tran-

sitivity properties of the individual types of polyhedra, we obtain the tran-

sitivity classes of the 2-faces as well. These are just the 3 types of triangles

considered above, together with a fourth one that consists of the regular

hexagonal faces of the semi-triakisoctahedra.

It is found that the edges form 4 transitivity classes as well. Their

types and degrees can be seen in Figure 4 which shows the Schlegel diagram

of a tetrahedron facet with typical vertices. Further data are listed in

Table 1. We note that for calculating the edge lengths the coordinates

of the vertices were chosen as mentioned above. On the other hand, the

incidences, i.e. the number and types of facets meeting in a given edge are

checked using Figure 1.

Hence we found that the orbit vector is θ(ScP 10) = (2, 4, 4, 4). The

f -vector is: f(ScP 10) = (80, 420, 520, 180).

Note that our construction of ScP 10 from X ensures that the symme-

try group of ScP 10 remains to be [[3, 3, 3]].

Proposition 3.1. ScP 10 is perfect and semi-nodal.

Proof. To see that our polytope is perfect, first take a polytope P0

such that it is the convex hull of the set of all vertices of type T of ScP 10.

Since P0 is vertex-transitive and nodal, it is perfect, by Theorem 1.1. Hence

this system of points is fixed in the sense that it is an arrangement that

cannot be changed without changing its symmetry. Adding new vertices,

of type E′, ScP 10 is obtained, whose “characteristic facets” the scaleno-

hedra may be considered. The shape of a scalenohedron can change while

preserving its symmetry type. Considered within ScP 10, its apexes being

fixed, the only way of changing its shape is by displacing its medial ver-

tices. These latter, being of type E ′, are located each on a line segment

connecting a point of type C and a point of type E. Therefore, their de-

gree of freedom is 1 (considered in the spherical image), i.e. they can only

be displaced within that line segments. But such a displacement results
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type degre incidences number of length
occurence

TE′ 4 2 scalenohedra 60
√

70

18
≈ 0.4648

2 tetrahedra

TE′ 4 1 scalenohedron 120 5
√

22

18
≈ 1.3029

1 semi-triakisoctahedron
2 tetrahedra

E′E′ 4 1 scalenohedron 120
√

105

9
≈ 1.1386

1 antiprism
2 tetrahedra

E′E′ 3 1 semi-triakisoctahedron 120 25
√

2

18
≈ 1.9642

1 antiprism
1 tetrahedron

Table 1

Figure 4

in that the centroid of a quadruple of points of type E ′ in the vicinity of

a point of type V will not coincide with the centroid of the two apexes in

the same neighbourhood. That is, the four points of type E ′ and the two

points of type T would not form a scalenohedron, cf. our method for the

construction of ScP 10. Hence such a displacement is impossible as well.

We note that in Euclidean space the points of type E ′ can move to-

wards the origin as well. In fact, scalenohedra can also be constructed in

the way that shifting the point of type E towards the centroid of a cell

is associated with a simultanous shifting towards the origin to a suitable
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extent, producing points of type E ′′. But such points of type E ′′ within an

ATT cell form a sextuple the centroid of which do not coincide with the

four points of type T in the same cell. In other words, we do not obtain

semi-triakisoctahedron facets in this case.

Our polytope is semi-nodal, since both ScP 10 itself and its polar has

non-nodal vertex. In fact, the vertices of type E ′ are non-nodal. On the

other hand, a vertex of the polar P ∗ of a polytope P is nodal if and only if

the normal vector of the facet of P corresponding to that vertex points to a

node. Now it is directly seen that the normal vector of a tetrahedron facet

of ScP 10 can be parallel to neither of a vector pointing to some node. �

4. An analogous construction

from the perfect 48-cell

The perfect 48-cell is an analogue of the perfect 10-cell, whose ex-

istence is due to a symmetry property of the Coxeter group [3, 4, 3] like

that of [3, 3, 3]. It is likewise a uniform 4-polytope, denoted by Coxeter as

t1,2{3, 4, 3} = • ©• ©• •
4

(for its description, see again [5], [8]). It

is bounded by 48 Archimedean truncated cubes (ATC-s). A characteristic

detail of its face structure is represented in Figure 5, where, just as in

Figure 1, identical numbers denote identical vertices.

The coordinates of its 288 vertices can be given as follows:

(

±(1 +
√

2 ),±(−1 +
√

2 ),±1,±1
)P

, (±2,±
√

2,±
√

2, 0)P .

An assignation of these coordinates to the vertices in Figure 5 is given in

the Appendix, Table 4.

Now it is directly seen that here a construction analogous to that in

the former section can be performed. We denote the polytope obtained

this way by ScP 48 Without the details, being almost the same, we men-

tion only the results. We obtain 288 tetragonal scalenohedron facets with

centroids of type V . Furthermore, here are regular octagons instead of

hexagons. Hence the facets of the next type are tetragonal antiprisms,

of which there are 144. The 48 facets with centroids of type C can be

obtained as follows. The points of type E ′ within an Archimedean trun-

cated cube cell provide the set of vertices of a cuboctahedron. Onto the



Some examples of semi-nodal perfect 4-polytopes 727

Figure 5

type degree incidences number of length
occurence

TE′ 4 2 scalenohedra 576

√
14−8

√
2

6
≈ 0.2732

2 tetrahedra

TE′ 4 1 scalenohedron 1152

√
14+8

√
2

6
≈ 0.8386

1 augmented cuboctahedron
2 tetrahedra

E′E′ 4 1 scalenohedron 1152
√

5

3
≈ 0.7454

1 antiprism
2 tetrahedra

E′E′ 3 1 augmented cuboctahedron 1152

√
4+3

√
2

6
≈ 1.3738

1 antiprism
1 tetrahedron

Table 2
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triangular faces of such a cuboctahedron small pyramids are built, whose

apices coincide with the centroids of the triangular faces of the ATC cell.

In an analogy of Johnson’s terminology [10], we may call such a polyhe-

dron an augmented cuboctahedron. Moreover, the apices of the augmenting

pyramids may form the set of vertices of either a cube or an octahedron

depending on that they are built onto the triangular or square faces, re-

spectively. In our specific case, the polyhedra in question are cubically

augmented cuboctahedra. The facets of the last type are tetrahedra here as

well, which exhibit mirror symmetry. Their number is 1152. The number

of the transitivity classes of the 2-faces is four as well, and the only differ-

ence worth to mention is that the bases of antiprisms are squares instead

of triangles. The edge structure is also completely analogous. Its data are

given in Table 2.

The orbit vector is equal to that of ScP 10: θ(ScP 48) = (2, 4, 4, 4).

The f -vector is: f(ScP 48) = (768, 4032, 4896, 1632). Since the symmetry

group is preserved through the construction here as well, it is equal to

[[3, 4, 3]].

Proposition 4.1. ScP 48 is perfect and semi-nodal.

Proof. Analogous to that of Proposition 3.1. �

5. A deltoid-dodecahedral perfect 4-polytope

A deltoidal dodecahedron is a facet-transitive 3-polytope bounded by

12 deltoids (or kites) (Figure 6). Its symmetry group is equal to that of

a regular tetrahedron. It is well-known in geometric cystallography as a

crystal form [2], [11]. Furthermore, it occurs in the image of central pro-

jections of the 4-cube [15]. Its set of vertices decomposes to 3 transitivity

classes as follows:

• type 1, consisting of vertices of degree 3 such that their convex hull is

a regular tetrahedron with circum-radius r1;

• type 2, consisting of vertices of degree 4 such that their convex hull is

a regular octahedron with circum-radius r2 > r1;

• type 3, consisting of vertices of degree 3 such that their convex hull is

a regular tetrahedron with circum-radius r3 > r2.
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It is not a perfect polytope, since its dihedral angles can change without

altering its symmetry type. Accordingly, the ratio r1 : r2 : r3 can change

within certain limits as well.

Figure 6

Now take a deltoidal dodecahedron with a suitable ratio r1 : r3, and

include a copy of it in each ATT cell of X so that the following condition

holds:

Condition 5.1. Vertices of type 1 coincide with points of type H and

vertices of type 3 coincide with points of type T .

It is checked that such a deltoidal dodecahedron exists and its vertices

of type 2 will get into the interior of the cell it is included in. Moreover,

Condition 5.1 implies the following

Proposition 5.2.

(a) Vertices of type 2 are lying just on the line segments connecting the

midpoints of edges to the centroid of the cell.

(b) The shape of the deltoidal dodecahedron is unique, i.e. the ratio r1 :

r2 : r3 is fixed.

Finally, take the convex hull of the figure consisting of the 10 deltoidal

dodecahedra. We obtain a polytope for which it can be proved that these

dodecahedra are facets of the one type. We may regard the facets of this

type the “characteristic facets” of our new polytope and therefore we shall

call it a deltoid-dodecahedral perfect polytope. We shall denote it by DdP10.

A next type of facets can be obtained as follows. First, we note that we

are given three distinct types of points that play role in our construction.
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These are: type T , type H and a third one, which, on account of property

5.2(a), we shall call again a type E ′. Consider 2 points of type T and 4

points of type E ′ in the vicinity of a vertex V of X. As we have seen

above, the local symmetry around V implies that the quadruple of type

E′ form a tetrahedron, actually, a disphenoid. However, it is checked that

this tetrahedron cannot occur as a facet of DdP10. For, some calculation

shows that the centroid of this quadruple is at a smaller distance from

the centroid of our polytope as compared to the centroid of the pair of

type T , and this justifies our statement. Since the two centroids do not

coincide, a scalenohedron cannot occur in the structure either. Thus, under

the condition of the local symmetry imposed by the stabilizer of V , the

only possibility to form facets from these six points is as follows. Take

a quadruple consisting of the pair of type T as well as of two points of

type E′ located in adjacent ATT cells. The convex hull of this quadruple

is obviously a tetrahedron, and the stabilizer D2d permutes just 4 such

tetrahedra. (Note that it is as if the scalenohedron considered in our former

construction were split to 4 congruent tetrahedra so that their arrangement

preserved the original symmetry. The exercise of the decomposition of a

tetragonal scalenohedron with this conditon has a unique solution.) We

observe that this tetrahedron is symmetrical to a half-turn and there is no

other symmetry of it. The corresponding axis is just that is indicated in

Figure 2 by broken line. By further considerations, based on symmetry

arguments, it can be shown that this tetrahedron forms in fact a facet of

our new polytope.

Take now a deltoidal face, e.g. T34E
′

359H35E
′

357 (subscript notation is

as above). This is a face of the deltoidal dodecahedron included in the

cell III of X. Its vertex H35 is shared with a neighbouring dodecahedron

in cell V. The vertex of this second dodecahedron closest to the deltoid

in question is E ′

345. The convex hull of the deltoid and this latter point

is a pyramid, and it is checked that this pyramid is a representative of

the third and last type of facets. It has its triangular face E ′

345E
′

357H35

with another pyramid in common (observe that the symmetry group of

the arrangement of the 6 pyramids having the vertex H35 in common is

in fact equal to the stabilizer of that vertex, i.e. isomorphic to D3d). Its

triangular face of the other type, namely E ′

345E
′

357T34, is shared by the

tetrahedron E ′

345E
′

357T34T57.
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Thus we have altogether 3 types of facets, and these are transitivity

classes as well. The following numbers for the facets of various types can

directly be obtained: there are 10 deltoidal dodecahedra, 120 four-sided

pyramids and 120 tetrahedra.

Representatives of 3 types of 2-faces we already met before. There is

a fourth type, namely type E ′TT . Triangles of this type are common faces

of tetrahedra. Here again, the types correspond to transitivity classes. We

remark that a peculiar property of the deltoidal faces is that their angle

at a vertex of type T is just right angle.

type degree incidences number of length
occurrence

E′H 4 1 deltoidal dodecahedron 120
√

17

4
≈ 1.0308

3 four-sided pyramids

E′T 5 1 deltoidal dodecahedron 120 5

4

2 four-sided pyramids
2 tetrahedra

E′T 6 2 four-sided pyramids 60
√

5

4
≈ 0.5590

4 tetrahedra

E′E′ 3 2 four-sided pyramids 120
√

70

8
≈ 1.0458

1 tetrahedron

TT 4 4 tetrahedra 30 2
√

5

3
≈ 1.4907

Table 3

The data of the transitivity classes of edges are listed in Table 3.

The orbit vector and f -vector is found to be θ(DdP 10) = (3, 5, 4, 3)

and f(DdP 10) = (100, 450, 600, 250), respectively. Here, as in the former

cases, the original symmetry is preserved through the construction, thus

the symmetry group of DdP10 is [[3, 3, 3]].

Proposition 5.3. DdP 10 is perfect and semi-nodal.

Proof. Consider the set of vertices of type T and the set of vertices

of type H. Both sets consist of nodal vertices. Hence these sets cannot

be displaced with respect to each other in the spherical image without
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altering the symmetry of the union of them. Thus in Euclidean space the

only possibility of changing is to take the homothetic copy of the one set

with respect to the origin. But in this case the centroid of nodes of type T

and the centroid of nodes of type H in an ATT cell would not coincide, i.e.

the deltoidal dodecahedron facet could not exist, contradicting the starting

point of our construction. On the other hand, having fixed the position

of the vertices of these two types of a deltoidal dodecahedron, the locaton

of its vertices of type E ′ is uniquely determined. Hence our polytope is

perfect.

Now here again, the vertices of type E ′ are non-nodal. Furthermore,

the existence of non-nodal vertices of the polar of DdP 10 is implied by the

location of the four-sided pyramid facets. Thus DdP 10 is semi-nodal. �

We remark that in contrast to our former two cases, here we have no

analogous construction from the perfect 48-cell. Although an analogue of

the deltoidal dodecahedron exists, namely, the deltoidal icositetrahedron,

it can be included in an analogous way in an Archimedean truncated oc-

tahedron, and not in an Archimedean truncated cube.
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Appendix

v1(1 +
√

2, 1, 1,−1 +
√

2 ) v2(1 +
√

2, 1,−1 +
√

2, 1)

v3(1 +
√

2, 1, 1 −
√

2, 1) v4(1 +
√

2, 1,−1,−1 +
√

2 )

v5(1 +
√

2, 1,−1, 1 −
√

2 ) v6(1 +
√

2, 1, 1 −
√

2,−1)

v7(1 +
√

2, 1,−1 +
√

2,−1) v8(1 +
√

2, 1, 1, 1 −
√

2 )

v9(1 +
√

2,−1, 1,−1 +
√

2 ) v10(1 +
√

2,−1,−1 +
√

2, 1)

v11(1 +
√

2,−1, 1 −
√

2, 1) v12(1 +
√

2,−1,−1,−1 +
√

2 )

v13(1 +
√

2,−1,−1, 1 −
√

2 ) v14(1 +
√

2,−1, 1 −
√

2,−1)

v15(1 +
√

2,−1,−1 +
√

2,−1) v16(1 +
√

2,−1, 1, 1 −
√

2 )

v17(1 +
√

2,−1 +
√

2, 1, 1, ) v18(1 +
√

2,−1 +
√

2,−1, 1, )

v19(1 +
√

2,−1 +
√

2,−1,−1) v20(1 +
√

2,−1 +
√

2, 1,−1)

v21(1 +
√

2, 1 −
√

2, 1, 1) v22(1 +
√

2, 1 −
√

2,−1, 1)

v23(1 +
√

2, 1 −
√

2,−1,−1) v24(1 +
√

2, 1 −
√

2, 1,−1)

v25(1, 1 +
√

2, 1,−1 +
√

2 ) v26(1, 1 +
√

2,−1 +
√

2, 1)

v27(1, 1 +
√

2, 1 −
√

2, 1) v28(1, 1 +
√

2,−1,−1 +
√

2 )

v29(1, 1 +
√

2,−1, 1 −
√

2 ) v30(1, 1 +
√

2, 1 −
√

2,−1)

v31(1, 1 +
√

2,−1 +
√

2,−1) v32(1, 1 +
√

2, 1, 1 −
√

2 )

v33(2,
√

2,
√

2, 0) v34(2,
√

2, 0,
√

2 )

v35(2,
√

2,−
√

2, 0) v36(2,
√

2, 0,−
√

2 )

v37(
√

2, 2,
√

2, 0) v38(
√

2, 2, 0,
√

2 )

v39(
√

2, 2,−
√

2, 0) v40(
√

2, 2, 0,−
√

2 )

v41(
√

2, 0, 2,
√

2) v42(
√

2, 0,
√

2, 2)

v43(1,−1 +
√

2, 1, 1 +
√

2 ) v44(−1 +
√

2, 1, 1, 1 +
√

2 )

v45(0,
√

2,
√

2, 2) v46(0,
√

2, 2,
√

2 )

v47(−1 +
√

2, 1, 1 +
√

2, 1) v48(1,−1 +
√

2, 1 +
√

2, 1)

v49(2, 0,
√

2,
√

2 ) v50(1, 1,−1 +
√

2, 1 +
√

2 )

v51(0, 2,
√

2,
√

2 ) v52(1, 1, 1 +
√

2,−1 +
√

2 )
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v53(
√

2,
√

2, 0, 2) v54(−1 +
√

2, 1 +
√

2, 1, 1)

v55(
√

2,
√

2, 2, 0) v56(1, 1, 1 +
√

2, 1 −
√

2 )

v57(1,−1 +
√

2, 1 +
√

2,−1) v58(
√

2, 0, 2,−
√

2 )

v59(2, 0,
√

2,−
√

2 ) v60(1, 1 −
√

2, 1 +
√

2, 1)

v61(1,−1, 1 +
√

2,−1 +
√

2 ) v62(
√

2,−
√

2, 2, 0)

v63(2,−
√

2,
√

2, 0) v64(1,−1, 1 +
√

2, 1 −
√

2 )

v65(1, 1 −
√

2, 1 +
√

2,−1)

Table 4
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H-6720 SZEGED

HUNGARY

E-mail: gevay@math.u-szeged.hu

KOJI MIYAZAKI

GRADUATE SCHOOL OF HUMAN AND ENVIRONMENTAL STUDIES

KYOTO UNIVERSITY

SAKYO-KU, KYOTO 606-8501

JAPAN

E-mail: miyazaki@hyper.mbox.media.kyoto-u.ac.jp

(Received September 12, 2002)


