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On varieties defined by pseudocomplemented

nondistributive lattices

By I. CHAJDA (Olomouc) and S. RADELECZKI (Miskolc)

Abstract. Lattices with 1, where for each element a ∈ L the interval [a, 1]
is pseudocomplemented, can be equipped with a binary operation “◦” similar to
the operation of relative pseudocomplementation. These algebras (L,∧,∨, ◦, 1)
form an arithmetical and 1-regular variety. We investigate the subvarieties and
the congruence kernels in this variety. It is shown that all algebras (L,∧,∨, ◦, 1)
where L is a finite sublattice of a free lattice can be characterized by a particular
identity.

1. Introduction

A bounded lattice L is called pseudocomplemented if for any x ∈ L

there exists an element x∗ ∈ L with the property that

y ∧ x = 0 if and only if y 5 x∗.

In [4] were characterized lattices with greatest element 1 where for each

element a ∈ L the interval [a, 1] is pseudocomplemented. It was shown that

they can be equipped with a binary operation “◦”having similar properties

as the operation of relative pseudocomplementation and that the class P

of all these algebras (L,∧,∨, ◦, 1) is equational. Although lattices with

relative pseudocomplementation are always distributive (see e.g. [2]), the
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above mentioned operation ◦ can be defined for nondistributive lattices,

too. These preliminary results are discussed in Section 2.

An important subclass of the class of relatively pseudocomplemented

lattices are relative(Ln)-lattices introduced in [11]. In Section 3, by the

mean of the operation ◦, this notion is successfully extended to the nondis-

tributive case. As a result we obtain new subvarieties of the variety P. In

Section 4 we apply our results to finite sublattices of free lattices. In Sec-

tion 5 the congruence properties of P are investigated and we characterize

the congruence kernels in the algebras of P.

2. Preliminaries

Let L be a lattice with 1 and x, y ∈ L. The pseudocomplement of

x ∨ y in the interval [y, 1] (if it exists) is denoted by x ◦ y (see [4]), and it

is called the section pseudocomplement of x with respect to y.

Lemma 2.1. The following conditions are equivalent for a lattice L

with 1.

(a) For any x, y ∈ L the section pseudocomplement x ◦ y exists in L.

(b) Any principal filter [a, 1] of L is a pseudocomplemented lattice.

(c) For any a 5 b the interval [a, b] is a pseudocomplemented lattice.

Proof. The equivalence of (a) and (b) was proved in [4] and (c) =⇒

(b) is clear. As any principal ideal of a pseudocomplemented lattice is also

a pseudocomplemented lattice, (b) =⇒ (c) is obvious. ¤

A lattice L with 1 is called sectionally pseudocomplemented, if the

section pseudocomplement x ◦ y exists for each x, y ∈ L.

Remark 2.2. We recall that (L,∧,∨, ∗, 1) is a Brouwerian algebra (or

a relatively pseudocomplemented lattice) if (L,∧,∨, 1) is a lattice with 1

and having the property that for any a, b, x ∈ L,

a ∧ x 5 b ⇐⇒ x 5 a ∗ b.

The operation ◦ can be considered as an extension of ∗, since for

x ∈ [y, 1] we have x ∗ y = x ◦ y, whenever x ∗ y exists (see [4]). If L is a

distributive lattice, then the operations ◦ and ∗ coincide (see [1]).
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Example 2.3. The lattice N5 (see Figure 1) is sectionally pseudocom-

plemented but not relatively pseudocomplemented (see [4]).
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Figure 1

E.g. the relative pseudocomplement y ∗ x does not exist, however the

section pseudocomplement y ◦ x exists and equals to x.

A lattice L is ∧-semidistributive if a ∧ b1 = a ∧ b2 implies a ∧ b1 =

a∧ (b1 ∨ b2) for any a, b1, b2 ∈ L. A complete lattice L is called completely

∧-semidistributive if for any bi ∈ L, i ∈ I and a ∈ L the relations a∧bi = y,

i ∈ I imply a∧ (
∨
{bi | i ∈ I}) = y. In view of [4], for any complete lattice

L the conditions of the Lemma 2.1 are equivalent to the condition

(d) L is completely ∧-semidistributive.

A lattice L with 0 is called 0-distributive if for any elements a, b, c ∈ L

a ∧ b = 0 and a ∧ c = 0 imply a ∧ (b ∨ c) = 0. Clearly, any principal

filter of a ∧-semidistributive lattice is 0-distributive. According to [14;

Theorem 1], an algebraic lattice is pseudocomplemented if and only if it is

0-distributive. These results leads us to the following

Proposition 2.4. If L is an algebraic lattice, then the following con-

ditions are equivalent:

(i) L is sectionally pseudocomplemented.

(ii) L is completely ∧-semidistributive.

(iii) L is ∧-semidistributive.

(iv) Any principal filter [a, 1] of L is a 0-distributive lattice.

Proof. The implications (ii) =⇒ (iii) =⇒ (iv) are obvious and the

equivalence (i) ⇐⇒ (ii) was established in [4]. As any principal filter
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[a, 1] of an algebraic lattice is also an algebraic lattice, the above men-

tioned result of [14] gives (iv) =⇒ (b), whence using Lemma 2.1 we get

(iv) =⇒ (i). ¤

We note that in the rest of the paper we deal with arbitrary sectionally

pseudocomplemented lattices and in general we do not assume that they

are algebraic or complete.

Let P denote the class of all algebras (L,∧,∨, ◦, 1), defined on section-

ally pseudocomplemented lattices (L,∧,∨, 1). In [4] it was shown that the

class P is determined by identities in signature {∧,∨, ◦, 1}, namely by the

lattice axioms and by the identities

(1) x ◦ x = 1, 1 ◦ x = x

(2) ((x ◦ y) ◦ y) ∧ (x ∨ y) = x ∨ y

(3) (x ∨ y) ◦ y = x ◦ y, y ∨ (x ◦ y) = x ◦ y

(4) ([(x ∨ z) ∧ (y ∨ z)] ◦ z) ∧ ([(x ∨ z) ∧ (y ◦ z)] ◦ z) = x ◦ z

Thus P is a variety and, according to Remark 2.3, P contains as a

subvariety the variety B of all Brouwerian algebras.

3. Hereditary weakly Ln-lattices

Definition 3.1. (i) Let L be a pseudocomplemented lattice and n = 1.

We say that L is a weakly Ln-lattice, if it satisfies the equation:

(x1 ∧ . . . ∧ xn)
∗ ∨ (x∗

1 ∧ . . . ∧ xn)
∗ ∨ . . . ∨ (x1 ∧ . . . ∧ x∗

n)
∗ = 1. (Ln)

If in addition L is distributive, then it is called an (Ln)-lattice [11].

(ii) L is called a hereditary weakly (Ln)-lattice if any principal filter

[a, 1] of it is a weakly (Ln)-lattice.

Notice, that for n = 1 Definition 3.1(i) gives x∗ ∨ x∗∗ = 1 and we say

that the lattice L is weakly Stonean. If L is a distributive lattice, then

Definition 3.1(ii) implies that any interval [a, b] j L is also an (Ln)-lattice.

Lattices with this property were called in [11] relative (Ln)-lattices. (Rel-

ative (L1)-lattices are known also under the name relative Stone lattices,

see e.g. [10].)
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In [11] M. Haviar and T. Katriňák established that any (distribu-

tive) relative (Ln)-lattice is characterized by the equation

(x1∧ . . .∧xn)∗y∨(x1∗y∧ . . .∧xn)∗y∨ . . .∨(x1∧ . . .∧xn∗y)∗y = 1. (Ln)
′

We shall deduce a similar equation with ◦ for hereditary weakly (Ln)-

lattices. The lemma below follows directly from the definition of a section

pseudocomplemented lattice:

Lemma 3.2. If L is a sectionally pseudocomplemented lattice, then

x 5 z =⇒ x ◦ y = z ◦ y.

Theorem 3.3. Let L be a lattice with 1. Then the following assertions

are equivalent:

(i) L is a hereditary weakly (Ln)-lattice.

(ii) x ◦ y is defined for all x, y ∈ L and the algebra (L,∧,∨, ◦, 1) satisfies

the equation:

(x1∧ . . .∧xn)◦y∨(x1◦y∧ . . .∧xn)◦y∨ . . .∨(x1∧ . . .∧xn◦y)◦y = 1. (Pn)

Proof. (i) =⇒ (ii): As L is a hereditary weakly (Ln)-lattice, any

principal filter [y) of it is pseudocomplemented, therefore, in virtue of

Lemma 2.1, x ◦ y is defined for all x, y ∈ L. Since x1∧ . . .∧xn 5 (x1∨ y)∧

. . .∧(xn∨y), Lemma 3.2 gives (x1∧. . .∧xn)◦y = [(x1∨y)∧. . .∧(xn∨y)]◦y.

On the other hand, using the identity (x ∨ y) ◦ y = x ◦ y we get

x1 ◦ y ∧ . . . ∧ xn 5 (x1 ∨ y) ◦ y ∧ . . . ∧ (xn ∨ y),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1 ∧ . . . ∧ xn ◦ y 5 (x1 ∨ y) ∧ . . . ∧ (xn ∨ y) ◦ y.

By applying Lemma 3.2 again, we deduce

(x1∧ . . . ∧ xn) ◦ y ∨ (x1 ◦ y ∧ . . . ∧ xn) ◦ y ∨ . . . ∨ (x1 ∧ . . . ∧ xn ◦ y) ◦ y

= [(x1 ∨ y)∧ . . .∧ (xn ∨ y)] ◦ y ∨ [(x1 ∨ y) ◦ y ∧ . . .∧ (xn ∨ y)] ◦ y ∨ . . .

∨ [(x1 ∨ y) ∧ . . . ∧ (xn ∨ y) ◦ y] ◦ y.

Since x1∨y = y, . . . , xn∨y = y, and (x1∨y)◦y = y, . . . , (xn∨y)◦y = y,

all these elements belong to the pseudocomplemented lattice [y, 1]. Let uy
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denote the pseudocomplement of an element u = y in the lattice [y, 1].

Now, in view of definition of the operation ◦ we obtain:

[(x1 ∨ y) ∧ . . . ∧ (xn ∨ y)] ◦ y = [(x1 ∨ y) ∧ . . . ∧ (xn ∨ y)]y,

[(x1 ∨ y) ◦ y ∧ . . . ∧ (xn ∨ y)] ◦ y = [(x1 ∨ y)y ∧ . . . ∧ (xn ∨ y)]y,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[(x1 ∨ y) ∧ . . . ∧ (xn ∨ y) ◦ y] ◦ y = [(x1 ∨ y) ∧ . . . ∧ (xn ∨ y)y]y.

Summarizing the above results, and taking in consideration that by

assumption the lattice [y, 1] satisfies the identity (Ln) we obtain:

(x1∧ . . . ∧ xn) ◦ y ∨ (x1 ◦ y ∧ . . . ∧ xn) ◦ y ∨ . . . ∨ (x1 ∧ . . . ∧ xn ◦ y) ◦ y

= [(x1 ∨ y) ∧ . . . ∧ (xn ∨ y)]y ∨ [(x1 ∨ y)y ∧ . . . ∧ (xn ∨ y)]y ∨ . . .

∨ [(x1 ∨ y) ∧ . . . ∧ (xn ∨ y)y]y = 1.

Hence (Pn) holds in L and this proves (ii).

(ii) =⇒ (i): Assume that (Pn) holds in the algebra (L,∧,∨, ◦, 1) and

take an a ∈ L. As x◦y is defined for all x, y ∈ L, in view of Lemma 2.1 the

interval [a, 1] is a pseudocomplemented lattice. Let x1, . . . , xn = a. Since

for any x ∈ [a, 1] we have x ◦ a = xa, we get

(x1∧ . . . ∧ xn)
a ∨ (xa

1 ∧ . . . ∧ xn)
a ∨ . . . ∨ (x1 ∧ . . . ∧ xa

n)
a

= (x1 ∧ . . . ∧ xn) ◦ a ∨ (x1 ◦ a ∧ . . . ∧ xn) ◦ a ∨ . . .

∨ (x1 ∧ . . . ∧ xn ◦ a) ◦ a = 1.

This equation shows that for any a ∈ L, the principal filter [a) is an

(Ln)-lattice. Thus L is a hereditary weakly (Ln)-lattice. ¤

Example 3.4. The algebra (N5,∧,∨, ◦, 1) satisfies the identity (P1), i.e.

x ◦ y ∨ (x ◦ y) ◦ y = 1.

Indeed, it is not hard to see that any principal filter [a) of N5 satisfies

the equality xa∨(xa)a = 1, therefore N5 is a hereditary weakly (L1)-lattice.

In view of Theorem 3.3, (N5,∧,∨, ◦, 1) satisfies (P1), too.

Let Pn denote the class of all algebras (L,∧,∨, ◦, 1) corresponding

to hereditary weakly (Ln)-lattices. Because any Pn is a subclass of P

determined by the identity (Pn), any Pn is a subvariety of P. Since in
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the variety B of Brouwerian algebras the identity (Pn) is the same as

(Ln)’, the subvarieties Bn = B ∩ Pn of B consist of algebras (L,∧,∨, ∗, 1)

corresponding to relative (Ln)-lattices. As in view of [12] relative (Ln)-

lattices form a proper subclass of the class of relative (Ln+1)-lattices, we

have Bn ⊂ Bn+1. Let B−1 and B0 be the class of all trivial Brouwerian

algebras and the subclass of B determined by the identity x∨y∨(x∗y) = 1,

respectively. Clearly, L = (L,∧,∨, ∗, 1) ∈ B0 ⇔ any [y, 1] is complemented

⇔ every interval of L is a Boolean lattice. Hence L ∈B0 if and only if the

dual of L is a generalized Boolean lattice (see e.g. [9] or [1]).

Proposition 3.5. The variety P contains an infinite chain of proper

subvarieties B−1 ⊂ B0 ⊂ B1 ⊂ P1 ⊂ . . . ⊂ Pn ⊂ . . . and B0 is the single

minimal subvariety of P.

Proof. The inclusions B−1 ⊂ B0 ⊂ B1, B1 j P1, Pn j P are obvious.

As (N5,∧,∨, ◦, 1) is in P1\B (see Example 3.4) B1 ⊂ P1 is also clear. Since

for any x1, . . . , xn, xn+1, y ∈ L by Lemma 3.2 we get

(x1∧ . . . ∧ xn ∧ xn+1) ◦ y ∨ (x1 ◦ y ∧ . . . ∧ xn ∧ xn+1) ◦ y ∨ . . .

∨ (x1 ∧ . . . ∧ xn ◦ y ∧ xn+1) ◦ y ∨ (x1 ∧ . . . ∧ xn ∧ xn+1 ◦ y) ◦ y

= (x1 ∧ . . . ∧ xn) ◦ y ∨ (x1 ◦ y ∧ . . . ∧ xn) ◦ y ∨ . . .

∨ (x1 ∧ . . . ∧ xn ◦ y) ◦ y,

the identity (Pn) implies (Pn+1) and this proves Pn j Pn+1. Now B ∩ Pn ⊂

B ∩ Pn+1 implies Pn 6= Pn+1 and Pn 6= P.

It is known that B0 is a minimal variety generated by B2, the Brouw-

erian algebra defined on the chain with two elements (see e.g. [2]). LetM

be a minimal subvariety of P and A = (A,∧,∨, ◦, 1) a nontrivial algebra

inM. Then there exists an a ∈ A\{1}. As ({a, 1},∧,∨, ◦, 1) is subalgebra

of A isomorphic to B2, we get B0 =M. ¤

4. Application to finite sublattices of a free lattice

In this section we show that any finite sublattice of a free lattice sat-

isfies the equations (L4) and (P4).
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Since any finite sublattice L of a free lattice is an algebraic ∧-semi-

distributive lattice (see e.g. Theorem 2.4 in [6]), according to Proposi-

tion 2.2 any principal filter of such a lattice L is a pseudocomplemented

lattice. Moreover, we prove:

Theorem 4.1. Any finite sublattice of a free lattice is a hereditary

weakly (L4)-lattice.

Proof. As any principal filter [a) of a finite sublattice of a free lattice

F is also a finite sublattice of F , it is enough to prove that each finite

sublattice L of F satisfies the identity (L4).

In view of [13, Corollary 3.9], a lattice L satisfying the descending chain

condition is a weakly (Ln)-lattice whenever under each join-irreducible

element of L are at most n atoms. In [7] is proved that any finite sublattice

L of a free lattice has a breadth at most 4 (see also [6, Corollary 5.5]), i.e. for

any n = 4 and any finite set {a1, a2, . . . , an} there exist ai1 , ai2 , ai3 , ai4 ∈

{a1, a2, . . . , an} such that
∨n

i=1 ai = ai1 ∨ ai2 ∨ ai3 ∨ ai4 .

Now, let L be a finite sublattice of a free lattice and p a join-irreducible

element of L. We show that under p are at most 4 atoms.

Indeed, let us denote by a1, a2, . . . , an the atoms of L which are un-

der p. Then there are at most four atoms ai1 , ai2 , ai3 , ai4 ∈ [0, p] such that
∨n

i=1 ai = ai1 ∨ ai2 ∨ ai3 ∨ ai4 . If n > 4, then there exist an atom ai0 , i0 ∈

{1, . . . , n} such that ai0 /∈ {ai1 , ai2 , ai3 , ai4}. As L is ∧-semidistributive,

the relations ai1 ∧ ai0 = 0, ai2 ∧ ai0 = 0, ai3 ∧ ai0 = 0 and ai4 ∧ ai0 = 0

imply ai0 = (ai1 ∨ ai2 ∨ ai3 ∨ ai4) ∧ ai0 = 0, – a contradiction.

Hence L satisfies the identity (L4). ¤

Using the above result and applying Theorem 3.3 we obtain:

Corollary 4.2. If L is a finite sublattice of a free lattice, then L is

sectionally pseudocomplemented and the algebra (L,∧,∨, ◦, 1) satisfies the

equation (P4).

5. On the congruence properties of the variety P

In this section we shall study the congruence properties of algebras

L = (L,∧,∨, ◦, 1) from the variety P.
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Of course, the variety P is congruence distributive because its reduct

to the signature {∧,∨} is a class of lattices. Moreover, P is also congruence

permutable. Indeed, one can deduce that a Mal’cev term of P can be e.g.

p(x, y, z) = (y ◦ x) ∧ (x ∨ z) ∧ (y ◦ z).

We recall that a variety is arithmetical if it is congruence distributive

and congruence permutable at the same time. Thus we have:

Theorem 5.1. The variety P is arithmetical.

Let Θ ∈ ConL. The set [1]Θ = {x ∈ L | (1, x) ∈ Θ} is called the kernel

of Θ. We say that the set K j L is a congruence kernel if K = [1]Θ for

some Θ ∈ ConL.

Recall that L is 1-regular if [1]Θ = [1]Φ implies Θ = Φ for each Θ,Φ ∈

ConL. The following result was given by B. Csákány in [5]:

Proposition 5.2. A variety V with the constant 1 is 1-regular if and

only if there exist n ∈ N and binary terms b1(x, y), . . . , bn(x, y) such that

V satisfies the equivalence

b1(x, y) = . . . = bn(x, y) = 1 ⇐⇒ x = y.

By using this proposition we can prove:

Theorem 5.3. The variety P is 1-regular.

Proof. Take n = 2 and b1(x, y) = x ◦ y, b2(x, y) = y ◦ x. Of course,

b1(x, x) = b2(x, x) = 1. Conversely, suppose b1(x, y) = b2(x, y) = 1.

Then x◦y = 1 implies (x∨y)y = 1, i.e. x∨y = y and y ◦x = 1 implies

(x ∨ y)x = 1, i.e. x ∨ y = x, thus we get x = y. ¤

Remark 5.4. (i) We can get also the Pixley term for arithmecity of P,

which is t(x, y, z) = [(x ◦ y) ◦ z] ∧ [(z ◦ y) ◦ x] ∧ (x ∨ z).

(ii) Let us note, as shown in [3], that a variety V is 1-regular and per-

mutable if and only if there exist n ∈ N, binary terms s1(x, y), . . . , sn(x, y)

and a (2 + n)-ary term q such that V satisfies the identities

si(x, x) = 1, for i = 1, . . . , n

x = q(x, y, s1(x, y), . . . , sn(x, y)),
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y = q(x, y, 1, . . . , 1).

To verify this Mal’cev condition, one can take n = 2, s1(x, y) = x ◦ y,

s2(x, y) = y ◦ x and

q(x, y, z, v) = (z ◦ y) ∧ [(v ◦ (y ◦ x)) ◦ x] ∧ (x ∨ y).

This term q will be also important in the proof of the Theorem 5.7.

Since the variety P is 1-regular, every congruence Θ ∈ ConL for L ∈ P

is determined by its kernel [1]Θ. Hence, our task is to determine the con-

gruence kernels and get an explicit description of a congruence determined

by a given kernel.

Let K jL and let t(x1, . . . , xn, y1, . . . , yk) be a term of L=(L,∧,∨, ◦,1)

in two sorts of variables. We say that K is y-closed with respect to t if

t(a1, . . . , an, b1, . . . , bk) ∈ K whenever b1, . . . , bk ∈ K and for each

a1, . . . , an ∈ L.

For the sake of brevity, we introduce the notations:

Q1 = q(x1, x2, y1, y2) = (y1 ◦ x2) ∧ [(y2 ◦ (x2 ◦ x1)) ◦ x1] ∧ (x1 ∨ x2),

Q2 = q(x3, x4, y3, y4) = (y3 ◦ x4) ∧ [(y4 ◦ (x4 ◦ x3)) ◦ x3] ∧ (x3 ∨ x4).

Further, define the following terms in two sorts of variables:

t1(x1, x2, x3, x4, y1, y2, y3, y4) = (Q1 ◦Q2) ◦ (x2 ◦ x4),

t2(x1, x2, x3, x4, y1, y2, y3, y4) = (x2 ◦ x4) ◦ (Q1 ◦Q2),

t3(x1, x2, x3, x4, y1, y2, y3, y4) = (Q1 ∧Q2) ◦ (x2 ∧ x4),

t4(x1, x2, x3, x4, y1, y2, y3, y4) = (x2 ∧ x4) ◦ (Q1 ∧Q2),

t5(x1, x2, x3, x4, y1, y2, y3, y4) = (Q1 ∨Q2) ◦ (x2 ∨ x4),

t6(x1, x2, x3, x4, y1, y2, y3, y4) = (x2 ∨ x4) ◦ (Q1 ∨Q2).

Lemma 5.5. (i) Let K = [1]Θ for some Θ ∈ ConL and

t(x1, . . . , xn, y1, . . . , yk) be a term of L such that t(x1, . . . , xn, 1, . . . , 1)=1.

If y1, . . . , yk ∈ K then t(x1, . . . , xn, y1, . . . , yk) ∈ K.
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(ii) For the terms t1, . . . , t6 defined above, we have

ti(x1, x2, x3, x4, 1, 1, 1, 1) = 1.

Proof. The proof of (i) is elementary and hence omitted. (ii) is an

easy consequence of q(x1, x2, 1, 1) = x2 and q(x3, x4, 1, 1) = x4. ¤

Lemma 5.6. Let K be a subset of L with 1 ∈ K. Define the relation

ΦK on L by

(x, y) ∈ ΦK ⇐⇒ x ◦ y ∈ K and y ◦ x ∈ K. (∗)

Then K = [1]ΦK
.

Proof. If a ∈ K, then 1 ◦ a = a ∈ K and a ◦ 1 = 1 ∈ K, thus by

(∗) (1, a) ∈ ΦK and so a ∈ [1]ΦK
. Conversely, if a ∈ [1]ΦK

, then (∗) gives

a = 1 ◦ a ∈ K. Thus K = [1]ΦK
. ¤

A filter F of a lattice L is called standard if it is a standard element

in the lattice F(L) of all filters of L, i.e. if the equality [a) ∧ (F ∨ [b)) =

([a) ∧ F ) ∧ [a ∨ b) holds in F(L).

Theorem 5.7. Let L = (L,∧,∨, ◦, 1) ∈ P and K j L with 1 ∈ K.

Then the following assertions are equivalent:

(i) K is a congruence kernel.

(ii) K is y-closed with respect to the terms t1, . . . , t6.

(iii) The relation ΦK defined by (∗) is a congruence of L.

(iv) K is a standard filter of L.

Proof. (i) =⇒ (ii): Assume that K = [1]Θ for some Θ ∈ ConL.

Then 1 ∈ K and, by Lemma 5.5, K is y-closed with respect to t1, . . . , t6.

(ii) =⇒ (iii): Obviously, ΦK is reflexive. Suppose (a, b) ∈ ΦK and

(c, d) ∈ ΦK for some a, b, c, d ∈ L. Then a ◦ b, b ◦ a, c ◦ d, d ◦ c ∈ K. Since

in view of Remark 5.4(ii) we have

a = q(a, b, s1(a, b), s2(a, b)) = q(a, b, a ◦ b, b ◦ a)

and

c = q(c, d, s1(c, d), s2(c, d)) = q(c, d, c ◦ d, d ◦ c),
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and since K is y-closed with respect to t1, applying the term t1, we get

(a◦c)◦(b◦d) = (q(a, b, a◦b, b◦a)◦q(c, d, c◦d, d◦c))◦(b◦d) = t1(a, b, c, d, a◦

b, b ◦ a, c ◦ d, d ◦ c) ∈ K.

Analogously we can show (b◦d)◦ (a◦ c) ∈ K applying t2 instead of t1.

Hence, by (∗) we have also (a ◦ c, b ◦ d) ∈ ΦK .

Substituting t3 and t4 (instead of t1 and t2) in the above argument,

we get (a ∧ c, b ∧ d) ∈ ΦK and for t5, t6 we get (a ∨ c, b ∨ d) ∈ ΦK .

Together, ΦK is a reflexive relation on L having the substitution prop-

erty with respect to all operations of L. As L belongs to a Mal’cev variety,

by the theorem of Werner [15] we obtain ΦK ∈ ConL.

(iii) =⇒ (i): Since by Lemma 5.6 we have K = [1]ΦK
and since by

assumption ΦK ∈ ConL, K is a congruence kernel.

(i) =⇒ (iv): Assume that Θ is a congruence of L such that K = [1]Θ.

Since Θ is also a congruence of the lattice (L,∧,∨, 1), it is clear that [1]Θ
is a lattice filter. Suppose that (x, y) ∈ Θ. Then (x ∨ y, x ∧ y) ∈ Θ, as

Θ is a lattice congruence. Hence (x ∨ y) ◦ (x ∧ y) ∈ K, because Θ is a

congruence on L. Since

x ∧ y = (x ∨ y) ∧ [(x ∨ y) ◦ (x ∧ y)],

K is a standard filter by [8, Theorem III.5].

(iv) =⇒ (i): Assume that K is a standard filter of L and take

Θ = Θ[K] the smallest congruence on L generated by K. This exists by

[8, Theorem III.5] and it is easy to check that K = [1]Θ. We have only

to show that Θ is compatible with the binary operation ◦. It is enough

to show that the factor-lattice L/Θ is sectionally pseudocomplemented.

More precisely, we claim that [a]Θ ◦ [b]Θ = [a ◦ b]Θ for any a, b ∈ L. Really,

([a]Θ ∨ [b]Θ) ∧ [a ◦ b]Θ = [a ∨ b]Θ ∧ [a ◦ b]Θ = [(a ∨ b) ∧ (a ◦ b)]Θ = [b]Θ

as Θ is a lattice congruence.

Now, take [x]Θ = [b]Θ in L/Θ and suppose that

([a]Θ ∨ [b]Θ) ∧ [x]Θ = [(a ∨ b) ∧ x]Θ = [b]Θ.

Without loss of generality we can assume x = b in L. Then (a ∨ b) ∧

x = b and in view of [8, Theorem III.5] there exists a g ∈ K such that

(a∨b)∧x∧g = b holds in L. It follows that x∧g 5 a◦b, as L is sectionally

pseudocomplemented. As g ∈ K, we have [x ∧ g]Θ = [x]Θ.
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Finally, we obtain [x]Θ 5 [a ◦ b]Θ and hence [a ◦ b]Θ = [a]Θ ◦ [b]Θ, as

claimed. ¤

Corollary 5.8. For any Θ ∈ ConL we have Θ = Φ[1]Θ .

Proof. Let Θ ∈ ConL and take K = [1]Θ. Then by Theorem 5.7 we

have ΦK ∈ ConL and Lemma 5.6 gives [1]Θ = [1]ΦK
. As L is an algebra

of a congruence 1-regular variety, we get Θ = ΦK , i.e. Θ = Φ[1]Θ . ¤

Problems

1) Characterize the subdirectly irreducible algebras in the varieties Pn,

n ∈ N.

2) Characterize the lattice of subvarieties of P.
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[7] R. Freese, J. Ježek and J. B. Nation, Free Lattices, Vol. 42, Amer. Math. Soc.
Publ., Providence, R. I, 1991.

[8] G. Grätzer, General Lattice Theory, Birkhäuser Verlag, Basel, 1978.
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Soc. Roy. Liège 37 (1968), 149–158.

[15] H. Werner, A Mal’cev condition on admissible relations, Algebra Universalis 3

(1973), 263.

IVAN CHAJDA

DEPATMENT OF ALGEBRA AND GEOMETRY

PALACKÝ UNIVERSITY OLOMOUC

TOMKOVA 40, 77900 OLOMOUC

CZECH REPUBLIC

E-mail: chajda@risc.upol.cz
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