
Publ. Math. Debrecen

64/1-2 (2004), 1–13

Horospherical surfaces of curves in Hyperbolic space

By S. IZUMIYA (Sapporo), D. PEI (Changchun) and T. SANO (Sapporo)

Abstract. We consider the contact between curves and horospheres in Hy-
perbolic 3-space as an application of singularity theory of functions. We define
the osculating horosphere of the curve. We also define the horospherical surface
of the curve whose singular points correspond to the locus of polar vectors of
osculating horospheres of the curve. One of the main results is to give a generic
classification of singularities of horospherical surface of curves.

1. Introduction

In [2], [3] we have applied singularity theory to local differential ge-

ometry on hypersurfaces in Hyperbolic space. We have constructed some

basic tools for the study of these subjects. These tools work very well

for hypersurfaces. The next step is to consider the case for submani-

folds with higher codimensions. In this paper we stick to hyperbolic space

curves because this is the simplest case with higher codimensions. Here,

we study the contact between hyperbolic space curves and horospheres as

an application of singularity theory of smooth functions. One of the basic

tools we have given in [3] is the notion of horospherical height functions

on hypersurfaces. We can also define the horospherical height function

of a hyperbolic space curve here. By the aid of the technique of singu-

larity theory on such a function, we can give the definition of osculating

horospheres along a hyperbolic space curve (cf., §4). We can define the
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horospherical surface of a hyperbolic space curve as the discriminat set of

the horospherical height function on the curve. Compared with the case

for curves in Euclidean space, the situation is rather different because the

horospherical surface is defined in the light cone. It might be considered as

a kind of the dual surface of the curve. The main results in this paper are

Theorems 2.1 and 2.2. These theorems give generic classifications of sin-

gularities of horospherical surfaces of hyperbolic space curves. Moreover,

we study the geometric meanings of singularities of horospherical surfaces

of hyperbolic space curves and introduce a new invariant σh(s). We can

show that σh(s) ≡ 0 if and only if the curve is located on a horosphere

under a certain generic assumption (cf., §4).

This is one of the papers of the authors project on “generic differential

geometry” of submanifolds in Hyperbolic space (cf., [2], [3]).

All maps considered here are of class C∞ unless otherwise stated.

2. Basic notions and results

We adopt the Lorentzian model of the hyperbolic 3-space. Let R4 =

{(x0, x1, x2, x3) | xi ∈ R (i = 0, 1, 2, 3)} be a 4-dimensional vector space.

For any x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4, the pseudo scalar

product of x and y is defined by

〈x,y〉 = −x0y0 +
3∑

i=1

xiyi.

We call (R4, 〈, 〉) Minkowski space. We denote R4
1 instead of (R

4, 〈, 〉). We

say that a non-zero vector x ∈ R4
1 is spacelike, lightlike or timelike if

〈x,x〉 > 0, 〈x,x〉 = 0 or 〈x,x〉 < 0 respectively. For a vector v ∈ R4
1 and

a real number c, we define the hyperplane with pseudo normal v by

HP (v, c) = {x ∈ R4
1 | 〈x,v〉 = c }.

We call HP (v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike

hyperplane if v is timelike, spacelike or lightlike respectively.
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We now define Hyperbolic 3-space by

H3
+(−1) = {x ∈ R4

1 | 〈x,x〉 = −1, x0 ≥ 1}.

For any x1,x2,x3 ∈ R4
1, we define a vector x1 ∧ x2 ∧ x3 by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣∣∣∣

−e0 e1 e2 e3

x1
0 x1

1 x1
2 x1

3

x2
0 x2

1 x2
2 x2

3

x3
0 x3

1 x3
2 x3

3

∣∣∣∣∣∣∣∣∣∣∣

,

where e0, e1, e2, e3 is the canonical basis of R4
1. We can easily show

that 〈x,x1 ∧ x2 ∧ x3〉 = det(x x1 x2 x3), so that x1 ∧ x2 ∧ x3 is pseudo

orthogonal to any xi (i = 1, 2, 3).

We also define a set LCa = {x ∈ R4
1 | 〈x − a,x − a〉 = 0}, which is

called a closed lightcone with the vertex a. We denote that

LC∗+ = {x = (x0, x1, x2, x3) ∈ LC0 | x0 > 0}

and we call it the future lightcone at the origin. We can also define the no-

tion of the past lightcone. We have three kinds of surfaces in H3
+(−1) which

are given by intersections of H3
+(−1) and hyperplanes in R4

1. A surface

H3
+(−1)∩HP (v, c) is called a sphere, an equidistant plane or a horosphere

if H(v, c) is spacelike, timelike or lightlike respectively. Especially we write

a horosphere as HS2(v, c) = H3
+(−1) ∩H(v, c). If we consider a lightlike

vector v0 = −1/cv, we have HS2(v, c) = HS2(v0,−1). We call v0 the

polar vector of HS2(v0,−1).

We now construct the explicit differential geometry on curves inH3
+(−1).

Let γ : I −→ H3(−1) be a regular curve. Since H3
+(−1) is a Riemann-

ian manifold, we can reparametrise γ by the arc-length. Hence, we may

assume that γ(s) is a unit speed curve. So we have the tangent vector

t(s) = γ ′(s) with ‖t(s)‖ = 1, where ‖v‖ =
√
|〈v,v〉|. In the case when

〈t′(s), t′(s)〉 6= −1, then we have a unit vector n(s) = t′(s)−γ(s)

‖t′(s)−γ(s)‖
. More-

over, define e(s) = γ(s)∧ t(s)∧n(s), then we have a pseudo orthonormal

frame {γ(s), t(s),n(s), e(s)} of R4
1 along γ. By standard arguments, un-
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der the assumption that 〈t′(s), t′(s)〉 6= −1, we have the following Frenet–

Serret type formula:





γ ′(s) = t(s)

t′(s) = κh(s)n(s) + γ(s)

n′(s) = −κh(s)t(s) + τh(s)e(s)

e′(s) = −τh(s)n(s)

,

where κh(s) = ‖t
′(s)− γ(s)‖ and τh(s) = −

det(γ(s),γ′(s),γ′′(s),γ′′′(s))
(κh(s))2

.

Since 〈t′(s) − γ(s), t′(s) − γ(s)〉 = 〈t′(s), t′(s)〉 + 1, the condition

〈t′(s), t′(s)〉 6= −1 is equivalent to the condition κh(s) 6= 0. Moreover,

we can show that the curve γ(s) satisfies the condition κh(s) ≡ 0 if and

only if there exists a lightlike vector c such that γ(s) − c is a geodesic.

Such a curve is called an equidistant line. We can study many proper-

ties of hyperbolic space curves by using this fundamental equation. Here,

we consider the contact between hyperbolic space curves and horospheres.

This is the special subject in hyperbolic differential geometry.

Let γ : I −→ H3
+(−1) be a unit speed hyperbolic space curve. We

now define a map

HSγ : I × J −→ LC∗+

by HSγ(s, θ) = γ(s) + cos θn(s) + sin θe(s), where J is an open inter-

val or the unit circle in Euclidean plane. We call HSγ the horospherical

surface of γ. We also introduce a hyperbolic invariant σh(s) = ((κ
′
h)

2 −

(κh)
2(τh)

2((κh)
2 − 1))(s). The geometric meaning of these objects will be

discussed in §4. Our main result is given as follows:

Theorem 2.1. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic

space curve with κh 6= 0. Then we have the following:

(1) The horospherical surface HSγ of γ is singular at (s0, θ0) if and only

if cos θ0 = 1/κh(s0).

(2) The horospherical surface HSγ of γ is locally diffeomorphic to the

cuspidal edge C × R at (s0, θ0) if cos θ0 = 1/κh(s0) and σh(s0) 6= 0.

(3) The horospherical surfaceHSγ of γ is locally diffeomorphic to the swal-

low tail SW at (s0, θ0) if cos θ0 = 1/κh(s0), σh(s0) = 0 and σ
′
h(s0) 6= 0.
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Here, C×R = {(x1, x2, x3) | x1
2 = x2

3} is the cuspidal edge (c.f., Figure 1)

and SW = {(x1, x2, x3) | x1 = 3u
4 + u2v, x2 = 4u

3 + 2uv, x3 = v} is the

swallow tail (c.f., Figure 2).

Figure 1: cuspidal edge Figure 2: swallowtail

Moreover, we can assert that the above theorem gives a generic classifi-

cation of singularities of horospherical surfaces of hyperbolic space curves.

Let Emb(I,H3
+(−1)) be the space of proper embeddings γ : I −→ H3

+(−1)

equipped with Whitney C∞-topology. The generic classification theorem

is given as follows:

Theorem 2.2. There exists an open and dense subset

O ⊂ Emb(I,H3
+(−1)) such that for any γ ∈ O, the horospherical surface

HSγ of γ is locally diffeomorphic to the cuspidal edge or the swallowtail

at any singular point.

3. Horospherical height functions

In this section we introduce a family of functions on a curve which

is useful for the study of invariants of hyperbolic space curves. For a

hyperbolic space curve γ : I −→ H3
+(−1), we define a function H : I ×

LC∗+ −→ R by H(s,v) = 〈γ(s),v〉 + 1. We call H a horospherical height
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function on γ. We denote that h(s) = Hv0(s) = H(s,v0) for any

v0 ∈ LC∗+.

Proposition 3.1. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic

space curve with κh 6= 0. Then we have the followings:

(1) h(s0) = 0 if and only if there exist real numbers λ, µ, η with λ2+µ2+

η2 = 1 such that v0 = γ(s0) + λt(s0) + µn(s0) + ηe(s0).

(2) h(s0) = h′(s0) = 0 if and only if there exists θ0 ∈ [0, 2π] such that

v0 = γ(s0) + cos θ0n(s0) + sin θ0e(s0).

(3) h(s0) = h′(s0) = h′′(s0) = 0 if and only if v0 = γ(s0) + cos θ0n(s0) +

sin θ0e(s0) and cos θ0 = 1/κh(s0).

(4) h(s0) = h′(s0) = h′′(s0) = h(3)(s0) = 0 if and only if v0 = γ(s0) +

cos θ0n(s0) + sin θ0e(s0), cos θ0 = 1/κh(s0) and σh(s0) = ((κ′h)
2 −

(κh)
2(τh)

2((κh)
2 − 1))(s0) = 0.

(5) h(s0) = h′(s0) = h′′(s0) = h(3)(s0) = h(4)(s0) = 0 if and only if

v0 = γ(s0)+ cos θ0n(s0)+ sin θ0e(s0), cos θ0 = 1/κh(s0) and σh(s0) =

σ′h(s0) = 0.

Proof. Since h(s) = 〈γ(s),v〉+ 1, we have

(a) h′(s) = 〈t(s),v〉,

(b) h′′(s) = 〈κh(s)n(s) + γ(s),v〉,

(c) h(3)(s) = 〈(1− κ2
h(s))t(s) + κ′h(s)n(s) + κh(s)τh(s)e(s),v〉,

(d) h(4)(s) = 〈(1− κ2
h(s))γ(s)− 3κh(s)κ

′
h(s)t(s) + (κh(s)− κ3

h(s)

−κh(s)τ
2
h(s) + κ′′h(s))n(s) + (2κ

′
h(s)τh(s) + κh(s)τ

′
h(s))e(s),v〉.

The assertion (1) is trivial by definition. By the relation (a), h(s0) =

h′(s0) = 0 if and only if v0 = γ(s0) + µn(s0) + ηe(s0) with µ
2 + η2 = 1.

Therefore, we might write µ = cos θ and η = sin θ. By the relation (b),

h(s0) = h′(s0) = h′′(s0) = 0 if and only if v0 = γ(s0) + cos θ0n(s0) +

sin θ0e(s0) and 0 = 〈κh(s)n(s)+γ(s),v0〉 = −1+cos θκh(s0). This means

that the assertion (3) holds. The other assertions also follow from the

above relations exactly the same way as the above, we need, however,

rather long calculations, so that we omit the detail. ¤
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4. Invariants of hyperbolic space curves

In §2 we found that the function

σh(s) = ((κ
′
h)

2 − (κh)
2(τh)

2((κh)
2 − 1))(s)

on γ has a special meaning. Here, we try to understand the geometric

meaning of this invariant. Let v be a lightlike vector and w be a spacelike

vector. A hyperbolic space curve given by HS2(v,−1)∩HP (w, 0) is called

a horocycle. We have the following proposition.

Proposition 4.1. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic

space curve with κh ≥ 1. We consider the vector field along γ given by

v(s) = γ(s) + cos θn(s) + sin θe(s) with cos θ = 1/κh(s).

(1) Suppose that κh(s) ≡ 1. Then the following conditions are equivalent:

(a) v(s) is a constant vector.

(b) τh(s) ≡ 0.

(c) γ is a part of horocycle.

(2) Suppose that the set {s ∈ I | κh(s) = 1} consists of isolated points.

Then the following conditions are equivalent:

(a) v(s) is a constant vector.

(b) σh(s) ≡ 0.

(c) γ is located on a horosphere.

Proof. Suppose that κh(s) ≡ 1. Then v(s) = γ(s)+n(s), so that we

have v′(s) = τh(s)e(s). Therefore v(s) is constant if and only if τh(s)≡ 0.

For any s ∈ I, we consider the horocycle given by HS2(v(s),−1) ∩

〈γ(s), t(s),n(s)〉R. If v(s) is constant, then τh(s) ≡ 0. This means that

e(s) is constant, so that the hyperplane 〈γ(s), t(s),n(s)〉R is also constant.

In this case the horosphere HS2(v(s),−1) is also constant. Thus the image

of γ is a part of horocycle given by HS2(v(s),−1) ∩ 〈γ(s), t(s),n(s)〉R. If

γ is a part of a horocycle, then it is a hyperbolic plane curve. Therefore

we have τh(s) ≡ 0. This completes the proof the assertion (1).

We consider the case κh(s) 6= 1. Since cos θ(s) = 1/κh(s), we have

v(s) = γ(s) +
1

κh(s)
n(s)±

√
κ2
h(s)− 1

κh(s)
e(s).
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Then we have

v′(s) = −
κ′h ± κhτh

√
κ2
h − 1

κ2
h

(s)n(s) +
τhκh

√
κ2
h − 1± κ′h

κ2
h

√
κ2
h − 1

(s)e(s).

Therefore, v′(s) ≡ 0 if and only if σh(s) ≡ 0. The conditions (a) and (b)

of (2) are equivalent. By the assumption of (2), the set of points with

κh(s) 6= 1 is open and dense subset of I. Therefore, the conditions (a) and

(b) of (2) are equivalent at any point of I.

We now consider the horospherical height function H(s,v) on γ. If

γ is located on a horosphere HS2(v0, c), we can choose c = −1. This

means that H(s,v0) ≡ 0. By the assertion (4) of Proposition 3.1, we have(
κ′h ± κhτh

√
κ2
h − 1

)
(s) ≡ 0. This means that the condition (c) implies

the condition (b). If v(s) is a constant vector v0, then γ is located on

HS2(v0,−1). ¤

Let F : H3
+(−1) −→ R be a submersion and γ : I −→ H3

+(−1) be

a regular curve. We say that γ and F−1(0) have at least k-point contact

for t = t0 if the function g(t) = F ◦ γ(t) satisfies g(t0) = g′(t0) = · · · =

g(k−1)(t0) = 0. If γ and F
−1(0) have at least k-point contact for t = t0

and satisfies the condition that g(k)(t0) 6= 0, then we say that γ and

F−1(0) have k-point contact for t = t0. If a horosphere HS
2(v0,−1) and

a hyperbolic space curve γ have at least 3-point contact for a point t0, we

call HS2(v0,−1) the osculating horosphere of γ at γ(t0). Then we have

the following proposition.

Proposition 4.2. Let γ : I −→ H3
+(−1) be a unit speed hyperbolic

space curve. Then we have the following:

(1) There exists the osculating horosphere of γ at a point γ(s0) if and

only if κh(s0) ≥ 1.

(2) Suppose that κh(s0) ≥ 1. Then the osculating horosphere and γ

have 4-point contact for s = s0 if and only if σh(s0) = 0 and σ′h(s0) 6= 0.

Proof. Let H : H3
+(−1) × LC∗+ −→ R be a function defined by

H(x,v) = 〈x,v〉 + 1. For any v0 ∈ LC∗+, hv0(x) = H(x,v0) is a sub-

mersion and h−1
v0
(0) is a horosphere. Moreover, any horosphere can be

realized as the zero level set of hv0 for some v0 ∈ LC∗+. For any γ, we have
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hv0 ◦γ(s) = h(s), here h(s) = H(s,v0). Therefore, h
−1
v0
(0) is an osculating

horosphere of γ at γ(s0) if and only if h(s0) = h′(s0) = h′′(s0) = 0.

By Proposition 3.1, this condition is equivalent to the condition that

v0 = γ(s0) + cos θ0n(s0) + sin θ0e(s0) with cos θ0 = 1/κh(s0). Of course,

κ2
h(s0) ≥ 1. The assertion (2) follows from the assertions (3) and (4) of

Proposition 2.1. ¤

Theorem 2.1 asserts that the set of singular points of the horospher-

ical surface of γ is the locus the polar vectors of osculating horospheres

of γ. Moreover, the swallow tail point of the horospherical surface of γ

corresponds to the point γ(s0) at where the osculating horosphere and γ

have 4-point contact.

On the other hand, we consider the horocycle HS2(v(s0),−1) ∩

〈γ(s0), t(s0),n(s0)〉R at a point s0 ∈ I with κh(s0) ≥ 1. We call it the

osculating horocycle of γ at γ(s0). The assertion (1) of Proposition 4.1,

suggests that two invariants κh(s0) and τh(s0) describe the contact between

curves and horocycle. We do not, however, proceed to study about this

topics here.

5. Unfoldings of functions of one-variable

In this section we use some general results on the singularity theory

for families of function germs. Detailed descriptions are found in the book

[1]. Let F : (R × Rr, (s0, x0)) → R be a function germ. We call F an

r-parameter unfolding of f , where f(s) = F (s, x0). We say that f has an

Ak-singularity at s0 if f
(p)(s0) = 0 for all 1 ≤ p ≤ k, and f (k+1)(s0) 6= 0.

We also say that f has an A≥k-singularity at s0 if f
(p)(s0) = 0 for all

1 ≤ p ≤ k. Let F be an unfolding of f and f(s) has an Ak-singularity

(k ≥ 1) at s0. We denote the (k− 1)-jet of the partial derivative
∂F
∂xi
at s0

by j(k−1)( ∂F
∂xi
(s, x0))(s0) =

∑k−1
j=0 αji(s − s0)

j for i = 1, . . . , r. Then F is

called a versal unfolding if the k×r matrix of coefficients (αji) has rank k

(k ≤ r).
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We now introduce an important set concerning the unfoldings relative

to the above notions. The discriminant set of F is the set

DF =

{
x ∈ Rr | there exists s with F =

∂F

∂s
= 0 at (s, x)

}
.

Then we have the following well-known result (cf., [1]).

Theorem 5.1. Let F : (R × Rr, (s0, x0)) → R be an r-parameter

unfolding of f(s) which has an Ak singularity at s0. Suppose that F is a

versal unfolding.

(1) If k = 2, then DF is locally diffeomorphic to C × Rr−2.

(2) If k = 3, then DF is locally diffeomorphic to SW × Rr−3.

For the proof of Theorem 2.1, we have the following key proposition.

Proposition 5.2. Let H : I×LC∗+ −→ R be the horospherical height

function on a unit speed hyperbolic space curve γ(s). If hv0 has an Ak-

singularity (k = 2, 3) at s0, then H is a versal unfolding of hv0 .

Proof. Let us consider the pseudo orthonormal basis e0 = γ(s0),

e1 = t(s0), e2 = n(s0) and e3 = e(s0) instead of the canonical basis of R4
1.

Then

H(s,v) = −v0x0(s) + v1x1(s) + v2x2(s) + v3x3(s) + 1,

where vi and xi(s) denote respectively the coordinates of v and γ(s) with

respect to this basis. Since γ(s0) = e0, γ
′(s0) = e1, γ

′′(s0) = κh(s0)e2+e0

and

v0 = e0 +
1

κh(s0)
e2 ±

(√
κh(s0)2 − 1

κh(s0)

)
e3,

we have the matrix

A =




0 − 1
κh(s0) ∓

√
κh(s0)2 − 1

κh(s0)
1 0 0

0 κh(s0)2−1
κh(s0) ∓

√
κh(s0)2 − 1

κh(s0)



.
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We give the proof for k = 3 at first. The determinant of A is∓
√
κ2
h(s0)− 1.

If κh(s0) = 1, then κ
′
h(s0) = 0 because σh(s0) = 0. In this case, however,

we have σ′h(s0) = 0. This contradicts to the assumption that hv0 has the

A3-type singularity at s = s0. Therefore, H is a versal unfolding of hv0 at

s = s0.

We now give the proof for the case k = 2. In this case we expect to

show that the first and second column of A is non-singular. This fact is

trivial. This completes the proof. ¤

Proof of Theorem 2.1. The assertion (1) follows from the direct

calculation and the Frenet–Serret type formula for hyperbolic space curves.

By Proposition 3.1, the discriminant set DH of the horospherical height

function H of γ is the image of the horospherical surface of γ. It also

follows from the assertions (4) and (5) that hv0 has the A2-type singularity

(respectively, the A3-type singularity) at s = s0 if and only if cos θ0 =

1/κh(s0) and σh(s0) 6= 0 (respectively, cos θ0 = 1/κh(s0), σh(s0) = 0 and

σ′h(s0) 6= 0). By Theorem 5.1 and Proposition 5.2, we have the assertions

(2) and (3). ¤

6. Generic properties

In this section we consider generic properties of curves in H3
+(−1).

The main tool is a kind of transversality theorems. Let Emb(I,H3
+(−1))

be the space of proper embeddings γ : I −→ H3
+(−1) with Whitney C

∞-

topology. We also consider the function H : H3
+(−1)× LC∗+ −→ R which

is given by H(u,v) = 〈u,v〉 + 1. We claim that Hu is a submersion for

any u ∈ LC∗+, where Hu(v) = H(u,v). For any γ ∈ Emb(I,H
3
+(−1)), we

have H = H ◦ (γ × idLC∗

+
). We also have the `-jet extension

j`1H : I × LC∗+ −→ J `(I,R)

defined by j`1H(s,v) = j`hv(s). We consider the trivialisation J
`(I,R) ≡

I × R × J `(1, 1). For any submanifold Q ⊂ J `(1, 1), we denote that Q̃ =

I × {0} × Q. Then we have the following proposition as a corollary of

Lemma 6 in Wassermann [5]. (See also Montaldi [4].)
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Proposition 6.1. Let Q be a submanifold of J `(1, 1). Then the set

TQ = {γ ∈ Emb(I,H
3
+(−1)) | j

`
1H is transversal to Q̃}

is a residual subset of Emb(I,H3
+(−1)). If Q is a closed subset, then TQ

is open.

Let f : (R, 0)−→ (R, 0) be a function germ which has an Ak-singularity

at 0. It is well-known that there exists a diffeomorphism germ φ : (R, 0)−→

(R, 0) such that f ◦ φ(s) = ±sk+1. This is the classification of Ak-

singularities. For any z = j`f(0) ∈ J `(1, 1), we have the orbit L`(z)

given by the action of the Lie group of `-jets of diffeomorphism germs. If

f has an Ak-singularity, then the codimension of the orbit is k. There is

another characterisation of versal unfoldings as follows:

Proposition 6.2. Let F : (R × Rr, 0) −→ (R, 0) be an r-parameter

unfolding of f : (R, 0) −→ (R, 0) which has an Ak-singularity at 0. Then F

is a versal unfolding if and only if j`1F is transversal to the orbit ˜L`(j`f(0))

for ` ≥ k + 1.

Here, j`1F : (R × Rr, 0) −→ J `(R,R) is the `-jet extension of F given

by j`1F (s, x) = j`Fx(s).

We can prove Theorem 2.2 as a corollary of Proposition 6.1 as follows:

Proof of Theorem 2.2. For ` ≥ 4, we consider the decomposition

of the jet space J `(1, 1) into L`(1) orbits. We now define a semi-algebraic

set by

Σ` = {z = j`f(0) ∈ J `(1, 1) | f has an A≥4-singularity}.

Then the codimension of Σ` is 4. Therefore, the codimension of Σ̃0 =

I × {0} × Σ` is 5. We have the orbit decomposition of J `(1, 1)− Σ` into

J `(1, 1)− Σ` = L`0 ∪ L
`
1 ∪ L

`
2 ∪ L

`
3,

where L`k is the orbit through an Ak-singularity. Thus, the codimension

of L̃`k is k + 1. We consider the `-jet extension j
`
1H of the horospherical

height function H. By Proposition 6.1, there exists an open and dense

subset O ⊂ Emb(I,H3
+(−1)) such that j

`
1H is transversal to L̃`k (k =
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0, 1, 2, 3) and the orbit decomposition of Σ̃`. This means that j`1H(I ×

LC∗+) ∩ Σ̃
` = ∅ and H is a versal unfolding of h at any point (s0, v0).

By Theorem 5.1, the discriminant set of H (i.e., the horospherical surface

of γ) is locally diffeomorphic to the cuspidal edge or the swallow tail if the

point is singular. ¤
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