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On the exponent of the group of normalized
units of a modular group algebras

By A. BOVDI (Debrecen) and P. LAKATOS (Debrecen)
Dedicated to Professor Lajos Tamdssy on his 70th birthday

Let G be a finite p-group and K a finite field of characteristic p.
The group of units of KG is denoted by U(KG). It is easy to show that
U(KG) =U(K) x V(KG) where

VIKG) =4 ay9€ KG| Y ag=1a,€K
geG geqG

is the group of normalized units. V(KG) is a p-group and |V(KG)| =
= p"UGI=1) where | K| = p”. Clearly V(K@) is a normal Sylow p-subgroup
in U(KG).

In general the problem of determining the exponent of V(K G) is open,
the first partical result was obtained by Z. PATAY [4] and A. SHALEV [5].

It is an interesting and important problem.
Since G is embedded in V(K G), we obviously have

exp(V(KG)) > exp(G),

but usually the exponent of V(K G) is much larger. Indeed, by the result
of COLEMAN and PAsSMAN [4] if G is non-abelian and p # 2 then the
wreath product CpwrC), is involved in V(KG), and we get

exp(V(KG)) > p*.

Moreover, it turns out that for every p # 2 there exists a sequence
{Gm}m>1 of finite groups of exponent p, such that exp(V(KG,,)) — o0
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[5]. For example, we may choose G, as the free nilpotent group of class
2 and exponent p on m generators. This is a consequence of the the-
orem of PASSMAN [2] on polynomial identities in group rings of charac-
teristic p. Therefore one cannot expect general inequalities of the form
exp(V(KG)) < f(exp(Q@)) for a fixed function f : N — N. On the other
hand, exp(V (K G)) can be small for arbitrary large G. Thus, for example,
if G is abelian, then exp(V(KG)) = exp(G). ANER SHALEV [5] proved
that if p > 7 and exp(G)® > |G| , then G and V(KG) have the same
exponent. Our main problem is identify situations when exp(V(KGQG)) is
finite and close to exp(G).

If 1+ A(KG) = V(KG) and V(KG) has a finite exponent then by
Zelmanov’s theorem and by theorem 2.12 [1] G is a locally finite p-group
and K is a field of characteristic p.

We proved the following results:

Theorem 1. Let G be a locally finite p-group. Then V(K G) has finite
exponent if and only if G has finite exponent and there exists a normal
subgroup L of finite index in G such that the commutator subgroup of L
is finite.

PROOF. Let p™ be the exponent of V(KG). Clearly V(KG) = 1+
A(KG) and for every z € KG there exists such a € K that a + z €
V(KG). Then the Lie product ((a 4 x)P",%) coincides with (zP",%) and
KG satisfies the polinomial identity (zP",y) = 0 , where y € KG. By
Passman’s theorem [2] we know the structure of the group G.

Now suppose that G has a normal subgroup L such that |G/L| = p™
and the commutator subgroup L’ has order p'. Let I(L’) be an ideal of
KG generated by the elements g — 1 (g € L'). It is well-known that I (L")
nilpotent and

V(KG)/(I(L')+1) 2V (K(G/L")).

Since 1+ I(L’) is a subgroup of finite exponent without loss of generality
we can assume that L is abelian. Let gq,... , gpym be representatives of the
distinct cosets of G modules L. If x € V(KG), then there exist elements
z; in KL such that

r =191+ X292+ -+ XTpmGpm.
Every element x; has finite G-orbit and the order of each orbit is less than

. . k
|G : L|. If x; = deL agg and x(z;) = deL ay, then (z; — x(z;))? =0
where p* is the exponent of L. Since

r=14(x1—x(x1))g1 + -+ (@pm — x(@pm ) gpm,

k+m

we have that xP = 1 which proves the theorem.
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Lemma 1. Let G be such group that
(1) [apnvb] = [a, b]pncpn
for all a,b € G, where c is in the commutator group of the group generated

by a and b. If w € I(G')P""" and z; € {w,g?" (g € G)} then the Lie
product

(2) (2122 -+ g, Tpy1 -+ - xp) € T(GP" .

ProOOF. The following identities hold in KG
(3) (v, w) = (, 0)v + u(v, W),

where u,v,w € KG. If x; = w for all ¢+ than the statment of lemma is
trivial.

Suppose that the first z; = g?" and xzj_1 =+ = a1 = w. Applying
(3), we conclude that

n

(:171"'.73j_1gp Tk, Tk 1"'.’1/’pn) = (w] ,.I'k+1"-.73pn)gp Z; 1 T+
+w’ (gp Tjp1 Thy Tht+1 " -xpn) =
= (W, Tpgr - -xp)gp Tjy1- T +w’ (¢* ,Tkg1-- '{L’pn>$j+1 TRt

R
+w! TGP (T Tk g1 Tpn ) -

Let
Tjg1 " Tpn = Z aph.
heG
Then
(6" whsr ) = Y an(g” h—hg"") =
heG
= ang” h(1—[g"" ) = ang” h(1—[g,hP" ") € I(G')" .
heG

Ifaxpy=w(k=j5+1,---,p"), then the proof is complete; otherwise the
argument may be repeated until we see that all relevant commutator are

in I(G")P".

Theorem 2. Let G be a finite p-group with cyclic commutator sub-
group G'. If exp(G) = exp(G’) then exp(V(KG)) = p - exp(G), and if
exp(G) # exp(G’) then exp(V(KG)) = exp(G).

PROOF. Let G’ = (c) be the cyclic commutator subgroup of order p™.
The lower central series of G will be denoted by

G = ’yl(G) > ’}/Q(G) > 2 ’VS(G)'
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It is well-known the following Hall’s collection formula [6]

(4) a0 = (a0 mod(v2(G)P" T ] ()"

1<r<n

where H is the subgroup generated by elements a, [a, b]. Because v2(G)=(c)
and G is nilpotent this formula implies that

(5) (" b = [a, b7
for all a,b € G and k depends on a,b. Let

r=>) ay9€cV(KG)
geqG

and L(KG) = [KG, KG] is the K-modul generated by Lie product (u,v)
for any u,v € KG. Then by Proposition 3.1 [1]

al = Zoz ¢ +w (weL(KQ)).
geG

It is clear that L(KG) is contained in ideal I(G’) of KG generated by
allg—1 (g€ G").
Let us prove by induction of on the order p™ of commutator subgroup
of G that
—1

(6) =) ol g" (mod I(G')P" )
geG

In the case n = 1 it is true by (4). Let H be a subgroup of order p
of G' and I(H) is an ideal of KG generated by h — 1 (h € H). Then
KG/I(H) 2 KG/H, the commutator subgroup of G/H has order p"~1!

and I(H) C I(G’ )pnfl. Applying the induction hypothesis, we deduce

" I(H) =Y o "+ I(H) (mod I(G)" /I(H)).

geG

Because there exists element y € I(G')P"~ such that
— n—1 n—1
=2 a9 v
geG
then

P = Zagngp +yP + ZUlUQ T Up, U € {gp%l,y},

geqG
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where the sum is taken over all such products ujus - - - up, that not all u;

equal to ¢?" or y, and the sum contains the cyclic permutation of each
word ujug - - - u, . Because KG has characteristic p and

UiUj41 - UpUI UL~ - Uj—1 — ULU2 * - Up = (Uiui+1 T Up, UL U - - 'Ui71)7
then ) wujug - --u, may be represent as Lie product
U= (Wi Wiy * Uiy Wiy """ Uiy )

Let for some Lemma 1 we conclude that v € I(G’)P". Therefore (6) is true
and this we can use in determination of the exponent of V(KG).
Obviously, the element gP" is in the centre for all ¢ € G and I(G)P" =0.
If exp(G) > p™ then it follows from (3) that exp(G) = exp(V(KG)).
Assume that exp(G) = exp(G’) = p™. By virtue of (6) exp(V(KG)) <
< p"*1. There exist such a,b € G that ¢ = [a,b] and ¢ has order p".
We now claim the element z =1+ b~!(a — 1) has order p"*!.
Suppose that zP" = 1. Then b—%ab’® = ac® and [b~'(a — 1)]?" =0
from which it follows that
(ac —1)(ac®* —1)---(acf»"-* —1)(a —1) = 0.
By proposition 2.7 [1]
(7) (ac—1)(ac*? 1) (ac®" 1 =1) = (1+a+---+a’ Yz (z € K{c)).

It easily verified from (5) that (c) ()(a) = 1 since (c) is a normal subgroup
of (¢,a) and comparising coefficients of @ and 1 in (7) we get

c=z —1=z,

which is impossible. Therefore we conclude exp(V(KG)) = p™*1.

Theorem 3. Let G be a finite p-group of nilpotency class two or G
is a finite p-regular group. Let t(G’) denotes the nilpotency class of the
augmentation ideal A(KG') and k is the least integer such that t(G") < p*.
Then

1. if p* < exp(G) , then exp(V(KG)) = exp(G);

2. if p* > exp(G), then exp(V(KG)) < pF+l.

PrOOF. If G has the nilpotency class two then (1) is valid and the
conditions the Lemma 1 is satisfied.
Immediate consequence of the definition of p-regular group we become
E R L
where ¢ is in the commutator subgroup. Then the argument of proof of
the theorem 2 may be repeated and we get the statement of this theorem.
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Theorem 4. Let C be the center of a 2-group G which contains an
abelian subgroup A of index two and K be a field of two elements. Then

1. ifexp(A/C) < exp(A) then exp(V(KG)) = exp(G),
2. ifexp(A/C) = exp(A) = exp(G) then exp(V(KG)) =2 - exp(G),
3. if exp(A/C) = exp(A) < exp(G) then exp(V(KG)) = exp(G).

PROOF. Clearly there exists such b € G that G = (A,b) and b? € A.

Then every element = of V(K G) has a unique representation in the form
r = x1 + x2b, where x1,2x5 € KA. It is easy to see that the map defined
by u — % = b~ tub (u € KA) is an involution on KG and

2 = 1‘% + l‘zfng + 1’2(£E1 + fl)b

The reader can readily verify by induction that

2n n

n—1
n—1 n i—1 n 2 2
(8) =z = $% + (.’L’QQL‘_Q)z b2+ Z($2f2)2 (x1 + SIZ'_1)2 27 4
=1

+ 1‘2(.%'1 + f1)2n_1b.

Let exp(A) = 2™, exp(At/C) =2'and r; = ZaeAt
> wea Gala+a) and (a+a)®> =0, because (z1 +#1)* =0 and

aga. Then v1+21=

ot t4+1
(z2#2)? = 3

Suppose that ¢ < m. It is clear that 2™ — 2! > 2™~ for every
i <m — 1. By (8) we have
2" = x(@1)*" + x(22) 0,
where x(21) = >, 4 @a- Suppose that ¢t = m. Then

om m m—1

27 = x(@1)”" 4 (z2a2)”" B

and we conclude

9) 22" = x(20)?" 4 x(22)

Because x € V(K G) we have x(z1) + x(z2) = 1. If exp(A4) < exp(V), then
(9) implies that exp(V(KG)) = exp(G).

Assume that exp(A/C) = exp(A) = exp(G). Clearly there exist cyclic
subgroups (a1), (az) of order 2™ in A such that (ba;b=1) N (as) = 1. Then
one immediately verifies that © = 1 4 (a1 + a2)b has order 2m+1 Thus
exp(V(KG)) = 2exp(G), which proves the theorem.

2m+1 b2m+1
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