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A note on the Ramanujan–Nagell equation

By E. HERRMANN (Saarbrücken), F. LUCA (Morelia)
and P. G. WALSH (Ottawa)

Abstract. In the present paper we determine all positive integer solutions
to the equation x2+7y4 = k, where k is a positive integer divisible only by primes
less than 12.

1. Introduction

It is an amusing fact, noticed by Ramanujan, that the sequence 2n−7
takes on square values for n = 3, 4, 5, 7 and again for n = 15. In 1960,
Nagell [13] published a proof that the only solutions in positive integers
(n, x) to the equation

x2 + 7 = 2n (1.1)

are (n, x) = (3, 1), (4, 3), (5, 5), (7, 11), (15, 181), thereby completely solving
the problem posed by Ramanujan. Since then, a vast literature on these
types of diophantine problems has been generated. Numerous different
proofs of Nagell’s theorem have appeared, such as Hasse’s simple proof
which is presented in Mordell’s book [12]. Many generalizations of the
original problem have been posed and solved, such as the work by Beukers

[2], [3] on the equation x2 + D = pn, and recent improvements by Bauer

and Bennett [1]. A more general form of this problem is a diophantine
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equation of the type
f(x) = pn1

1 pn2
2 · · · pnr

r ,

where f(x) is a polynomial with integer coefficients and at least two simple
zeros, p1, p2, . . . , pr are rational primes, and n1, n2, . . . , nr are non-negative
integers. For a survey of the history of this topic, we refer the reader to
the paper of Cohen [5], and to the above mentioned paper of Bauer and
Bennett.

On a different matter, there have been many papers written on the
topic of determining squares in linear recurrence sequences. In particular,
Ljunggren (for example see [6]–[10]) proved many results on the solv-
ability of diophantine equations of the form

ax4 − by2 = c, (1.2)

with c ∈ {±1,±4}. For a survey of Ljunggren’s work, and more recent
developments, we refer the reader to [19].

Let (n, x) be a solution to equation (1.1). Using the fact that the ring
of integers of the field Q(

√−7 ) is a unique factorization domain, with no
nontrivial units, it follows that

x±√−7
2

= ±
(

1 +
√−7
2

)n−2

.

For n ≥ 0, define sequences {Tn} and {Un} by the relation

Tn + Un

√−7
2

=
(

1 +
√−7
2

)n

.

Nagell’s theorem is the determination of those values of n for which |Un|=1.
It is natural to ask if there are any squares in the sequence {|Un|}. In other
words, determine the integer solutions (n, x, y) to the diophantine equation

x2 + 7y4 = 2n. (1.3)

This generalization of the Ramanujan–Nagell equation (equation (1.1))
has not been considered, at least to the knowledge of the present authors.
Moreover, this type of problem is a natural complex analogue to those
problems considered by Ljunggren in equation (1.2).
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In [14], the authors use methods from Diophantine approximation
and lattice basis reduction to generalize Nagell’s theorem. In particular,
they determine all integer solutions (x, k) to the more general equation
x2 +7 = k, where x is an integer, and k is an integer divisible only by
primes less than 20. In consideration of this, and (1.3), the purpose of the
present paper is to determine all positive integer solutions to the equation

x2 + 7y4 = k, (1.4)

where k is a positive integer divisible only by primes less than 12. With
more computation, one can increase the bound of 12.

Remark 1. Already from the result of K. Mahler [11] it follows that
(1.3) and (1.4) have only finitely many solutions in rational integers. Later,
S. V. Kotov [16] proved an effective version of Mahler’s result. But
neither (1.3) nor (1.4) were solved completely so far.

Definition. 1. If (x, y, k) and (X, Y,K) are solutions to (1.4), we say
that (X,Y, K) is a multiple of the solution (x, y, k) if either

i. (X,Y, K) = (d2x, dy, d4k) for some positive integer d divisible only
by primes less than 12, or

ii. (X,Y,K) = (7d2y2m, dmu, 7d4m2k), where x = mu2 for integers
m,u with m squarefree, and both d and m divisible only by primes less
than 12.

2. A solution (x, y, k) to (1.4) is minimal if
i. whenever a prime p divides gcd(x, k), then p4 does not divides k,

and
ii. whenever 7 divides gcd(x, k), then the numerator of the reduced

form of x/(7y) is not the square of an integer.

If a solution (x, y, k) of (1.4) fails to satisfy condition (i), then it is
easy to see that it is a multiple of a smaller solution. If (x, y, k) satisfies
condition (i) but fails to satisfy condition (ii), then it is a multiple of the
smaller solution (7y2/g,

√
x/g, 7k/g2), where g = gcd(x, 7y). Therefore,

we will restrict our attention to the problem of determining all minimal
solutions to equation (1.4).
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x y k x y k

1 1 23 147 3 25 · 32 · 7 · 11

2 1 11 170 5 52 · 113

3 1 24 181 1 215

3 2 112 205 3 25 · 113

3 3 26 · 32 235 15 214 · 52

5 1 25 273 1 23 · 7 · 113

5 5 24 · 52 · 11 285 15 24 · 33 · 53 · 112

9 1 24 · 11 435 5 26 · 52 · 112

11 1 27 525 53 216 · 7 · 112

13 1 24 · 11 595 5 211 · 52 · 7
15 3 23 · 32 · 7 618 12 22 · 32 · 114

21 1 26 · 7 627 11 212 · 112

29 3 27 · 11 931 3 210 · 7 · 112

31 1 23 · 112 987 35 24 · 72 · 114

35 1 24 · 7 · 11 1365 15 27 · 32 · 52 · 7 · 11

35 3 28 · 7 1645 5 27 · 52 · 7 · 112

37 3 24 · 112 2099 21 219 · 11

45 5 28 · 52 2373 9 213 · 32 · 7 · 11

49 5 23 · 7 · 112 2405 25 28 · 52 · 113

51 3 25 · 32 · 11 3507 21 28 · 32 · 72 · 112

53 1 28 · 11 6195 21 213 · 32 · 72 · 11

67 7 24 · 113 6195 45 25 · 32 · 52 · 7 · 113

69 9 29 · 32 · 11 6685 35 212 · 52 · 72 · 11

75 1 29 · 11 6853 55 217 · 7 · 112

83 5 210 · 11 6965 65 213 · 52 · 7 · 112

91 7 29 · 72 8427 15 216 · 32 · 112

91 9 26 · 7 · 112 9461 95 28 · 115

93 3 210 · 32 16653 51 25 · 32 · 7 · 115

105 5 23 · 52 · 7 · 11 21399 63 23 · 32 · 72 · 115

115 5 26 · 52 · 11 2865765 345 215 · 32 · 52 · 7 · 115

133 7 26 · 72 · 11 11776659 795 230 · 32 · 114

Table 1
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Theorem 1. All minimal positive integer solutions (x, y, k) to equa-

tion (1.4), with k is divisible only by primes less than 12, are given in

Table 1.

2. An approach via integer points on elliptic curves

Suppose that (x, y, k) is a minimal solution to equation (1.4). Then
d = gcd(x, y) is a squarefree positive integer, and either k is divisible
only by 2, 7, 11, or such an integer times one of 9, 25 or 225, depending
on whether 3, 5 or 15 divides d respectively. Let k = k1z

4, where k1 is
4th-power free. Then (x, y, z) satisfies

x2 + 7y4 = k1z
4.

Let x = ud and y = vd, then d2 divides k1, and upon putting k2 = k1/d2,
we see that (u, v, k2) satisfy

u2 + 7d2v4 = k2z
4,

and so (X, Y ) = (u/z2, v/z) is a {2, 7, 11,∞}-integral point on the elliptic
curve

Ed,k2 : Y 2 = −7d2X4 + k2. (2.1)

It is easy to verify that gcd(d, k2) = 1, therefore solving (1.4) reduces
to finding all S-integral points on all curves of the form in (2.1), where
S = {2, 7, 11,∞}, d runs over all positive squarefree integers divisible only
by primes less than 12, and k2 runs over all 4th-power free integers divisible
only by primes less than 12, and coprime to d. Furthermore, it is easy to
see that we can restrict to those values of k2 for which ord7 k2 ∈ {0, 1},
and divisible only by 2, 7 and 11. There are a total of 300 such curves.

Pethő, Zimmer, Gebel and Herrmann [15] have recently described
an algorithm1 based on estimates for linear forms in elliptic logarithms,
together with lattice basis reduction techniques, to determine all S-integer
points on elliptic curves. Using these methods, we obtain the following
result, from which Theorem 1 is an immediate consequence.

1This algorithm was implemented by the first author of the present paper and is part
of the computer algebra system Magma [4].
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Remark 2. There is a simple (non-birational) connection between equa-
tion (1.4) and an elliptic curve in canonical form. Assuming y 6= 0 we may
multiply (1.4) by (7y)2 and set X = −7y2 and Y = 7xy. This gives the
curve Y 2 = X3−7kX. In the next section we shall present an algorithm to
compute all S-integral points on an elliptic curve in canonical form which
may be used to compute all S-integral solutions of equation (1.4).

3. Computing S-integral points on an elliptic curve

Let S denote a finite set of rational primes which includes the prime
at infinity, and put s = |S|. To avoid technical difficulties, we assume that
the elliptic curve is given by the short Weierstrass model

E ′ : y2 = x3 + Ax + B, (A, B ∈ Z), (3.1)

which is minimal for every prime in S. For the general case, we refer to
the paper [15].

To apply the algorithm, it is necessary to assume that we can compute
the Mordell–Weil group

E(Q) = 〈P1〉 × · · · × 〈Pr〉 × Etors(Q),

where Etors(Q) denotes the torsion group of finite order, say g. Let ĥ denote
the Néron–Tate height on E(Q), and let λ denote the smallest eigenvalue
of the positive definite regulator matrix (ĥ(Pi, Pj))1≤i, j≤r.

Let ℘(u) be the Weierstrass ℘-function corresponding to the curve
E(C). Let Ω = 〈ω1, ω2〉 be its fundamental lattice, and ω1 its real period.
There exists, for any P = (x, y) ∈ E(C), an element u ∈ C/Ω, such that
(x, y) = (℘(u), 1

2℘′(u)). This is called the (complex) elliptic logarithm of P .
In the sequel, ui,∞ denotes the elliptic logarithm of Pi for i = 1, . . . r. We
put u′i,∞ = g

ui,∞
ω1

.
For a prime q ∈ S, let E0(Qq) denote the points of E(Qq) with non-

singular reduction modulo q. Then, by the assumption that equation (3.1)
is minimal at q, the index [E(Qq) : E0(Qq)] is finite, and equal to the
Tamagawa number cq. Let Ẽ denote the reduced curve E modulo q, and
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let Nq = #Ẽ(Fq) be the number of rational points of Ẽ/Fq. With g being
the order of the torsion group, we define the number

m = mq = lcm (lcm (2, g), cq · Nq).

Finally, for the finite places q ∈ S, let q′i,q denote the q-adic elliptic log-
arithm of mPi for i = 1, . . . , r. For the definition and basic properties of
q-adic elliptic logarithms, we refer the reader to [17], and to [15].

Denote by P an S-integral point on E . P can be expressed in the form

P =
r∑

i=1

niPi + T (3.2)

for a suitable torsion point T . Using the main result from [15], we get an
upper bound N for |ni|, and we know that there is a prime q ∈ S for which
the inequality

∣∣∣
r∑

i=1

niu
′
i,q + nr+1

∣∣∣
q
≤ c5 exp{−(λ/s)N2 + c2/s},

holds. Here, c2, c5 and N are explicit constants which can be found in [15].
The last inequality defines a diophantine approximation problem which
can be solved by using LLL-reduction, as described in [18]. The reduction
technique is applied several times until the value of N cannot be reduced
any further. With a small enough value for N , one checks all linear combi-
nations in (3.2), with |ni| ≤ N , thereby producing all S-integral solutions
on the elliptic curve.

To demonstrate the method, we consider the quartic elliptic equation

Q : y2 = −7x4 + 11,

with S = {2, 7, 11,∞}. In order to obtain an elliptic curve in Weierstrass
form, we multiply by 49x2 and set

X = −7x2 and Y = 7xy.

This leads to the curve

E : Y 2 = X3 − 77X.
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Since every S-integral point on Q will be S-integral on E , we may apply
the method described above. We note that the transformation between Q
and E is not an isomorphism between the curves.

Using the program mwrank [20], we obtain that the rank of the curve
is 2, and the two generators of the free part of the abelian group are

P1 = (−7, 14), P2 = (9, 6).

The generator of the torsion subgroup is T = (0, 0), which is of order 2.
It is easy to check that E is minimal for every finite prime p ∈ S, hence
we can use the estimates for the value N from [15]. In so doing, we find
that N = 1.64 · 10123. We now construct linear forms in complex and p-
adic elliptic logarithms following the description in [15]. Applying several
times an LLL-reduction procedure to these linear forms leads eventually
to the smaller value N = 5. Finally, computing all linear combinations
n1P1 + n2P2 + n3T for n1 = 0, . . . , 5, |n2| ≤ 5 and n3 = 0, 1, we get the
points (X, |Y |) ∈ E(ZS):

(0, 0), (9, 6), (176, 2332), (−7, 14), (44,−286), (11, 22), (−7/4, 91/8),

(−7/16, 371/64), (81/4, 657/8), (−63175/7744, 6291565/681472).

Mapping these points back to Q shows that the only S-integral solutions
of Q are the tuples (|x|, |y|) given by

(1, 2), (1/2, 13/4), (1/4, 53/16), (95/88, 9461/7744).
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