A note on spheres in a Euclidean space

By SHAREIF DESHMUKH (Riyadh)

Abstract

For an orientable compact and connected positively curved hypersurface in the Euclidean space $R^{n+1}, n \geq 2$, with scalar curvature S, shape operator A and mean curvature α, it is shown that the inequality $$
\|A\|^{2} S \geq \frac{1}{2}\|R\|^{2}+\|Q\|^{2}+2 n(n-1)\|\nabla \alpha\|^{2}
$$ implies that the hypersurface is a sphere, where $\nabla \alpha$ is the gradient of α, and $\|R\|$, $\|Q\|$ are the lengths of the curvature tensor field R, the Ricci operator Q of the hypersurface respectively.

1. Introduction

The class of positively curved compact hypersurfaces in the Euclidean space R^{n+1} is quite large and therefore it is an interesting question in Geometry to obtain conditions which characterize the spheres in this class. We denote by R and Ric the curvature tensor field and the Ricci curvature tensor field of the hypersurface M of the Euclidean space R^{n+1}. The Ricci operator Q is defined as $\operatorname{Ric}(X, Y)=g(Q X, Y), X, Y \in \mathfrak{X}(M)$, where g is the induced metric and $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M. For a local orthonormal frame $\left\{e_{1}, ., e_{n}\right\}$ on M the lengths $\|R\|$ and $\|Q\|$ are respectively given by $\|R\|^{2}=\sum_{i j k}\left\|R\left(e_{i}, e_{j}\right) e_{k}\right\|^{2}$,

Mathematics Subject Classification: 53C40.
Key words and phrases: orientable, positively curved hypersurface, shape operator, mean curvature.
$\|Q\|^{2}=\sum_{i j} g\left(Q e_{i}, e_{j}\right)^{2}$. Let A be the shape operator of the hypersurface, α its mean curvature and S be its scalar curvature. An interesting question in Geometry is using the invariants $\alpha, S,\|A\|,\|R\|,\|Q\|$ of the hypersurface, how to characterize the spheres in R^{n+1} ? For instance, a sphere $S^{n}(c)$ in R^{n+1}, satisfies the equality

$$
\|A\|^{2} S=\frac{1}{2}\|R\|^{2}+\|Q\|^{2}+2 n(n-1)\|\nabla \alpha\|^{2}
$$

$\nabla \alpha$ being the gradient of the mean curvature α. This raises a question, does a compact hypersurface satisfying above equality necessarily a sphere? In this paper we show that the answer is in affirmative for positively curved hypersurfaces, and indeed we prove the following:

Theorem. Let M be an orientable compact and connected positively curved hypersurface of the Euclidean space $R^{n+1}, n \geq 2$. If the scalar curvature S, the shape operator A, the mean curvature α, the curvature tensor field R and the Ricci operator Q of M satisfy

$$
\|A\|^{2} S \geq \frac{1}{2}\|R\|^{2}+\|Q\|^{2}+2 n(n-1)\|\nabla \alpha\|^{2},
$$

then α is a constant and $M=S^{n}\left(\alpha^{2}\right)$.

2. Preliminaries

Let M be an orientable hypersurface of the Euclidean space R^{n+1}. We denote the induced metric on M by g. Let $\bar{\nabla}$ be the Euclidean connection and ∇ be the Riemannian connection on M with respect to the induced metric g. Let N be the unit normal vector field and A be the shape operator. Then the Gauss and Weingarten formulas for the hypersurface are

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+g(A X, Y) N, \quad \bar{\nabla}_{X} N=-A X, \quad X, Y \in \mathfrak{X}(M) \tag{2.1}
\end{equation*}
$$

where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M. We also have the following Gauss and Codazzi equations

$$
\begin{equation*}
R(X, Y) Z=g(A Y, Z) A X-g(A X, Z) A Y \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
(\nabla A)(X, Y)=(\nabla A)(Y, X), \quad X, Y, Z \in \mathfrak{X}(M) \tag{2.3}
\end{equation*}
$$

where R is the curvature tensor field of the hypersurface and $(\nabla A)(X, Y)=$ $\nabla_{X} A Y-A \nabla_{X} Y$. The mean curvature α of the hypersurface is given by $n \alpha=\sum_{i} g\left(A e_{i}, e_{i}\right)$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M. If $A=\lambda I$ holds for a constant λ, then the hypersurface is said to be totally umbilical. The square of the length of the shape operator A is given by

$$
\|A\|^{2}=\sum_{i j} g\left(A e_{i}, e_{j}\right)^{2}=\operatorname{tr} \cdot A^{2}
$$

From equation (2.2) we get the following expression for the Ricci tensor field

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=\operatorname{n\alpha g}(A X, Y)-g(A X, A Y) \tag{2.4}
\end{equation*}
$$

The scalar curvature S of the hypersurface is given by

$$
\begin{equation*}
S=n^{2} \alpha^{2}-\|A\|^{2} . \tag{2.5}
\end{equation*}
$$

The Ricci operator Q is the symmetric operator $Q: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ defined by $\operatorname{Ric}(X, Y)=g(Q X, Y), X, Y \in \mathfrak{X}(M)$. Then from equation (2.4) we get

$$
\begin{equation*}
Q=n \alpha A-A^{2} . \tag{2.6}
\end{equation*}
$$

3. Some lemmas

Let M be a hypersurface of R^{n+1} and $\nabla \alpha$ be the gradient of the mean curvature function α. Then we have

Lemma 3.1. Let M be an orientable hypersurface of R^{n+1} and $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal frame on the hypersurface M. Then

$$
\sum_{i}(\nabla A)\left(e_{i}, e_{i}\right)=n \nabla \alpha .
$$

The proof is straightforward and follows from the symmetry of A and the equation (2.3).

Lemma 3.2. Let M be an orientable hypersurface of R^{n+1}. Then the length $\|R\|$ of the curvature tensor field of the hypersurface M is given by

$$
\frac{1}{2}\|R\|^{2}=\|A\|^{4}-\left\|A^{2}\right\|^{2}
$$

The proof follows immediately from equation (2.2).
Lemma 3.3. Let M be an orientable hypersurface of R^{n+1}. Then the length $\|Q\|$ of the Ricci operator Q of the hypersurface M is given by

$$
\|Q\|^{2}=n^{2} \alpha^{2}\|A\|^{2}+\left\|A^{2}\right\|^{2}-2 n \alpha\left(\operatorname{tr} . A^{3}\right)
$$

The proof follows immediately from the equation (2.6).
Lemma 3.4. Let M be an orientable hypersurface of $R^{n+1}, n \geq 2$. Then

$$
\|\nabla A\|^{2} \geq n\|\nabla \alpha\|^{2},
$$

where $\|\nabla A\|^{2}=\sum_{i j}\left\|(\nabla A)\left(e_{i}, e_{j}\right)\right\|^{2}$ for a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ on M, moreover for a positively curved M if the equality holds then M is totally umbilical.

Proof. Define an operator $B: \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ by $B=A-\alpha I$. Then we have

$$
(\nabla B)(X, Y)=(\nabla A)(X, Y)-(X \alpha) Y,
$$

which gives

$$
\begin{aligned}
\|\nabla B\|^{2} & =\|\nabla A\|^{2}+n\|\nabla \alpha\|^{2}-2 \sum_{i j} g\left((\nabla A)\left(e_{i}, e_{j}\right), e_{j}\right) g\left(\nabla \alpha, e_{i}\right) \\
& =\|\nabla A\|^{2}+n\|\nabla \alpha\|^{2}-2 \sum_{j} g\left(\nabla \alpha,(\nabla A)\left(e_{j}, e_{j}\right)\right) \\
& =\|\nabla A\|^{2}-n\|\nabla \alpha\|^{2} .
\end{aligned}
$$

This proves that $\|\nabla A\|^{2} \geq n\|\nabla \alpha\|^{2}$. The equality holds if and only if $\nabla B=0$. If M is positively curved, then in this case we shall have $B=\lambda I$ for some constant λ (as M is irreducible being positively curved). However $B=A-\alpha I$ gives that tr. $B=0$. Hence $\lambda=0$ and consequently $B=0$ that is $A=\alpha I$ and thus M is totally umbilical ($\alpha=$ a constant, follows from equation (2.3) and $\operatorname{dim} M \geq 2$).

Lemma 3.5. Let M be an orientable compact hypersurface of the Euclidean space R^{n+1}. Then

$$
\int_{M}\left(\sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), A e_{i}\right)\right) d V=-n \int_{M}\|\nabla \alpha\|^{2} d V
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a local orthonormal frame on M.
Proof. Choosing a point wise covariant constant local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ on M, we compute

$$
\begin{aligned}
\operatorname{div}(A(\nabla \alpha)) & =\sum_{i} e_{i} g\left(\nabla \alpha, A e_{i}\right) \\
& =\sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), A e_{i}\right)+\sum_{i} g\left(\nabla \alpha,(\nabla A)\left(e_{i}, e_{i}\right)\right) \\
& =\sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), A e_{i}\right)+n\|\nabla \alpha\|^{2} .
\end{aligned}
$$

Integrating this equation we get the lemma.
We define the second covariant derivative $\left(\nabla^{2} A\right)(X, Y, Z)$ as

$$
\left(\nabla^{2} A\right)(X, Y, Z)=\nabla_{X}(\nabla A)(Y, Z)-A\left(\nabla_{X} Y, Z\right)-A\left(Y, \nabla_{X} Z\right),
$$

then using the Ricci identity we get

$$
\begin{equation*}
\left(\nabla^{2} A\right)(X, Y, Z)-\left(\nabla^{2} A\right)(Y, X, Z)=R(X, Y) A Z-A R(X, Y) Z . \tag{3.1}
\end{equation*}
$$

4. Proof of the theorem

Let M be an orientable compact and connected hypersurface of the Euclidean space R^{n+1}. Define a function $f: M \rightarrow R$ by $f=\frac{1}{2}\|A\|^{2}$. Then by a straightforward computation we get the Laplacian Δf of the smooth function f as

$$
\begin{equation*}
\Delta f=\|\nabla A\|^{2}+\sum_{i j} g\left(\left(\nabla^{2} A\right)\left(e_{j}, e_{j}, e_{i}\right), A e_{i}\right) \tag{4.1}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is local orthonormal frame on M.

Using the equation (2.3), we arrive at

$$
g\left(\left(\nabla^{2} A\right)\left(e_{j}, e_{j}, e_{i}\right), A e_{i}\right)=g\left(\left(\nabla^{2} A\right)\left(e_{j}, e_{i}, e_{j}\right), A e_{i}\right)
$$

Now using the Ricci identity (3.1) in above equation we get

$$
\begin{aligned}
g\left(\left(\nabla^{2} A\right)\left(e_{j}, e_{j}, e_{i}\right), A e_{i}\right)= & g\left(\left(\nabla^{2} A\right)\left(e_{i}, e_{j}, e_{j}\right), A e_{i}\right) \\
& +g\left(R\left(e_{j}, e_{i}\right) A e_{j}, A e_{i}\right)-g\left(R\left(e_{j}, e_{i}\right) e_{j}, A^{2} e_{i}\right) .
\end{aligned}
$$

Thus in light of this equation the equation (4.1) takes the form

$$
\begin{align*}
\Delta f= & \|\nabla A\|^{2}+\sum_{i j} g\left(\left(\nabla^{2} A\right)\left(e_{i}, e_{j}, e_{j}\right), A e_{i}\right) \tag{4.2}\\
& +\sum_{i j}\left[g\left(R\left(e_{j}, e_{i}\right) A e_{j}, A e_{i}\right)-g\left(R\left(e_{j}, e_{i}\right) e_{j}, A^{2} e_{i}\right)\right] .
\end{align*}
$$

Using Lemma 3.1, we get

$$
\begin{equation*}
\sum_{j}\left(\nabla^{2} A\right)\left(e_{i}, e_{j}, e_{j}\right)=n \nabla_{e_{i}}(\nabla \alpha) . \tag{4.3}
\end{equation*}
$$

Now we use equations (2.2) and (2.4) to compute

$$
\begin{aligned}
& \sum_{i j} {\left[g\left(R\left(e_{j}, e_{i}\right) A e_{j}, A e_{i}\right)-g\left(R\left(e_{j}, e_{i}\right) e_{j}, A^{2} e_{i}\right)\right] } \\
& \quad=\left\|A^{2}\right\|^{2}-\|A\|^{4}-\left[\left\|A^{2}\right\|^{2}-n \alpha\left(\operatorname{tr} \cdot A^{3}\right)\right]=n \alpha\left(\operatorname{tr} \cdot A^{3}\right)-\|A\|^{4} .
\end{aligned}
$$

Using this last equation together with (4.3) in (4.2), we arrive at

$$
\Delta f=\|\nabla A\|^{2}+n \sum_{i} g\left(\nabla_{e_{i}}(\nabla \alpha), A e_{i}\right)+n \alpha\left(\operatorname{tr} \cdot A^{3}\right)-\|A\|^{4} .
$$

Integrating this equation and using Lemmas 3.2, 3.3 and 3.5 and equation (2.5) we arrive at

$$
\begin{aligned}
\int_{M}\{ & {\left[\|\nabla A\|^{2}-n\|\nabla \alpha\|^{2}\right]+\frac{1}{2}\|A\|^{2} S } \\
& \left.-\frac{1}{2}\left(\|Q\|^{2}+\frac{1}{2}\|R\|^{2}+2 n(n+1)\|\nabla \alpha\|^{2}\right)\right\} d V=0
\end{aligned}
$$

The condition in the statement of the theorem together with Lemma 3.4 and above equation yields

$$
\|\nabla A\|^{2}=n\|\nabla \alpha\|^{2}
$$

Since M is positively curved, the above equality again in view of Lemma 3.4 gives that M is totally umbilical hypersurface of R^{n+1} and thus the theorem is proved.

References

[^0](Received August 12, 2002; accepted February 19, 2003)

[^0]: [1] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, 1983.
 [2] S. Kobayashi and K. Nomizu, Foundations in Differential Geometry, Wiley-Interscience, New York, 1969.

 SHARIEF DESHMUKH
 DEPARTMENT OF MATHEMATICS
 COLLEGE OF SCIENCE
 KING SAUD UNIVERSITY
 P.O. BOX \# 2455, RIYADH-11451

 SAUDI ARABIA
 E-mail: shariefd@ksu.edu.sa

