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A note on spheres in a Euclidean space

By SHAREIF DESHMUKH (Riyadh)

Abstract. For an orientable compact and connected positively curved hy-
persurface in the Euclidean space Rn+1, n ≥ 2, with scalar curvature S, shape
operator A and mean curvature α, it is shown that the inequality

‖A‖2 S ≥ 1
2
‖R‖2 + ‖Q‖2 + 2n(n− 1) ‖∇α‖2

implies that the hypersurface is a sphere, where ∇α is the gradient of α, and ‖R‖,
‖Q‖ are the lengths of the curvature tensor field R, the Ricci operator Q of the
hypersurface respectively.

1. Introduction

The class of positively curved compact hypersurfaces in the Euclidean
space Rn+1 is quite large and therefore it is an interesting question in Ge-
ometry to obtain conditions which characterize the spheres in this class.
We denote by R and Ric the curvature tensor field and the Ricci cur-
vature tensor field of the hypersurface M of the Euclidean space Rn+1.
The Ricci operator Q is defined as Ric(X, Y ) = g(QX, Y ), X, Y ∈ X(M),
where g is the induced metric and X(M) is the Lie algebra of smooth
vector fields on M . For a local orthonormal frame {e1, ., en} on M the
lengths ‖R‖ and ‖Q‖ are respectively given by ‖R‖2 =

∑
ijk ‖R(ei, ej)ek‖2,
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‖Q‖2 =
∑

ij g(Qei, ej)2. Let A be the shape operator of the hypersurface,
α its mean curvature and S be its scalar curvature. An interesting question
in Geometry is using the invariants α, S, ‖A‖, ‖R‖, ‖Q‖ of the hypersur-
face, how to characterize the spheres in Rn+1? For instance, a sphere Sn(c)
in Rn+1, satisfies the equality

‖A‖2 S =
1
2
‖R‖2 + ‖Q‖2 + 2n(n− 1) ‖∇α‖2

∇α being the gradient of the mean curvature α. This raises a question,
does a compact hypersurface satisfying above equality necessarily a sphere?
In this paper we show that the answer is in affirmative for positively curved
hypersurfaces, and indeed we prove the following:

Theorem. Let M be an orientable compact and connected positively

curved hypersurface of the Euclidean space Rn+1, n ≥ 2. If the scalar

curvature S, the shape operator A, the mean curvature α, the curvature

tensor field R and the Ricci operator Q of M satisfy

‖A‖2 S ≥ 1
2
‖R‖2 + ‖Q‖2 + 2n(n− 1) ‖∇α‖2 ,

then α is a constant and M = Sn(α2).

2. Preliminaries

Let M be an orientable hypersurface of the Euclidean space Rn+1. We
denote the induced metric on M by g. Let ∇ be the Euclidean connection
and ∇ be the Riemannian connection on M with respect to the induced
metric g. Let N be the unit normal vector field and A be the shape
operator. Then the Gauss and Weingarten formulas for the hypersurface
are

∇XY = ∇XY + g(AX, Y )N, ∇XN = −AX, X, Y ∈ X(M) (2.1)

where X(M) is the Lie algebra of smooth vector fields on M. We also have
the following Gauss and Codazzi equations

R(X,Y )Z = g(AY, Z)AX − g(AX, Z)AY (2.2)
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(∇A)(X, Y ) = (∇A)(Y, X), X, Y, Z ∈ X(M) (2.3)

where R is the curvature tensor field of the hypersurface and (∇A)(X, Y ) =
∇XAY − A∇XY . The mean curvature α of the hypersurface is given by
nα =

∑
i g(Aei, ei), where {e1, . . . , en} is a local orthonormal frame on M .

If A = λI holds for a constant λ, then the hypersurface is said to be totally
umbilical. The square of the length of the shape operator A is given by

‖A‖2 =
∑

ij

g(Aei, ej)2 = tr.A2.

From equation (2.2) we get the following expression for the Ricci tensor
field

Ric(X, Y ) = nαg(AX, Y )− g(AX, AY ). (2.4)

The scalar curvature S of the hypersurface is given by

S = n2α2 − ‖A‖2 . (2.5)

The Ricci operator Q is the symmetric operator Q : X(M) → X(M)
defined by Ric(X,Y ) = g(QX,Y ), X,Y ∈ X(M). Then from equation
(2.4) we get

Q = nαA−A2. (2.6)

3. Some lemmas

Let M be a hypersurface of Rn+1 and ∇α be the gradient of the mean
curvature function α. Then we have

Lemma 3.1. Let M be an orientable hypersurface of Rn+1 and

{e1, . . . , en} be a local orthonormal frame on the hypersurface M . Then

∑

i

(∇A)(ei, ei) = n∇α.

The proof is straightforward and follows from the symmetry of A and
the equation (2.3).
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Lemma 3.2. Let M be an orientable hypersurface of Rn+1. Then the

length ‖R‖ of the curvature tensor field of the hypersurface M is given by

1
2
‖R‖2 = ‖A‖4 − ∥∥A2

∥∥2
.

The proof follows immediately from equation (2.2).

Lemma 3.3. Let M be an orientable hypersurface of Rn+1. Then the

length ‖Q‖ of the Ricci operator Q of the hypersurface M is given by

‖Q‖2 = n2α2 ‖A‖2 +
∥∥A2

∥∥2 − 2nα(tr.A3)

The proof follows immediately from the equation (2.6).

Lemma 3.4. Let M be an orientable hypersurface of Rn+1, n ≥ 2.

Then

‖∇A‖2 ≥ n ‖∇α‖2 ,

where ‖∇A‖2 =
∑

ij ‖(∇A)(ei, ej)‖2 for a local orthonormal frame

{e1, . . . , en} on M , moreover for a positively curved M if the equality holds

then M is totally umbilical.

Proof. Define an operator B : X(M) → X(M) by B = A−αI. Then
we have

(∇B)(X,Y ) = (∇A)(X,Y )− (Xα)Y,

which gives

‖∇B‖2 = ‖∇A‖2 + n ‖∇α‖2 − 2
∑

ij

g ((∇A)(ei, ej), ej) g(∇α, ei)

= ‖∇A‖2 + n ‖∇α‖2 − 2
∑

j

g (∇α, (∇A)(ej , ej))

= ‖∇A‖2 − n ‖∇α‖2 .

This proves that ‖∇A‖2 ≥ n ‖∇α‖2. The equality holds if and only if
∇B = 0. If M is positively curved, then in this case we shall have B = λI

for some constant λ (as M is irreducible being positively curved). However
B = A − αI gives that tr.B = 0. Hence λ = 0 and consequently B = 0
that is A = αI and thus M is totally umbilical (α = a constant, follows
from equation (2.3) and dimM ≥ 2). ¤
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Lemma 3.5. Let M be an orientable compact hypersurface of the

Euclidean space Rn+1. Then

∫

M

(∑

i

g(∇ei(∇α), Aei)

)
dV = −n

∫

M
‖∇α‖2 dV

where {e1, . . . , en} is a local orthonormal frame on M .

Proof. Choosing a point wise covariant constant local orthonormal
frame {e1, . . . , en} on M , we compute

div (A(∇α)) =
∑

i

eig(∇α,Aei)

=
∑

i

g(∇ei(∇α), Aei) +
∑

i

g(∇α, (∇A)(ei, ei))

=
∑

i

g(∇ei(∇α), Aei) + n ‖∇α‖2 .

Integrating this equation we get the lemma. ¤

We define the second covariant derivative (∇2A)(X,Y, Z) as

(∇2A)(X, Y, Z) = ∇X(∇A)(Y, Z)−A(∇XY, Z)−A(Y,∇XZ),

then using the Ricci identity we get

(∇2A)(X,Y, Z)− (∇2A)(Y,X, Z) = R(X, Y )AZ −AR(X, Y )Z. (3.1)

4. Proof of the theorem

Let M be an orientable compact and connected hypersurface of the
Euclidean space Rn+1. Define a function f : M → R by f = 1

2 ‖A‖2. Then
by a straightforward computation we get the Laplacian ∆f of the smooth
function f as

∆f = ‖∇A‖2 +
∑

ij

g
(
(∇2A)(ej , ej , ei), Aei

)
(4.1)

where {e1, . . . , en} is local orthonormal frame on M .
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Using the equation (2.3), we arrive at

g
( (∇2A

)
(ej , ej , ei), Aei

)
= g

( (∇2A
)
(ej , ei, ej), Aei

)
.

Now using the Ricci identity (3.1) in above equation we get

g
((∇2A

)
(ej , ej , ei), Aei

)
= g

((∇2A
)
(ei, ej , ej), Aei

)

+ g
(
R(ej , ei)Aej , Aei)− g(R(ej , ei)ej , A

2ei

)
.

Thus in light of this equation the equation (4.1) takes the form

∆f = ‖∇A‖2 +
∑

ij

g
((∇2A

)
(ei, ej , ej), Aei

)

+
∑

ij

[
g(R(ej , ei)Aej , Aei)− g(R(ej , ei)ej , A

2ei)
]
.

(4.2)

Using Lemma 3.1, we get
∑

j

(∇2A
)
(ei, ej , ej) = n∇ei(∇α). (4.3)

Now we use equations (2.2) and (2.4) to compute
∑

ij

[
g(R(ej , ei)Aej , Aei)− g(R(ej , ei)ej , A

2ei)
]

=
∥∥A2

∥∥2 − ‖A‖4 −
[∥∥A2

∥∥2 − nα(tr.A3)
]

= nα(tr.A3)− ‖A‖4 .

Using this last equation together with (4.3) in (4.2), we arrive at

∆f = ‖∇A‖2 + n
∑

i

g(∇ei(∇α), Aei) + nα(tr.A3)− ‖A‖4 .

Integrating this equation and using Lemmas 3.2, 3.3 and 3.5 and equa-
tion (2.5) we arrive at

∫

M

{[
‖∇A‖2 − n ‖∇α‖2

]
+

1
2
‖A‖2 S

−1
2

(
‖Q‖2 +

1
2
‖R‖2 + 2n(n + 1) ‖∇α‖2

)}
dV = 0.
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The condition in the statement of the theorem together with Lemma 3.4
and above equation yields

‖∇A‖2 = n ‖∇α‖2 .

Since M is positively curved, the above equality again in view of Lemma 3.4
gives that M is totally umbilical hypersurface of Rn+1 and thus the theo-
rem is proved.
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