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Totally real Einstein submanifolds of CP n

and the spectrum of the Jacobi operator

By G. CALVARUSO (Lecce)

Abstract. We consider n-dimensional compact totally real parallel Einstein
submanifolds of the complex projective space CPn and we use invariants deter-
mined by the spectrum of the Jacobi operator J to characterize such submanifolds.

1. Introduction

Let M be an n-dimensional compact (connected and smooth) Rie-
mannian manifold without boundary, isometrically immersed in a Rie-
mannian manifold M̄ . Then a second order elliptic operator J , called the
Jacobi operator, is associated to the isometric immersion. Such operator
is defined on the space of smooth sections of the normal bundle TM⊥ by
the formula

J = D + R̃− Ã,

where D is the rough Laplacian of the normal connection ∇⊥ on TM⊥, R̃

and Ã are linear transformations of TM⊥ defined by means of a partial
Ricci tensor of M̄ and of the second fundamental form A, respectively. J is
also called the second variation operator because it appears in the formula
which gives the second variation for the area function of a compact minimal
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submanifold (see [15]). Its spectrum, denoted by

spec(M,J) = {λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · ·+ ↑ ∞}

is discrete, as a consequence of the compactness of M .
H. Donnelly [4] and T. Hasegawa [8], applying Gilkey’s results

[6] to the asymptotic expansion of the partition function Z(t) associated
to spec(M,J), found spectral invariants and studied spectral geometry for
compact minimal submanifolds of the Euclidean sphere and for compact
Kaehlerian submanifolds of the complex projective space CPn. Some re-
sults about spectral geometry of Sasakian submanifolds were given in [14].
Moreover, an analogous study was made about spectral geometry deter-
mined by the Jacobi operator associated to the energy of a harmonic map
in [16] and in [12] for Riemannian foliations. Recently, the inverse spec-
tral problem of the Jacobi operator of a harmonic map has been further
investigated in [2], [9], [10], [17].

Besides Kaehlerian submanifolds, another typical class of submani-
folds of the complex projective space CPn is the one of totally real minimal
submanifolds. In [1], the author and D. Perrone determined the first three
terms of the asymptotic expansion for the partition function associated to
the spectrum of the Jacobi operator of an n-dimensional totally real sub-
manifold of CPn. The corresponding Riemannian spectral invariants have
been used to characterize n-dimensional totally real parallel conformally
flat submanifolds of CPn.

In this paper, we use Riemannian invariants determined by spec(M, J)
to characterize n-dimensional totally real parallel Einstein submanifolds of
CPn. In Section 2 we shall make some preliminaries about n-dimensional
totally real minimal submanifolds of CPn. Section 3 is devoted to the
description of n-dimensional totally real parallel Einstein submanifolds of
CPn. In Section 4, we shall characterize such submanifolds, for a wide
range of dimensions, using some spectral invariants of J .

The author wishes to express his gratitude towards Profs. D. Per-

rone and L. Vanhecke and Dr. E. Boeckx for their helpful comments
during the preparation of this paper and towards the Referee for his valu-
able remarks.
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2. Preliminaries

Let CPn denote the complex projective space equipped with the Fubi-
ni-Study metric ḡ of constant holomorphic sectional curvature c > 0. An
n-dimensional totally real submanifold of CPn is a Riemannian manifold
(M, g) isometrically immersed in CPn such that ITxM is orthogonal to
TxM for all x ∈ M , where I denotes the almost complex structure of
CPn. We shall denote by ∇ (respectively, ∇̄) and R (respectively, R̄) the
Levi–Civita connection and the curvature tensor of M (respectively, CPn),
taken with the sign convention

R(X, Y ) = ∇[X,Y ] − [∇X ,∇Y ].

Note that this sign convention is the opposite from that used by Simons

in [15].
The normal connection is defined by

∇⊥ : TM × TM⊥ −→ TM⊥

(X, ξ) 7−→ ∇⊥Xξ,

where ∇⊥Xξ denotes the normal component of ∇̄Xξ. The second funda-
mental form σ and the Weingarten operator A are respectively defined
by

σ(X,Y ) = ∇̄XY −∇XY, AξX = −∇̄Xξ +∇⊥Xξ,

for all X, Y ∈ TM and ξ ∈ TM⊥. Moreover, ḡ(σ(X, Y ), ξ) = g(AξX, Y )
and, since M is totally real, AIXY = AIY X, for all X,Y ∈ TM and
ξ ∈ TM⊥ (see [3]).

Let R⊥ denote the curvature tensor associated to the normal connec-
tion ∇⊥. The curvature tensors R, R̄ and R⊥ satisfy the Gauss and the
Ricci equations:

R(X, Y, Z, W ) = g(R(X, Y )Z, W ) = R̄(X, Y, Z, W )

+ ḡ(σ(X, Z), σ(Y, W ))− ḡ(σ(Y, Z), σ(X,W )),

R⊥(X, Y, ξ, η) = ḡ(R⊥(X, Y )ξ, η) = R̄(X, Y, ξ, η)− g([Aξ, Aη]X,Y ),

where [Aξ, Aη] = Aξ ◦ Aη − Aη ◦ Aξ, for all X,Y, Z,W ∈ TM and ξ, η ∈
TM⊥.
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Let {e1, . . . , en, e∗1 = Ie1, . . . , e
∗
n = Ien} be a local orthonormal frame

on CPn such that, restricted to M , the vector fields e1, . . . , en are tan-
gent to M . We put Ai∗ = Ae∗i , Rijkh = R(ei, ej , ek, eh) and R⊥

ijk∗h∗ =
R⊥(ei, ej , e

∗
k, e

∗
h). Since

R̄(X, Y, Z, W ) =
c

4
{
ḡ(X, Z)ḡ(Y, W )− ḡ(Y, Z)ḡ(X, W )

+ 2ḡ(X, IY )ḡ(Z, IW ) + ḡ(X, IZ)ḡ(Y, IW )

− ḡ(Y, IZ)ḡ(X, IW )},

the Gauss and Ricci equations become

Rijkh =
c

4
(δikδjh − δjkδih)

+ ḡ(σ(ei, ek), σ(ej , eh))− ḡ(σ(ej , ek), σ(ei, eh)),
(2.1)

and
R⊥

ijk∗h∗ =
c

4
(δikδjh − δjkδih)− g([Ak∗ , Ah∗ ]ei, ej). (2.2)

The mean curvature vector is defined by

H = trace(σ) =
∑

i

σ(ei, ei) =
∑

i

(trAi∗)e∗i .

M is said to be minimal if H = 0, totally geodesic if σ = 0, parallel (or
with parallel second fundamental form) if ∇′σ = 0, where

(∇′Xσ)(Y, Z) = ∇⊥X(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ).

The scalar curvature of M is given by

τ = n(n− 1)
c

4
+ ‖H‖2 − ‖σ‖2, (2.3)

where ‖σ‖2 =
∑

trA2
i∗ and ‖H‖2 =

∑
(trAi∗)2.

We shall make use of the following

Lemma 2.1 ([13]). Let M be an n-dimensional totally real subman-

ifold of CPn. Then

‖R‖2 = cτ − 2n(n− 1)
c2

16
−

∑

i,j

tr[Ai∗ , Aj∗ ]2. (2.4)
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If in addition M is minimal, then

‖%‖2 = 2(n− 1)
c

4
τ − n(n− 1)2

c2

16
+

∑
(tr Ai∗Aj∗)2, (2.5)

1
2
∆‖σ‖2 = ‖∇′σ‖2 − ‖R‖2 − ‖%‖2 + (n + 1)

c

4
τ (2.6)

where % is the Ricci tensor of M .

3. Totally real parallel Einstein submanifolds of CPn

H. Naitoh [11] classified n-dimensional totally real parallel submani-
folds of CPn. We now recall some basic ideas of [11], in order to determine
all n-dimensional totally real parallel Einstein submanifolds of CPn.

Fix an n-dimensional simply connected Riemannian symmetric space
M . By T̄M (respectively, S̄M ) we denote the set of equivalence classes of
totally real parallel isometric immersions of M into CPn (respectively, of
complete totally real parallel submanifolds in CPn, having M as universal
covering).

Since M is symmetric, there exists a Lie group G acting isometrically
and transitively on M . M is isometric to a quotient M/K and the Lie
algebra g of G splits as g = k + p, with p isometric to the tangent space
ToM at a point o of M . By MM it is denoted the set of all p-valued
bilinear forms σ̃ on p, satisfying

(1) σ̃ is a symmetric trilinear form on p, under the canonical identification
of p∗ ⊗ p∗ ⊗ p with p∗ ⊗ p∗ ⊗ p∗ through the Riemannian metric 〈 , 〉
on p,

(2) t · σ̃ = 0, and

(3) c
4(〈Y,Z〉X − 〈X,Z〉Y ) = R(X, Y )Z − [σ̃(X), σ̃(Y )](Z), for all vectors
X,Y, Z ∈ p.

When f : M → CPn is a totally real parallel isometric immersion,
then (σ̃f )o belongs to MM , where σf is the second fundamental form
associated to f and σ̃f is defined by

σ̃f (X,Y ) = Jσf (X, Y ),
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J being the complex structure of CPn. A suitable equivalence is intro-
duced in MM , so that the quotient set M̄M of MM has a natural one-
to-one correspondance with T̄M (and so, also with S̄M ). Therefore, the
problem of classifying totally real parallel submanifolds of CPn reduces to
the problem of studying M̄M , for any given simply connected symmetric
space M . We refer to [11] for more details.

The following results were proved in [11, Section 4], where M is sup-
posed to be without Euclidean factor.

Lemma 3.1 ([11]). Assume that MM is not empty. Then the simply

connected symmetric space M without Euclidean factor is irreducible and

of compact type.

Note that, as it is well-known, an irreducible symmetric Riemannian
manifold is Einsteinian.

Theorem 3.2 ([11]). Let M be a simply connected symmetric space

without Euclidean factor. Then the set M̄M is not empty if and only if

M is one of the followings:

SO(n + 1)/SO(n) (n ≥ 2), SU(k), (k ≥ 3),

SU(k)/SO(k), (k ≥ 3), SU(2k)/Sp(k), (k ≥ 3), E6/F4.
(3.1)

In this case, the metric on M is determined uniquely by the constant c

(the holomorphic sectional curvature of CPn) and the set M̄M consists of

one point.

Note that SO(n + 1)/SO(n) is the Euclidean sphere Sn(β), for some
β > 0.

Suppose now that M is an n-dimensional totally real parallel Einstein
submanifold of CPn(c).

a) If M has no Euclidean factor, then M is one of the spaces listed in
Theorem 3.2. Note that all these spaces are compact and their immersions
in CPn(c) are minimal [11, Remark 5.3].

We can determine explicitly the metric of the Einstein submanifolds
of CPn(c) listed in (3.1). As claimed in Theorem 3.2, their metrics are
determined by c. In fact, since M is parallel and compact, integrating
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(2.6) we get
∫

M
‖R‖2dv +

∫

M
‖%‖2dv − (dimM + 1)

c

4

∫

M
τdv = 0,

from which, if ‖R‖2 is constant (τ and ‖%‖2 = τ2/dimM are constant, M

being an Einstein manifold), it follows

‖R‖2 +
1

dimM
τ2 − (dimM + 1)

c

4
τ = 0. (3.2)

Curvature invariants of symmetric spaces of rank 1 and of classical
symmetric spaces were calculated in [7] (some corrections were successively
needed and they have been made in [5]). In particular, for the spaces listed
in (3.1), we have

M dim τ ‖R‖2

Sn(β) n n(n− 1)β 2n(n− 1)β2

SU(k) k2 − 1 4k(k2 − 1)β 16k2(k2 − 1)β2

SU(k)/SO(k) 1
2 (k − 1)(k + 2) k(k − 1)(k + 2)β 2k(k − 1)(k + 2)2β2

SU(2k)/Sp(k) (k − 1)(2k + 1) 4k(k−1)(2k+1)β 16k(k−1)2(2k+1)β2

Table I

The metric on M is defined up to a homothetic transformation and so,
curvature invariants of M depend on β > 0. We did not report the value
of ‖%‖2 since M is an Einstein space and so, ‖%‖2 = τ2/dimM . Using
(3.2), we can determine β for such spaces, in function of c. We get

M Sn(β) SU(k) SU(k)/SO(k) SU(2k)/Sp(k)

β
c

4
c

16k

kc

32
kc

16

Table II

The Riemannian curvature invariants τ and ‖R‖2 of M can now be calcu-
lated from the above Table I, using the values of β listed in Table II.
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For what concerns E6/F4, it was noted in [11, Remark 5.4] that its
immersion f in CPn is

√
c

2
√

2
-isotropic, that is, σf (X.X) =

√
c

2
√

2
for any

unit tangent vector X of M . In particular, this implies that ‖σf‖2 =
dimM 1

8c = 13
4 c and so, by (2.3), we get τ = 637

4 c. For E6/F4, being
an Einstein space, we have ‖%‖2 = τ2/dimM = 31213

32 c2. Finally, using
(3.2) we can also compute ‖R‖2 and we get ‖R‖2 = 3185

32 c2. In this way,
we determined all n-dimensional totally real parallel Einstein submani-
folds of CPn(c) without Euclidean factor, and calculated explicitly their
Riemannian curvature invariants τ , ‖%‖2 and ‖R‖2.

b) Suppose now that M is an n-dimensional totally real parallel Ein-
stein submanifold of CPn(c), having a Euclidean factor. Therefore, we
have

M = Rn0 ×Mn1
1 × · · · ×Mnr

r ,

with n =
∑r

j=0 nj , n0 > 0, and Mni
i is an ni-dimensional irreducible simply

connected symmetric space for each i [11].
In our case, since M is an Einstein space given by a Riemannian

product of Einstein spaces, we must have

0 =
τ0

n0
=

τ1

n1
= · · · = τr

nr
,

that is, τi = 0 for all i. But none of the spaces listed in a) has zero
scalar curvature. Therefore, if M has a Euclidean factor, then M itself is
Euclidean. In particular, if M is compact, then M is the n-dimensional
flat torus, Tn.

Therefore, we proved the following

Theorem 3.3. Let M be an n-dimensional totally real parallel Ein-

stein submanifold of the complex projective space CPn(c). If M has no

Euclidean factor, then M is one of the spaces listed in (3.1), equipped

with a Riemannian metric uniquely determined by c. In particular, M is

compact and its immersion in CPn(c) is minimal. If M has an Euclidean

factor, then M is flat (in particular, if M is compact, then M = Tn).

The following Table III describes all n-dimensional compact totally
real parallel Einstein submanifolds of CPn(c).
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M dim τ ‖R‖2

Sn( c
4 ) n n(n−1)

4 c n(n−1)
8 c2

SU(k) k2 − 1 (k2−1)
4 c (k2−1)2

16 c2

SU(k)/SO(k) 1
2 (k − 1)(k + 2) k2(k−1)(k+2)

32 c k3(k−1)(k+2)2

512 c2

SU(2k)/Sp(k) (k − 1)(2k + 1) k2(k−1)(2k+1)
4 c k3(k−1)2(2k+1)

16 c2

E6/F4 26 637
4 c 3185

32 c2

Tn n 0 0

Table III

It is easy to check that for two of such manifolds, having the same di-
mension, it never occurs that the pair of Riemannian curvature invariants
(τ, ‖R‖2) attains the same value. Therefore, we proved the following

Theorem 3.4. Each compact n-dimensional totally real parallel Ein-

stein submanifold of CPn(c) is uniquely determined by the pair of Rie-

mannian curvature invariants (τ, ‖R‖2).

4. Spectral geometry of J and totally real
Einstein submanifolds of CPn(c)

Let M be an n-dimensional Riemannian manifold immersed in a Rie-
mannian manifold M̄ of dimension n̄ = n+ r. The normal bundle TM⊥ is
a real r-dimensional vector bundle on M , with inner product induced by
the metric ḡ of M̄ . Let D denote the so-called rough Laplacian associated
to the normal connection ∇⊥ of TM⊥, that is,

Dξ = −∇⊥ei
∇⊥ei

ξ +∇⊥∇eiei
ξ,

where ξ is a section of TM⊥. Next, let Ã be the Simons operator defined
in [15] by

ḡ(Ãξ, η) = tr(Aξ ◦Aη),
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for ξ, η ∈ TM⊥. Moreover, we consider the operator R̃ defined by

R̃(ξ) = −
n∑

i=1

(R̄(ei, ξ)ei)⊥,

where (R̄(ei, ξ)ei)⊥ denotes the normal component of R̄(ei, ξ)ei.
The Jacobi operator (or second variation operator), acting on cross-

sections of TM⊥, is the second order elliptic differential operator J defined
by (see [15] or [4])

J : TM⊥ −→ TM⊥

ξ 7−→ (D − Ã + R̃)ξ.

Let f : M → M̄ be an isometric minimal immersion. A variation of f

is a one parameter family {ft} of immersions M → M̄ , such that f0 = f

and F : M × [0, 1] → M̄ , with F (m, t) = ft(m), is C∞. If A(t) denotes
the area associated to ft, then the Jacobi operator expresses the second
variation for A, since

A′′(0) =
∫

M
〈JV, V 〉dv

(see [15]). Similarly, if φ : (M, g) → (N, h) is a harmonic map and {φt} a
variation of φ, then the Jacobi operator Jφ expresses the second variation
of the energy E(t) = E(φt) associated to φ, by

E ′′(0) =
∫

M
h(V, JφV )dv

(see for example [16]).
When M is compact, we can define an inner product for cross-sections

on TM⊥, by

〈ξ, η〉 =
∫

M
ḡ(ξ, η)dv

and J is self-adjoint with respect to this product. Moreover, J is strongly
elliptic and it has an infinite sequence of eigenvalues, with finite multiplic-
ities, denoted by

spec(M,J) = {λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · ·+ ↑∞}.
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The partition function Z(t) =
∑∞

i=1 exp(−λit) has the asymptotic expan-
sion

Z(t) ∼ (4πt)−n/2{a0(J) + a1(J)t + a2(J)t2 + . . . }.

By Gilkey’s results [6] (see also [4] and [8]), the coefficients a0, a1 and a2

are given by the following

Theorem 4.1 ([6]).

a0 = r vol(M),

a1 =
r

6

∫

M
τdv +

∫

M
tr Ẽdv,

a2 =
r

360

∫

M
{2‖R‖2 − 2‖%‖2 + 5τ2}dv

+
1

360

∫

M
{−30‖R⊥‖2 + tr(60τẼ + 180Ẽ2)}dv,

where Ẽ = Ã− R̃.

In the case of an n-dimensional totally real submanifold of CPn, the
coefficients a0, a1 and a2 were computed explicitly in [1], in terms of curva-
ture invariants of M . In particular, the following result has been obtained.

Theorem 4.2 ([1]). On an n-dimensional totally real minimal sub-

manifold M of CPn(c), the first coefficients of the asymptotic expansion

of the partition function of the Jacobi operator are given by

a0 = n vol(M), (4.1)

a1 =
n− 6

6

∫

M
τdv + 2n(n + 1)

c

4
vol(M)

=
6− n

6

∫

M
‖σ‖2dv +

n

6
(n2 + 5n + 18)

c

4
vol(M), (4.2)

a2 =
1

360

∫

M
{2(n− 15)‖R‖2 − 2(n− 90)‖%‖2

+ 5(n− 12)τ2}dv +
(n + 1)(n− 6)

3
c

4

∫

M
τdv
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+ 2n(n + 1)2
c2

16
vol(M). (4.3)

In the sequel, we shall denote by M0 one of the compact totally real
submanifolds of CPn(c) listed in Table III. Our purpose is to characterize
M0 by its spec(J) in the class of all compact totally real minimal sub-
manifolds of CPn(c). We first remark that, as an easy consequence of
Theorem 3.4, we get the following

Theorem 4.3. Each compact n-dimensional totally real parallel Ein-

stein submanifold M0 of CPn(c) is uniquely determined by its spec(J).

Proof. We treat separately the cases n 6= 6, 15, n = 6 and n = 15.

a) If n 6= 6, 15, by Theorem 3.4, it is enough to prove that spec(J)
determines the pair of Riemannian invariants (τ, ‖R‖2) of M . In fact,
suppose that spec(M0, J) = spec(M ′

0, J), where M0, M ′
0 are n-dimensional

compact totally real Einstein submanifolds of CPn(c). Then, since n 6= 6,
(4.1) and (4.2) imply that τ0 = τ ′0. M0, M ′

0 being Einstein manifolds
having the same dimension, it follows that ‖%0‖2 = ‖%′0‖2. Thus, since
n 6= 15, taking into account that ‖R0‖2 and ‖R′

0‖2 are constant, from
(4.3) we get ‖R0‖2 = ‖R′

0‖2.

b) If n = 6, from Table III we see that M0 = S6( c
4) or M0 = T 6. Sup-

pose that spec(S6( c
4), J) = spec(T 6, J). Then, in particular, a0(S6( c

4)) =
a0(T 6) and a2(S6( c

4)) = a2(T 6), from which it follows easily that c van-
ishes, which can not occur.

c) If n = 15, from Table III we see that M0 = S15( c
4), T 15 or SU(4).

Suppose that spec(M0, J) = spec(M ′
0, J). Then, in particular, a0(M0) =

a0(M ′
0) and a1(M0) = a1(M ′

0), from which it follows easily τ0 = τ ′0, which
can not occur, because, as it follows from Table III, for S15( c

4), T 15 and
SU(4) we respectively have τ = 105

2 c, 0 and 15
4 c, with c 6= 0 ¤

We now prove the following

Theorem 4.4. Let M be an n-dimensional compact totally real mini-

mal submanifold of CPn(c). If spec(M, J) = spec(M0, J), 16 ≤ dimM0 ≤
52, then M is isometric to M0.
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Proof. Since spec(M, J)= spec(M0, J), we have dimM0=dimM=n

and, from Theorem 4.2,

vol(M, g) = vol(M0, g0), (4.4)
∫

M
τdv =

∫

M0

τ0dv,

∫

M
‖σ‖2dv =

∫

M0

‖σ0‖2dv, (4.5)

∫

M
{2(n− 15)‖R‖2 + 2(90− n)‖%‖2 + 5(n− 12)τ2}dv

=
∫

M0

{2(n− 15)‖R0‖2 + 2(90− n)‖%0‖2 + 5(n− 12)τ2
0 }dv (4.6)

Since τ0 is constant and vol(M)=vol(M0), we have
∫

M
τ2dv −

∫

M0

τ2
0 dv =

∫

M
τ2dv − 2τ0

∫

M0

τ0dv +
∫

M0

τ2
0 dv

=
∫

M
(τ − τ0)2dv ≥ 0

(4.7)

where the equality holds if and only if τ = τ0.
Next, let E = %− τ

ng denote the Einstein curvature tensor of (M, g).
Since ‖E‖2 = ‖%‖2− τ2

n and E0 = 0 because M0 is an Einstein space, (4.6)
becomes

2(n− 15)
(∫

M
‖R‖2dv −

∫

M0

‖R0‖2dv

)
− 2(n− 90)

∫

M
‖E‖2dv

+
5n2 − 62n + 180

n

(∫

M
τ2dv −

∫

M0

τ2
0 dv

)
= 0.

(4.8)

Moreover, from (2.6) we also get

1
2
∆‖σ‖2 = ‖∇′σ‖2 − ‖R‖2 − ‖E‖2 +

1
n

τ2 + (n + 1)
c

4
τ.

Integrating over M , we obtain
∫

M
‖∇′σ‖2dv =

∫

M
‖R‖2dv +

∫

M
‖E‖2dv

+
1
n

∫

M
τ2dv − (n + 1)

c

4

∫

M
τdv.

(4.9)
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An analogous formula holds for M0, with ∇′σ0 = E0 = 0. We use (4.9) to
calculate

∫
M ‖R‖2dv. Therefore, (4.8) becomes

(n− 15)
∫

M
‖∇′σ‖2dv = α(n)

∫

M
‖E‖2dv

+ β(n)
(∫

M
τ2dv −

∫

M0

τ2
0 dv

)
,

(4.10)

where

α(n) = 2n− 105,

β(n) = −5n2 − 64n + 210
2n

.

It is easy to check that if 16 ≤ n ≤ 52, then n−15 > 0 while α(n), β(n) < 0.
Therefore, we get ∇′σ = 0, E = 0 and τ = τ0. Thus, M is an Einstein
totally real parallel submanifold of CPn(c) with the same spec(J) of M0.
So, Theorem 4.3 implies that M is isometric to M0. ¤

Remark 4.1. Note that formula (4.10) holds for all n-dimensional com-
pact totally real minimal submanifolds M of CPn such that spec(M, J) =
spec(M0, J).

In particular, if M is also Einsteinian, then (4.10) becomes

(n− 15)
∫

M
‖∇′σ‖2dv = β(n)

(∫

M
τ2dv −

∫

M0

τ2
0 dv

)
. (4.11)

Since β(n) < 0 for all n ≥ 3, proceeding as in the proof of Theorem 4.4,
we obtain the following

Theorem 4.5. In the class of all n-dimensional compact totally real

Einstein minimal submanifolds of CPn(c), the parallel ones are character-

ized by their spec(J) for all n ≥ 16.

Remark 4.2. If M0 = Sn( c
4), then σ0 = 0 and (4.5) gives at once σ = 0.

Therefore:
In the class of compact totally real minimal submanifolds of CPn(c),

Sn( c
4) is characterized by its spec(J) for all n 6= 6.
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Remark 4.3. In [1], it was proved that in the class of all n-dimensional
compact totally real minimal submanifolds of CPn(c), the parallel con-
formally flat ones are characterized by their spec(J) when 53 ≤ n ≤ 93.
Since the flat torus Tn is at the same time Einstein and conformally flat,
combining this result with Theorem 4.4, we obtain the following

Theorem 4.6. In the class of all n-dimensional compact totally real

minimal submanifolds of CPn(c), the flat torus Tn is characterized by its

spec(J) when 16 ≤ n ≤ 93.
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