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Pexider generalization of a functional equation
of multiplicative symmetry

By NICOLE BRILLOUET-BELLUOT (Nantes)

Abstract. Let K be either R or C. The problem of finding the continuous
solutions f,g,h : K — K of the functional equation:

f(zg(y)) = h(z)h(y)  (2,y €K) (1)

may be reduced to the problem of finding the continuous solutions F,G : K — K
of the functional equation:

FxG(y)) = F(x)F(y)  (z,y € K). (2)

In the present paper, we obtain the continuous solutions F' : H — K and G :
H — H of (2) when H is a nontrivial connected subset of K satisfying H2 C H.

1. Introduction

Let K be either R or C. In [3] we obtained the continuous solutions
f : K — K of the functional equations of multiplicative symmetry:

f@fy) = flyf@)  (z,y€K) (3)
faf) =) fly) (9 ekK) (4)

Mathematics Subject Classification: Primary 39B22, 39B32.
Key words and phrases: Pexider functional equation, multiplicative symmetry, con-
nected subset, multiplicative group.



108 Nicole Brillouét-Belluot

under the hypothesis that f(C)\ {0} is connected if f is not constant and
if K=C.

In the present paper we consider a Pexider generalization of the func-
tional equation (4). More precisely, we look for the continuous solutions
f,9,h : K — K of the functional equation:

f(zg(y)) = h(x)h(y)  (z,y €K) (1)
We have the following result:

Proposition 1. All the continuous solutions f,g,h : K — K of the
functional equation:

flzg(y)) = hM=)h(y)  (z,y €K) (1)
are the following:
(i) either g =0 and
e if K =R, f is arbitrary but f(0) > 0 and either h = +/f(0) or
= -/ f(0)
e if K = C, f is arbitrary and either h = \/f(0) or h = —/f(0)
where +/ f(0) is one of the square roots of f(0).
(ii) or g # 0 and
x
f@)=BF (). hx) = BF(2), g(y) = aGly) (@yeK) (5)
where « and (8 are arbitrary elements of K such that @ # 0 and
F,G : K — K are continuous solutions of the functional equation:

FxG(y)) = F(z)F(y)  (z,y € K). (2)

PROOF. The case (i) is obvious. If g is not identically zero, there
exists yo in K such that g(yo) = o # 0. Letting y = g in (1), we get:
flax) = h(z)h(yo) (z € K).

The case h(yp) = 0 leads to f = 0 and h = 0, which are obviously
solutions of (1) for an arbitrary function g.

So, we suppose now h(yo) = [ # 0 and we get: h(z) = %f(ax)
(z € K). If we define: F(z) = 3 f(ax) (z € K), G(y) = 19(y) (y €K), F
and G are solutions of (2).

Conversely, if F' and G are solutions of (2) and if f, g, h are defined
by (5) with « # 0, f, g, h are solutions of (1). O
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In the sequel we will solve the functional equation (2) on a subset of K.
In the whole paper, U will denote {z € C; |z| =1} .

2. Problem of finding the continuous solutions of (2)

Let H be a nontrivial connected subset of C satisfying H> C H, where
H?={zy; v € H, y€ H}. We look for the continuous solutions F': H — K
and G : H — H of the functional equation (2). F'=0 and F' = 1 are the
only constant solutions of (2) for an arbitrary continuous function G.

From now on, we suppose that F' is a nonconstant continuous solution
of (2). This implies that G is not constant.

We have by (2):

We deduce:
F(zG(yG(2)) = F(2G(y)G(2))  (x,y,2 € H). (6)

Since F' is not identically zero, there exists xo in H such that F'(zg) # 0
and we have from (2):

Fly) =¢(Gly)  (ye H) (7)
where ¢ : H — K is the continuous function defined by:
o) =2 e Q
Using (2), (6), (7) and (8), we get:
FzG(y)) = ¢(G(2G(y)) = ¢(G(x)G(y))

= F(2)F(y) = ¢(G(2))p(G(y)).
We deduce:
e(G(2)G(y)) = v(G(x)e(G(y)  (x,y € H). 9)

So, if we determine the range of G, we can deduce ¢ : G(H) — K by using
the continuous solutions of the Cauchy’s power functional equation, and
we get I from (7).
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3. Case where [ contains 0
and H \ {0} is a multiplicative group

We have first the following result whose method of proof has been used
in [3].

Lemma 1. The only closed connected subsets H of C containing 0
such that H \ {0} is a multiplicative group are : H = C and H =T U {0}
with I' = {e* ™, n € Z, A € R} where a,b € C, Rea # 0 and either
b =0 or {a,b} is a basis of the real vector space C.

PROOF. The mapping h defined by: h(z) =e* (x € C) is a continu-
ous homomorphism from the additive group (C, +) onto the multiplicative
group (C\ {0},.). Since M = H \ {0} is a closed subgroup of (C\ {0},.),
h=Y(M) is a closed additive subgroup of (C,+). We deduce that we have
the following possibilities (cf. [2]):

(i) b\ (M) = aR;

(vi) h=Y(M) = {0}.
Since H is connected, the cases (ii), (iii) and (vi) do not occur. The cases
(v), (i) and (iv) lead to the result. O

Remark. The only closed connected subsets H of C containing 0 and
included in R, such that H\ {0} is a multiplicative group, are H = [0, +-00)
and H = R, which correspond respectively to the cases a € R, h?frb ez
and a € R, 120 € 27 + 1.

If H is given by Lemma 1, we have the following result concerning (2).

Lemma 2. Let us suppose that H is given by Lemma 1. If F : H — K,
G : H — H are continuous solutions of (2) such that F' is not constant, G
is a nonconstant solution of the following functional equation:

GG ()| = GWIG()]  (y,z € H). (10)
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Proor. If F, G are continuous solutions of (2), they satisfy (6).
If G(y)G(z) # 0, we define: h(y,z) = % which belongs to H.
With z replaced by &riam; in (6), we get: F(xh(y,z)) = F(z) (z € H).

Since F' is not constant, we have h(y, z) # 0 and
F(z(h(y,2))") = F(z) (x € Hyn €Z). (11)

If |h(y,z) # 1, (11) and the continuity of F' at 0 would imply that F is
constant, which is not the case. Therefore, we have |h(y, z)| = 1 i.e. (10).

If G(y)G(z) = 0, we have by (6): F(zG(yG(z)) = F(0) (x € H).
Since F' is not constant, we have G(yG(z)) = 0 which implies (10). O

From the functional equation (10), we will first determine G and then
we get F' with (9) and (7).

Let F': H — K and G : H — H be nonconstant continuous solutions
of (2). We denote N = G~1(0) and we suppose that H \ N is connected if
H is not included in R.

By (10), the function h : (H\ N) x (H\ N) — H \ {0} defined by:
h(y, z) = g%z%a; (y,z € H\ N) takes its values in U N H.

If H=TU{0} with b =0, we have: h(y,2) =1 (y,z€ H\N).

If H =R, h(y, z) belongs to {—1,1} for all y and z in H \ N.

If H=TU{0} is not included in R and {a,b} is a basis of the real
vector space C, we have: h(y,z) = e+ = (0 =B%) (y,2 € H\ N)
with a = a+1id/, b= pB+1if, f/ — ﬁ%, # 0. Since H \ N is connected,
there exists some ng in Z such that

h(y,z) = ™= (y,z€ H\N). (12)
Moreover, if i belongs to H \ N, we have G(y) = e**™ and
|G(y)| = e**"P, which implies: A = 1(In|G(y)| — nB). We deduce:
G(y) = |G(y)|ae™ P =F3) . Since H\ N is connected, {G(y).|G(y)|"a; y €

H \ N} is a connected subset of {¢"(%~F%); n € Z} which is a discrete
set of points of U. Therefore, there exists some mg in Z such that we have:
Gly) = |G(y)|=e™o B =B3) (y € H\ N). The definition of h(y, z), (10)

’
o)

and (12) imply: 03 =A%) = ¢=mo(F'=B%)  We deduce:

G(y) = [G(y)|Fe ™ E =5 (ye H\N). (13)
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In a first case, we have the following result:

Proposition 2. Let us suppose that H is given by Lemma 1. Let
F:H — K and G: H— H be nonconstant continuous solutions of (2)
such that H \ G~1(0) is connected in the case where H is not included
in R.

We suppose that there exists y and z in H \ G~1(0) such that

if H=TR, h(y,z) = -1

if H is not included in R, h(y, z) is not a root of 1.

Then, if H =R, G(x) = —d|x| (x € R),
if H is not included in R, we have H = C and

0 if x=0
Gl@) = {dm@(w) if ©#0 (14)

where d is some positive real number and 0 : C\ {0} — U is some noncon-
stant continuous function and, in both cases,

Flz) = (d|z])Y if x#0
o if =0

where v is some element of K such that Revy > 0.

PROOF. In the case H = R, we deduce from (11) that F is an even
function.

In the case where H is not included in R, {(h(y, z)" }nez is dense in U.
The fact that H is closed, the continuity of F' and (11) imply : U C H
and F(A\z) = F(z) (x € H,A € U). Therefore, we have: |z| € H if z € H
and F(z) = F(Jo| %) = F(lal) (v € H\ {0}).

So, in both cases, we have:

F(x) = F(|z]) (r € H). (15)

By (8), we deduce:
ely) =¢ly)  (ye H). (16)

Therefore, we have by (9):

p(IG@GW)) = e(|G@)De(GW))  (,y € H). (17)
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We first determine the range of |G|. (15) and (2) imply:
FlGy)l) = F(x)F(y)  (z,y € H) (18)

The functional equation (18) is of the form (2) where G is replaced by |G|.
By Lemma 2, |G| : H — [0,400) is a nonconstant continuous solution of
the following functional equation:

Gy |G =IGWIGE)] (v, 2 € H) (19)
which is nothing but the functional equation (4). We deduce from Theo-

rem 1 of [3] and from the Remark following this theorem:

e in the case H = R, |G(z)| = Sup(—cz,dz) (r € R) where ¢ and d are
nonnegative real numbers satisfying d > —c

e in the case H = C either

(i) |G(x)| = d|z|(xz € C) where d is some positive real number, or

0 if:czOorifx#Oand%G/\/’
(ii) |G(z)| =
| 2| <x> if 2 £0and — ¢ N
|z| ||

where ¢ : U — [0, 400) is some continuous function with
N = ~1(0) such that U \ N is connected.

Let us now consider the case where H = I'U {0} is not included in R
and {a,b} is a basis of the real vector space C. In this case, we have
(12) with ng # 0 and 3’ — ﬂ%/ ¢ 21Q. By (13), for y € H \ N, we have
G(y) = e** with (n +ng) (3 — ﬁ%) € 2nZ. This implies: n = —ng and
G(y) = e** b, Therefore, we have: |G(y)| = e*® with = A — nog, and
so |G|(H \ N) C e*®. Since |G| is not constant, (19) implies: G(0) = 0.
By the connectedness of H, we get: |G|(H) = e*! U{0} where I = (—o0, |
for some 0 ( | means either ) or |). Using (19), we have by induction:
(|G|(H))" C |G|(H) (n € N). We deduce: |G|(H) = e*® U {0} = [0, +0c0).

So, in all cases, we have |G|(H) = [0,+00). From (17) we see, by
letting u = |G(x)|, v = |G(y)|, that ¢ : [0,+00) — K is a continuous
solution of the Cauchy’s power functional equation: p(uv) = p(u)p(v).
Since F' is not constant, ¢ is not constant and we get (cf. [1]):

uwY ifu>0 .
o(u) = where 7 is some element of K such that Revy > 0.

0 ifu=0
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We deduce from (7) and (16):

Flz) = |G(z)]Y ifz¢g N
0 ifreN

This implies with (15): z € N <= |z| € N and
G(x)| = |G(=))]  (z € H) (20)

Finally, we determine G.

In the case H = R, (20) implies: |G(x)| = c|z|(z € R) with ¢ > 0 and
we get either G(z) = dz(z € R) or G(z) = d|z| (x € R) where d is some
nonzero real number. Since we assume h(y, z) = —1 for some y and z in R,
we have: G(x) = —d|z| (x € R) where d is some positive real number.

In the case H = C, the form (ii) of |G| satisfies (20) if, and only if,
1 = d where d is some positive real number. Therefore, |G| has the form
(i) and we deduce (14) in this case. The hypothesis that h(y, z) is not a
root of 1 for some y and z in C implies that 6 is not constant.

Let us finally consider the case where H = I'U{0} is not included in R
and {a, b} is a basis of the real vector space C. If we suppose G(yp) = 0
for some yo in I', we have by (19): G(Ayp) = 0 (A > 0). We get from
(20): G(Alyo]) = 0 (A > 0) which implies: G(A) = 0 (A > 0). (20)
implies that G is identically zero which is not the case. Therefore, we
have N = {0}. So, H \ {0} is connected and is therefore of the form:
H\{0} ={ze€C:2z= |z|§eip°(ﬂlfﬁ%’} for some pg € Z. This brings a
contradiction with the fact that |G|(H) = [0,4+00) C H. Therefore, this
case does not occur. O

In the other case, we have the following result:

Proposition 3. Let us suppose that H is given by Lemma 1. Let
F:H — Kand G: H— H be nonconstant continuous solutions of (2)
such that H \ G~1(0) is connected in the case where H is not included
in R.

We suppose that, for all y and z in H\ G~1(0), h(y, z) is either equal
to 1 in the case H = R, or a root of 1 in the case where H is not included
in R.
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Then, o in the the case where H = T" U {0} is not included in R and
{a, b} is a basis of the real vector space C,

de  if x € e®RFpob
G(x) = {0 if z ¢ eaR+pob (21)
where py is some integer in Z and d is some element of ¢®&—Pob,
e in the cases H =R, H =T'U {0} with b =0, H = C, either
G(z) =dx (x € H) (22)
where d is some element of H \ {0} or, in the case H = R only,
G(z) = Sup(—cz, dx) (x € R) (23)
where ¢ and d are some nonnegative real numbers satisfying d > —c,
or, in the case H = C only,
0if =0 or ifx;é()andw%e./\/'
G(@) =19 L. . 14+i6 . (24)
e n ’.’If"lp W Ifx#()andwgé./\/

where p is some integer in Z, n is some positive integer, § is some real
number, ¢ : U — [0,+o00[ is some continuous function which satisfies:
Y(enx) = p(x)(x € U) in the case p # kn (k € Z), N = ~(0) and
U\ N is connected,

and, in all cases,

Gx)|" if G 0
Flo)_ [1C@I i G £ )
0 if G(x)=0
where v is some element of K such that Rey > 0,
in the case H = R and (22),
G(x)|"signG it G 0
roy - [1G@N senGla) i Ola) 2 -
0 if G(x)=0
where ~ is some element of K such that Re~ > 0,
in the case H = C and (22),
G(x)[(G(x))F if G 0
roy - [1G@IGE) i O 2 o
0 if G(x)=0
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where k belongs to Z and vy is some element of K such that Rey > —k.

PROOF. We noticed already that we have h(y,2) =1 (y,z € H\N) in
the case H = T'U{0} with b = 0. So, in the cases H =R and H =T'U{0}
with b = 0, G : H — H is a nonconstant continuous solution of the
functional equation:

G(2G(y)) = G(z)G(y)  (z,y € H). (4bis)

If H = R, (4bis) is nothing but (4) and Theorem 1 of [3] implies that G
has either the form (22) or the form (23).

We have in this case either G(H) = [0,+00) or G(H) = R. By (9),
@ : H — K is a nonconstant continuous solution of the Cauchy’s power
functional equation. We deduce (cf. [1]): either

() lul? if u#0 () |u[Ysignu  if u # 0
u) = or u) =
4 0 ifu=0 4 0 ifu=0

where sgnu = ﬁ—‘ and v is some element of K such that Re+y > 0. From
(7), we deduce the forms (25) and (26) for F.

In the case H = I' U {0} with b = 0, since G(H) is a connected part
of H containing 0, we have G(H) = e* U {0} where I = (—o0,d| for
some real number . We get from (4bis) by induction: (G(H))"™ C G(H)
(n € N) which implies G(H) = H. If G(yo) = 0 for yo € I', we get:
G(yoG(y)) = 0 (y € H), which contradicts G # 0. We deduce N = {0}.
The function ¢ : R — R satisfying: G(e**) = e (X € R) is defined by:
$(A) = 2 In|G(e*)|(A € R), and, by (4bis), ¢ is a nonconstant continuous
solution of the functional equation:

dA+o(p) =¢(N) +o(n) (A peR). (28)

We get from [5]: ¢(A) = A+n (A € R) where 7 is an arbitrary real number
and we deduce that G has the form (22).

In the case H = C, the hypothesis, the connectedness of C \ N and
the continuity of G imply that the range of h is a connected part of 2"Q,
which is totally disconnected. Therefore, h is a constant function and there
exists Ao in €% such that we have with (11):

{G<xa<y>> = MG (2)G(y)

F(hoz) = F(a) (z,y € C). (29)
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In this case, G : C — C is a nonconstant continuous solution of the func-
tional equation (3) which satisfies (29) and such that C\ N is connected.
Therefore, it has one of the forms given in Theorem 2 of [3].

G of the form (22), where d is some nonzero complex number, satisfies
(29) if, and only if, A\g = 1. In this case, we have G(C) = C. Therefore, by
(9), ¢ : C — K is a nonconstant continuous solution of the Cauchy’s power
functional equation: ¢(uv) = ¢(u)e(v). If u and v belong to C\ {0}, we
see, by letting u = e, v = €Y, that the function ¢ : C — K defined by:
¢(z) = p(e*) (z € C) is a nonconstant continuous solution of the Cauchy’s
exponential functional equation: ¢(x + y) = ¢(x).¢(y) (z,y € C). We get
from [1]: ¢(z) = 7197 (x € C) where v and 6 are some complex numbers.
This implies: ¢(u) = uwY@® v € C\ {0}). Such a function is continuous on
C\ (—00,0]. ¢ is continuous on (—o0, 0) if, and only if, ¢/7(7=9) = ¢=im(y=9)
ie.y—0 =k € Z. We deduce: p(u) = |u/Ya~* (u € C\{0}). This function
is continuous at 0 if, and only if, Rey > k. From (7), we get the form (27)
for F.

G of the form: G(z) = {dme(x') ifz#0

] , where d is some positive
0 ifz=0

real number and 0 : (0,+00) — U is some continuous function, satisfies
(29) if and only if: 8(d|z| |y|) = Xof(|z])0(|y]) (z,y € C\ {0}). By letting
u = d|z|, v = d|y|, we see that the function 7 : (0,+00) — U defined
by: 7(u) = A0(4) (u > 0) is a continuous solution of the Cauchy’s power
functional equation: 7(uv) = 7(u)7(v). We deduce (cf. [1]): 7(u) = u®
(u > 0) where J is some real number, and we get: G(x) = )%O(al|1'|)1“""S
(x € C\ {0}). Therefore, in this case, G is of the form (24) with ¢ =d.

If G is of the form (24), we have: G(C) = R (i) | {0} where
I = (—00, 9| for some real number ¢. Using (10), we have by induction:
(IG|(z))™ € |G|(C) (n € N,z € C). We deduce:

2ipm

G(C)=en

(l+u5)]R U {0} )\1 (14+i6)R U {O}
0

Let us consider now the case where H = I" U {0} is not included in R
and {a,b} is a basis of the real vector space C. We have (12) and (13)
with 3 — ﬁ% € 21Q. Since G(H) is a connected part of H containing 0,

we get from (13): G(H) = e e~ 03 =85) U {0} where I = (—o0, 8| for
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some real number J. By using (10), we prove as before that I = R and we
deduce: G(H) = )\ioe“R u{0}.

In the three cases: H = C and G of the form (24), H = I' U {0}
with b = 0, H = I" U {0} not included in R and {a,b} is a basis of the
real vector space C, we have: G(H) = /\ioe”R U {0} where 7 is respectively
(1 4+ 40) and a. Since by (29) we have: @(Aox) = ¢(z) (z € H), the
function ¢ : R — K defined by: ¢(z) = ¢(e") (x € R) is by (9) a
nonconstant continuous solution of the Cauchy’s exponential functional
equation: ¢(z +y) = ¢(x) - p(y). We get from [1]: ¢(x) = e (z € R)
where v is some element of K. Since ¢ is continuous at 0 and ¢(0) = 0, we

voif 0
deduce: p(u) = (])u| ?f v 0 where ~ is some element of K such that
if u=
Rev > 0. We obtain the form (25) for F'.
Let us now determine G in the case where H = I'U{0} is not included
in R and {a,b} is a basis of the real vector space C. Since H \ N is

connected, in the same way as we proved (13), we can prove that there
exists some pg in Z such that we have: z = |z]ae® (¥ =8%) (x € H\ N).
Therefore, we have: H\ N = e o8 =B5) where I is an interval of R.

Let us suppose I # R. Then, there exists yp in e®Reo(F'=B) such that
G(yo) = 0. (10) and (13) imply: G(yoe®e 0¥ =F3)) = 0. However, by
(11), (12) and (25), we have also:

’
o

G(a)| = |G PDz)| (« € H). (30)
We deduce: G(yoe®) = G(e®Reo(F'=F3)) = 0 which brings the contra-
diction. So, we have obtained:

H\N = eaReipo(ﬁ’—ﬂ%/) — aR+pob (31)

By (30), if = belongs to H \ N, e*"0(8"=8%) 2 bhelongs also to H \ N for
all k£ in Z. (31) implies: no(8 — ﬁ%’) € 2nZ. We deduce: h(y,z) =1
and, by (13), G(H) = e™ U {0}. The definition of h(y,z) implies that
G : H — K is a nonconstant continuous solution of (4bis). The function
¢ : R — R satisfying: G(e*®00'=F3)) = ¢?MNa(\ € R) is defined by:

@

d(N) = éln]G(e)‘“eipo(ﬁ/_ﬁz))] (A € R), and (4bis) implies that ¢ is a
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nonconstant continuous solution of the functional equation (28). We get
from [5]: #(A) = A+ n (A € R) where 7 is an arbitrary real number. We
deduce that G has the form (21). O

Since all the forms of G and F' given in the Propositions 2 and 3 are
solutions of (2), we have got the following result.

Theorem 1. Let us suppose that H is given by Lemma 1. All con-
tinuous solutions F': H — K and G : H — H of the functional equation
(2) such that H\ G~1(0) is connected in the case where H is not included
in R, are given by: either
(i) F=0or F =1, G arbitrary, or
(ii) in the cases H = R, H =T U {0} with b =0, H = C, G is given by

(22), or
(iii) in the case H = R only , either G is of the form (23), or G(x) = —d|x|

(z € R) where d is an arbitrary positive real number, or
(iv) in the case where H = I" U {0} is not included in R and {a,b} is a

basis of the real vector space C, G is of the form (21), or
(v) in the case H = C only, G is either of the form (14) or of the form

(24),
and, in all cases F' is given by (25), in the case H = R and (22) only F is
given by (26), in the case H = C and (22) only F is given by (27).

4. Case where H does not contain 0
or H \ {0} is a not multiplicative group.

We shall restrict ourselves to the case where H is an interval of R.
The only possibilities for H such that H does not contain 0 or H \ {0} is
a not multiplicative group, but H? C H, are:

H = (0,400); H=la,+00), a>1;

H=|bal, -1<b<0<a<l, ¥ <a

where | means either (or [or ) or ].
In order to get ¢, and so F', from (9), we shall use the following result
that we can obtain from [6] or [1]:
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Lemma 3. If [ is a subinterval of (0, +00), all the continuous solutions
¢ : TUI? — K\ {0} of the Cauchy’s power functional equation:

p(uv) = @(u)p(v)(u,v € I) are given by:
(p(u):{Au”f (uwel)

A2 (u e I?)

where A and ~y are arbitrary elements of K such that A # 0 (A = 1 if
’NI#0).

In order to apply this Lemma to (9), we shall study F~1(0) and G~1(0)
when F' and G are continuous solutions of (2) and F' is not constant.

We first remark that, if 0 belongs to H, we have F'(0) = 0, since z =0
in (2) gives: F(0) = F(0)F(y) (y € H).

We have the following result.

Lemma 4. Let F': H — K and G : H — H be continuous solutions
of (2) such that F is not constant. Then, we have: F~1(0) = G~1(0).
If 0 ¢ H, F and G do not vanish.

If 0 € H, either F' and G vanish only at 0, or, in the case H = |b, a|
with b < 0 only, we may have:

F(z)=G(z)=0 Vx>0 (resp. x <0)
F(z)#0,G(x) >0 Yz <0 (resp. x > 0).

PrROOF. We denote I = G(H), which is a nontrivial interval of R
included in H.

Let us suppose that there exists yo in H such that F(yg) = 0.

First, in the case H = (0,400), we have G(yo) > 0 and (2) with =
replaced by % and y = yo implies that F' is identically zero, which is
not the case. Therefore, F' does not vanish in this case.

In the other cases, we have by (2):
either G(yo)#0 and F(z)=0 (xe€ G(y).H) (32)
or Gy)=0 and F(z)=0 (x€yo.l). (33)

Since F' is not identically zero, the continuity of F' implies that there exists
20 in H \ {0} such that 0 < |F(20)| < 1. Letting x = 20.(G(20))" "}, y = 20
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in (2), we get by induction:
F(20.(G(20))") = (F(20))"" #0  (n€N). (34)
Since 0 < |F(z0)| < 1, we have lim,_ 1 (F(20))"*' = 0 and therefore

Glzo)] # 1.

If H = |a,+00), a > 1, we have G(z9) > 1 and there exists n in N
such that zo.(G(zp))"™ belongs to G(yp).H. This is impossible by (32) and
(34). Therefore, F' does not vanish in this case.

If H=|ba| with =1 <b <0< a<1, wehave |G(z)| < 1. Let us
suppose first G(yp) # 0. Then, there exists n in N such that zp.(G(20))"”
belongs to G(yp).H. This is impossible by (32) and (34). We deduce first
that, if 0 ¢ H, I’ does not vanish.

Then, if 0 € H, we must have G(yg) = 0. By (2), we get:

if 0eH,  F(y)=0<= Gy =0. (35)

In particular, we have in this case F'(0) = G(0) = 0. Suppose now that
there exists yp # 0 in H such that F(yp) = 0. We have G(yo) = 0. But,
there exists n in N such that zy.(G(zp))™ belongs to yo.I, except maybe in
the case where b is negative and I is included in [0, +00). This is impossible
by (33) and (34). Therefore, by (35), except in the latter case, if 0 € H,
F and G vanish only at 0.

Let us consider now the case H = |b,al, b < 0, I C [0,+00). Let us
suppose that yo > 0 satisfies F'(yg) = 0. Then, by (35), we have G(yo) = 0.
If F is not identically zero on [0,a|, there exists zp in (0,a) such that
0 < |F(z0)|] < 1 and there exists n in N such that zy.(G(zp))" belongs to
yol. This is impossible by (33) and (34). Therefore, F' is identically zero
on [0,al. Similarly, if there exists yo in |b,0) such that F(yo) = 0, F is
identically zero on |b,0]. Using (35), we deduce that we may have in this
case:

either F(z)=G(x)=0Vzx<0; F(zx)#0, G(x)>0 V>0

or F(z)=G(z)=0Vx>0; F(z)#0, G(z)>0 Vz<O. O
Using Lemmas 3 and 4, we shall now prove the following result.
Theorem 2. If H = (0,4+00) or H = |a,+00) witha > 1 or H = |b, a

with —1 < b <0 < a <1, b? < a, all continuous solutions F : H — K and
G : H — H of the functional equation (2) are given by:
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e F=0or F =1, G arbitrary,

G(z) =cx (x € H) (36)

where ¢ > 0 if H = (0,+00),c¢>1if H = |a,+0),0 < c<1if H = (0,al,
Sup(%,%) <c¢<1l c¢c#0if H=|bal, b <O, (Sup(g,%) <c<1if
H = (b,a], a = [b], or H = [b,a), a <[b])

and, in the case H = |b,a| with b < 0 only,

b
G(z) = —c|z|(x € H) with 0 < ¢ < Inf <1, U)

(c < Inf <1, @)) if H= (b, a], ‘b‘ < a) (37)
G(z) = Sup(—cex,c1z) (x € H) with0<¢; <1, 0 < ¢y < ’%”
crtce#0 (62<£|1'fH:[b,a)>, (38)

e if0 ¢ H, F(x) = (G(x))" (x € H) where y is an arbitrary nonzero
element of K,

if0e H,
G(z)|" if G 0
play~ [1C@IT i G £ .
0 if G(x)=0
where v is some element of K such that Rey > 0,
and, in the case where H = |b,a| and G is of the form (36) only,
G(x)|["signG if 0
ro) _ [IG@ s G if "
0 if x=0

where v is some element of K such that Re~vy > 0.

PROOF. Let F : H — K and G : H — H be continuous solutions
of (2) such that F is not constant.

1. We consider first the cases: H = (0,4+0), or H = |a,+0), a > 1, or
H=(0,al, a <1.
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By Lemma 4, F' and G do not vanish. So, by (9) and with I = G(H),
@:TUI*>C HC(0,+00) — K\ {0} is a nonconstant continuous solution
of the Cauchy’s power functional equation. By Lemma 3, we have:

o(u) = AuY(u € I) where A and ~ are some nonzero elements of K. By
(7), we get: F(x) = A(G(z))Y (x € H). With (2) we obtain:

G(zG(y) = A(G(2)(G(y)"  (z,y € H). (41)

If Rey # 0, we get: G(zG(y)) = BG(z) G(y) (x,y € H) with B =

1 . .,
|A|Rev. If Rey = 0, we have v = €', ¢ # 0. (41) implies that A = ¢'°
and, by the continuity of G, there exists n in Z such that: G(zG(y)) =

27rn+c/

e ¢ G(z)G(y) (z,y € H).

So, in all cases, there exists B > 0 such that:

G(2G(y)) = BG(2)G(y)  (2,y € H). (42)

This implies:
G(zt) = BG(z)t (xe Hitel). (43)

Let us now determine /. By (42) we have by induction:
G(z(G(y)") = G(x)(BG(y)"  (ze Htel). (44)

Since G is not constant, there exists y in I such that BG(y) # 1.

In the case H = (0,400), since the formula (44) is true for all n in Z,
we have with for example BG(y) > 1 : lim, 4100 (BG(y))" = 400 and
lim,, .o (BG(y))™ = 0. We deduce from (44): I = H = (0, 400).

In the other cases: if BG(y) > 1, we have lim,_, 4+ (BG(y))" = +0o0,
and (44) implies: I = |a;, +o0), H = |a, +00) with a; > a,
if BG(y) < 1, we have nBToo(BG(y))n =0, and (44) implies: I = (0,a1],
H = (0,a| with a; < a.

If I = H=(0,400), (43) with z = 1 implies the expression (36) for G.

In the other cases, we have from (43): G(z)= Ggf) (xeH, tel).
Since at belongs to H, the continuity of G on H implies that
§ = limg 4 zem G(2) exists and is positive. We have:

G(at) = Bst  (tel). (45)
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Now, for all z and y in H, xG(y) belongs to al and we have by (42) and

(45): G(z) = Gg&(;;))) = 9. So, in all these cases, we have the expression
(36) for G. The conditions on ¢ are given by the fact that G takes its values

in H. (41) implies now A = 1, and therefore F(z) = (G(x))"(z € H).

2. Let us consider now the case H = [0,al, a < 1.

By Lemma 4 F' and G vanish only at 0. Therefore, F': (0,a| — K\ {0}
and G : (0,a|] — (0,a| are nonconstant continuous solutions of (2). Using
the continuity of F' and G at 0, we deduce from the previous case that G
has the form (36) and F' has the form (39).

3. Finally let us consider the case H = |b,a], -1 <b<0<a <1, b* <a.

3.1. We shall first investigate the case I = [0,a] C [0, al.

By Lemma 4 and (7) we have: F(y) = ¢(G(y)) = 0 <= G(y) = 0.
Therefore, ¢ does not vanish on (0, «|. By (9), Lemma 3 and the fact that
(0,02 C (0,al, we have: p(u) = u” (u € (0,a|) where v is some nonzero
element of K. Lemma 4, (7), (8) and the continuity of F' imply that F' has
the form (39) with Revy > 0. Using (2), we get:

G(2G(y)) = G(x)G(y)  (z,y € H). (46)

This implies: G(zt) = G(z).t (x € H, t € I). Let us fix t > 0 in I. Since
at and bt belong to H, the continuity of G on I implies that

0 =limy -0 G(z) = @ and g = lim, 410 G(z) = @ exist and are

nonnegative. We deduce:

if z € [0,
Gle) = 7 Treloal 020 md m<o (@7)
cox if z € |ba, 0]

Now, for all  and y in H with G(y) # 0, xG(y) belongs to aH and we
have by (46) and (47):

G(zG(y)) Jaz ifxe(0,q
cox if x €1b,0].

We deduce that G has the form (38). The conditions on ¢; and ¢y come
from the fact that G is not identically zero and takes its values in H.
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3.2. Let us investigate now the case I = |3,0] C |b,0].

Like in §3.1. ¢ does not vanish on |3, 0) and satisfies: p(uv) = p(u)p(v)
(u,v € |B3,0)). Let us denote: A = p(up) # 0 for some fixed ug in
|3,0). The function ¢ : (0, u%] — K\ {0} defined by: ¢(z) = sz(udz)
(x € (0, uﬁo\) is a nonconstant continuous solution of the Cauchy’s power
functional equation. We get from Lemma 3: ¢(x) = 27 (x € (0, %]) where

1
7 is some element of K. We deduce: ¢(u) = X(p(uou) = )\gb(uﬁ) = Alu|”
0

(u € 16,0)) where A is some element of K\ {0}. The continuity of F at 0
and (7) imply:

AlG(z)|Y if G 0

poy = JAG@IT G 7

0 if G(z) =0
with Rey > 0. Using (2), we see that there exists B = |A|R%W > 0 such
that:

G(zG(y)) = —BG(x)G(y)  (z,y € H). (48)

With the same argument as in 3.1., we can prove that G has the form:

if x € [0,
G(z) = az ifx€[0,al with ¢ <0 and ¢y > 0. (49)
cox if z € ]b, 0]

Now, if z € (0,a| and G(y) # 0, = G(y) belongs to |b,0) and we have by
(48) and (49): G(zG(y)) = c22G(y) = —BG(2)G(y) = —Bc1zG(y) which
implies cg = —Bec;. Similarly with = € |b,0) we prove ¢; = —Bcy. This
implies B = 1 and ¢; = —cy. From (2) we have A = 1. Therefore, G has
the form (37) and F' has the form (39).The conditions on ¢ are imposed
by the fact that G takes its values in H.

3.3. Let us finally investigate the case I = |3,a| C |b,al, 5 <0 < a.
By Lemma 4 F and G vanish only at 0. By (9) ¢ is a nonconstant
continuous solution of the restricted Cauchy’s power functional equations:

pluv) = p(u)p(v)  (u,v € (0,af)  (resp. (u,v € [6,0))).

As in 3.1. and in 3.2. there exist A, v1, 2 in K, with A £ 0, Rey; > 0,
Re~2 > 0 such that p(u) = u" (u € (0,a) and p(u) = Alu|” (u € |5,0)).
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Now, if u € |3,0), there exists 0 < o/ < « such that uv € |3,0) for
all v € (0,a’) and we have: p(uv) = Aluv|[? = Alu|2v? . This implies:
T2=71 =7

Furthermore, if u € |3,0), there exists v € |3,0) such that uv € (0, |
and we have: p(uv) = uv? = A2|u|”|v|?, which implies A = 4+1. So, we
have obtained:

go(u)—{’uh ifu#0 or cp(u):{’uWSignu ifu 0

either =
0 fu=0 0 if u=0.

We deduce that F' has either the form (39) or the form (40). (2) implies
now: |G(zG(y))| = |G(z)||G(y)| (z,y € H), which implies:

|G(xt)| = |G(x)| |t| (x € H,t € I). With the same argument as in 3.1., we
can prove that |G| has the form:

cile] ifxeal
|G(x)| = ilel where ¢; and ¢y are positive.
colz| ifxebl

Since al N bl is a nontrivial interval, we have ¢; = ¢ = ¢. Now, for
all z and y in H with y # 0, xG(y) belongs to al U bl and we have:
|G(z)] = W = c|z|. Since G is neither always nonpositive nor
always nonnegative, we deduce that G is of the form (36). The conditions

on ¢ are obtained from the fact that G takes its values in H. |

Corollary (cf. [3]). If H = (0,400) or H = |a,+00) with a > 1 or
H = |bya| with =1 < b <0 < a <1, b* < a, all continuous solutions
f + H — H of the functional equation: f(xf(y)) = f(z)f(y) (x,y € H)
are given by f = ¢ where ¢ : R — R is an arbitrary continuous solution
of the functional equation (4) satisfying ¢(H) C H. ¢ is unique in the case

H =|b,al, b<0.
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