Pexider generalization of a functional equation of multiplicative symmetry

By NICOLE BRILLOUET-BELLUOT (Nantes)

Abstract

Let \mathbb{K} be either \mathbb{R} or \mathbb{C}. The problem of finding the continuous solutions $f, g, h: \mathbb{K} \rightarrow \mathbb{K}$ of the functional equation: $$
\begin{equation*} f(x g(y))=h(x) h(y) \quad(x, y \in \mathbb{K}) \tag{1} \end{equation*}
$$ may be reduced to the problem of finding the continuous solutions $F, G: \mathbb{K} \rightarrow \mathbb{K}$ of the functional equation: $$
\begin{equation*} F(x G(y))=F(x) F(y) \quad(x, y \in \mathbb{K}) . \tag{2} \end{equation*}
$$

In the present paper, we obtain the continuous solutions $F: H \rightarrow \mathbb{K}$ and G : $H \rightarrow H$ of (2) when H is a nontrivial connected subset of \mathbb{K} satisfying $H^{2} \subseteq H$.

1. Introduction

Let \mathbb{K} be either \mathbb{R} or \mathbb{C}. In [3] we obtained the continuous solutions $f: \mathbb{K} \rightarrow \mathbb{K}$ of the functional equations of multiplicative symmetry:

$$
\begin{align*}
f(x f(y))=f(y f(x)) & (x, y \in \mathbb{K}) \tag{3}\\
f(x f(y))=f(x) f(y) & (x, y \in \mathbb{K}) \tag{4}
\end{align*}
$$

Mathematics Subject Classification: Primary 39B22, 39B32.
Key words and phrases: Pexider functional equation, multiplicative symmetry, connected subset, multiplicative group.
under the hypothesis that $f(\mathbb{C}) \backslash\{0\}$ is connected if f is not constant and if $\mathbb{K}=\mathbb{C}$.

In the present paper we consider a Pexider generalization of the functional equation (4). More precisely, we look for the continuous solutions $f, g, h: \mathbb{K} \rightarrow \mathbb{K}$ of the functional equation:

$$
\begin{equation*}
f(x g(y))=h(x) h(y) \quad(x, y \in \mathbb{K}) \tag{1}
\end{equation*}
$$

We have the following result:
Proposition 1. All the continuous solutions $f, g, h: \mathbb{K} \rightarrow \mathbb{K}$ of the functional equation:

$$
\begin{equation*}
f(x g(y))=h(x) h(y) \quad(x, y \in \mathbb{K}) \tag{1}
\end{equation*}
$$

are the following:
(i) either $g \equiv 0$ and

- if $\mathbb{K}=\mathbb{R}, f$ is arbitrary but $f(0) \geq 0$ and either $h \equiv \sqrt{f(0)}$ or $h \equiv-\sqrt{f(0)}$
- if $\mathbb{K}=\mathbb{C}$, f is arbitrary and either $h \equiv \sqrt{f(0)}$ or $h \equiv-\sqrt{f(0)}$ where $\sqrt{f(0)}$ is one of the square roots of $f(0)$.
(ii) or $g \not \equiv 0$ and

$$
\begin{equation*}
f(x)=\beta^{2} F\left(\frac{x}{\alpha}\right), h(x)=\beta F(x), g(y)=\alpha G(y) \quad(x, y \in \mathbb{K}) \tag{5}
\end{equation*}
$$

where α and β are arbitrary elements of \mathbb{K} such that $\alpha \neq 0$ and $F, G: \mathbb{K} \rightarrow \mathbb{K}$ are continuous solutions of the functional equation:

$$
\begin{equation*}
F(x G(y))=F(x) F(y) \quad(x, y \in \mathbb{K}) . \tag{2}
\end{equation*}
$$

Proof. The case (i) is obvious. If g is not identically zero, there exists y_{0} in \mathbb{K} such that $g\left(y_{0}\right)=\alpha \neq 0$. Letting $y=y_{0}$ in (1), we get: $f(\alpha x)=h(x) h\left(y_{0}\right)(x \in \mathbb{K})$.

The case $h\left(y_{0}\right)=0$ leads to $f \equiv 0$ and $h \equiv 0$, which are obviously solutions of (1) for an arbitrary function g.

So, we suppose now $h\left(y_{0}\right)=\beta \neq 0$ and we get: $h(x)=\frac{1}{\beta} f(\alpha x)$ $(x \in \mathbb{K})$. If we define: $F(x)=\frac{1}{\beta^{2}} f(\alpha x)(x \in \mathbb{K}), G(y)=\frac{1}{\alpha} g(y)(y \in \mathbb{K}), F$ and G are solutions of (2).

Conversely, if F and G are solutions of (2) and if f, g, h are defined by (5) with $\alpha \neq 0, f, g, h$ are solutions of (1).

In the sequel we will solve the functional equation (2) on a subset of \mathbb{K}. In the whole paper, U will denote $\{z \in \mathbb{C} ;|z|=1\}$.

2. Problem of finding the continuous solutions of (2)

Let H be a nontrivial connected subset of \mathbb{C} satisfying $H^{2} \subseteq H$, where $H^{2}=\{x y ; x \in H, y \in H\}$. We look for the continuous solutions $F: H \rightarrow \mathbb{K}$ and $G: H \rightarrow H$ of the functional equation (2). $F \equiv 0$ and $F \equiv 1$ are the only constant solutions of (2) for an arbitrary continuous function G.

From now on, we suppose that F is a nonconstant continuous solution of (2). This implies that G is not constant.

We have by (2):

$$
\begin{aligned}
F(x) F(y) F(z) & =F(x G(y)) F(z)=F(x G(y) G(z)) \\
& =F(x) F(y G(z))=F(x G(y G(z))) .
\end{aligned}
$$

We deduce:

$$
\begin{equation*}
F(x G(y G(z))=F(x G(y) G(z)) \quad(x, y, z \in H) \tag{6}
\end{equation*}
$$

Since F is not identically zero, there exists x_{0} in H such that $F\left(x_{0}\right) \neq 0$ and we have from (2):

$$
\begin{equation*}
F(y)=\varphi(G(y)) \quad(y \in H) \tag{7}
\end{equation*}
$$

where $\varphi: H \rightarrow K$ is the continuous function defined by:

$$
\begin{equation*}
\varphi(y)=\frac{F\left(x_{0} y\right)}{F\left(x_{0}\right)} \quad(y \in H) \tag{8}
\end{equation*}
$$

Using (2), (6), (7) and (8), we get:

$$
\begin{aligned}
F(x G(y)) & =\varphi(G(x G(y))=\varphi(G(x) G(y)) \\
& =F(x) F(y)=\varphi(G(x)) \varphi(G(y)) .
\end{aligned}
$$

We deduce:

$$
\begin{equation*}
\varphi(G(x) G(y))=\varphi(G(x)) \varphi(G(y)) \quad(x, y \in H) \tag{9}
\end{equation*}
$$

So, if we determine the range of G, we can deduce $\varphi: G(H) \rightarrow K$ by using the continuous solutions of the Cauchy's power functional equation, and we get F from (7).

3. Case where H contains 0 and $H \backslash\{0\}$ is a multiplicative group

We have first the following result whose method of proof has been used in [3].

Lemma 1. The only closed connected subsets H of \mathbb{C} containing 0 such that $H \backslash\{0\}$ is a multiplicative group are : $H=\mathbb{C}$ and $H=\Gamma \cup\{0\}$ with $\Gamma=\left\{e^{\lambda a+n b} ; n \in \mathbb{Z}, \lambda \in \mathbb{R}\right\}$ where $a, b \in \mathbb{C}$, $\operatorname{Re} a \neq 0$ and either $b=0$ or $\{a, b\}$ is a basis of the real vector space \mathbb{C}.

Proof. The mapping h defined by: $h(x)=e^{x} \quad(x \in \mathbb{C})$ is a continuous homomorphism from the additive group $(\mathbb{C},+)$ onto the multiplicative group $(\mathbb{C} \backslash\{0\},$.$) . Since M=H \backslash\{0\}$ is a closed subgroup of $(\mathbb{C} \backslash\{0\},$.$) ,$ $h^{-1}(M)$ is a closed additive subgroup of $(\mathbb{C},+)$. We deduce that we have the following possibilities (cf. [2]):
(i) $h^{-1}(M)=a \mathbb{R}$;
(ii) $h^{-1}(M)=a \mathbb{Z}$ where a is some nonzero complex number;
(iii) $h^{-1}(M)=a \mathbb{Z}+b \mathbb{Z}$;
(iv) $h^{-1}(M)=a \mathbb{R}+b \mathbb{Z}$ where $\{a, b\}$ is a basis of the real vector space \mathbb{C};
(v) $h^{-1}(M)=\mathbb{C}$;
(vi) $h^{-1}(M)=\{0\}$.

Since H is connected, the cases (ii), (iii) and (vi) do not occur. The cases (v), (i) and (iv) lead to the result.

Remark. The only closed connected subsets H of \mathbb{C} containing 0 and included in \mathbb{R}, such that $H \backslash\{0\}$ is a multiplicative group, are $H=[0,+\infty)$ and $H=\mathbb{R}$, which correspond respectively to the cases $a \in \mathbb{R}, \frac{\operatorname{Im} b}{2 \pi} \in \mathbb{Z}$ and $a \in \mathbb{R}, \frac{\operatorname{Im} b}{\pi} \in 2 \mathbb{Z}+1$.

If H is given by Lemma 1 , we have the following result concerning (2).
Lemma 2. Let us suppose that H is given by Lemma 1. If $F: H \rightarrow \mathbb{K}$, $G: H \rightarrow H$ are continuous solutions of (2) such that F is not constant, G is a nonconstant solution of the following functional equation:

$$
\begin{equation*}
|G(y G(z))|=|G(y)| \mid G(z)] \quad(y, z \in H) . \tag{10}
\end{equation*}
$$

Proof. If F, G are continuous solutions of (2), they satisfy (6).
If $G(y) G(z) \neq 0$, we define: $h(y, z)=\frac{G(y G(z))}{G(y) G(z)}$ which belongs to H. With x replaced by $\frac{x}{G(y) G(z)}$ in (6), we get: $F(x h(y, z))=F(x)(x \in H)$. Since F is not constant, we have $h(y, z) \neq 0$ and

$$
\begin{equation*}
F\left(x(h(y, z))^{n}\right)=F(x) \quad(x \in H, n \in \mathbb{Z}) . \tag{11}
\end{equation*}
$$

If $\mid h(y, z) \neq 1$, (11) and the continuity of F at 0 would imply that F is constant, which is not the case. Therefore, we have $|h(y, z)|=1$ i.e. (10).

If $G(y) G(z)=0$, we have by $(6): F(x G(y G(z))=F(0)(x \in H)$. Since F is not constant, we have $G(y G(z))=0$ which implies (10).

From the functional equation (10), we will first determine G and then we get F with (9) and (7).

Let $F: H \rightarrow \mathbb{K}$ and $G: H \rightarrow H$ be nonconstant continuous solutions of (2). We denote $N=G^{-1}(0)$ and we suppose that $H \backslash N$ is connected if H is not included in \mathbb{R}.

By (10), the function $h:(H \backslash N) \times(H \backslash N) \rightarrow H \backslash\{0\}$ defined by: $h(y, z)=\frac{G(y G(z))}{G(y) G(z)}(y, z \in H \backslash N)$ takes its values in $U \cap H$.

If $H=\Gamma \cup\{0\}$ with $b=0$, we have: $h(y, z)=1 \quad(y, z \in H \backslash N)$.
If $H=\mathbb{R}, h(y, z)$ belongs to $\{-1,1\}$ for all y and z in $H \backslash N$.
If $H=\Gamma \cup\{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C}, we have: $h(y, z)=e^{\lambda a+n b}=e^{i n\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}(y, z \in H \backslash N)$ with $a=\alpha+i \alpha^{\prime}, b=\beta+i \beta^{\prime}, \beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha} \neq 0$. Since $H \backslash N$ is connected, there exists some n_{0} in \mathbb{Z} such that

$$
\begin{equation*}
h(y, z)=e^{i n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)} \quad(y, z \in H \backslash N) . \tag{12}
\end{equation*}
$$

Moreover, if y belongs to $H \backslash N$, we have $G(y)=e^{\lambda a+n b}$ and $|G(y)|=e^{\lambda \alpha+n \beta}$, which implies: $\lambda=\frac{1}{\alpha}(\ln |G(y)|-n \beta)$. We deduce: $G(y)=|G(y)|^{\frac{a}{\alpha}} e^{i n\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}$. Since $H \backslash N$ is connected, $\left\{G(y) .|G(y)|^{-\frac{a}{\alpha}} ; y \in\right.$ $H \backslash N\}$ is a connected subset of $\left\{e^{i n\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)} ; n \in \mathbb{Z}\right\}$ which is a discrete set of points of U. Therefore, there exists some m_{0} in \mathbb{Z} such that we have: $G(y)=|G(y)|^{\frac{\alpha}{\alpha}} e^{i m_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}(y \in H \backslash N)$. The definition of $h(y, z)$, (10) and (12) imply: $e^{i n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}=e^{-i m_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}$. We deduce:

$$
\begin{equation*}
G(y)=|G(y)|^{\frac{\alpha}{\alpha}} e^{-i n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)} \quad(y \in H \backslash N) \tag{13}
\end{equation*}
$$

In a first case, we have the following result:
Proposition 2. Let us suppose that H is given by Lemma 1. Let $F: H \rightarrow \mathbb{K}$ and $G: H \rightarrow H$ be nonconstant continuous solutions of (2) such that $H \backslash G^{-1}(0)$ is connected in the case where H is not included in \mathbb{R}.
We suppose that there exists y and z in $H \backslash G^{-1}(0)$ such that
if $H=\mathbb{R}, h(y, z)=-1$
if H is not included in $\mathbb{R}, h(y, z)$ is not a root of 1 .
Then, if $H=\mathbb{R}, G(x)=-d|x| \quad(x \in \mathbb{R})$,
if H is not included in \mathbb{R}, we have $H=\mathbb{C}$ and

$$
G(x)= \begin{cases}0 & \text { if } x=0 \tag{14}\\ d x \theta(x) & \text { if } x \neq 0\end{cases}
$$

where d is some positive real number and $\theta: \mathbb{C} \backslash\{0\} \rightarrow U$ is some nonconstant continuous function and, in both cases,

$$
F(x)= \begin{cases}(d|x|)^{\gamma} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$.
Proof. In the case $H=\mathbb{R}$, we deduce from (11) that F is an even function.

In the case where H is not included in $\mathbb{R},\left\{\left(h(y, z)^{n}\right\}_{n \in \mathbb{Z}}\right.$ is dense in U. The fact that H is closed, the continuity of F and (11) imply : $U \subset H$ and $F(\lambda x)=F(x)(x \in H, \lambda \in U)$. Therefore, we have: $|x| \in H$ if $x \in H$ and $F(x)=F\left(|x| \frac{x}{|x|}\right)=F(|x|)(x \in H \backslash\{0\})$.

So, in both cases, we have:

$$
\begin{equation*}
F(x)=F(|x|) \quad(x \in H) \tag{15}
\end{equation*}
$$

By (8), we deduce:

$$
\begin{equation*}
\varphi(y)=\varphi(|y|) \quad(y \in H) \tag{16}
\end{equation*}
$$

Therefore, we have by (9):

$$
\begin{equation*}
\varphi(|G(x)||G(y)|)=\varphi(|G(x)|) \varphi(|G(y)|) \quad(x, y \in H) \tag{17}
\end{equation*}
$$

We first determine the range of $|G|$. (15) and (2) imply:

$$
\begin{equation*}
F(x|G(y)|)=F(x) F(y) \quad(x, y \in H) \tag{18}
\end{equation*}
$$

The functional equation (18) is of the form (2) where G is replaced by $|G|$. By Lemma 2, $|G|: H \rightarrow[0,+\infty)$ is a nonconstant continuous solution of the following functional equation:

$$
\begin{equation*}
|G(y .|G(z)|)|=|G(y)||G(z)| \quad(y, z \in H) \tag{19}
\end{equation*}
$$

which is nothing but the functional equation (4). We deduce from Theorem 1 of [3] and from the Remark following this theorem:

- in the case $H=\mathbb{R},|G(x)|=\operatorname{Sup}(-c x, d x)(x \in \mathbb{R})$ where c and d are nonnegative real numbers satisfying $d>-c$
- in the case $H=\mathbb{C}$ either
(i) $|G(x)|=d|x|(x \in \mathbb{C})$ where d is some positive real number, or
(ii) $|G(x)|= \begin{cases}0 & \text { if } x=0 \text { or if } x \neq 0 \text { and } \frac{x}{|x|} \in \mathcal{N} \\ |x| \psi\left(\frac{x}{|x|}\right) & \text { if } x \neq 0 \text { and } \frac{x}{|x|} \notin \mathcal{N}\end{cases}$
where $\psi: U \rightarrow[0,+\infty)$ is some continuous function with $\mathcal{N}=\psi^{-1}(0)$ such that $U \backslash \mathcal{N}$ is connected.
Let us now consider the case where $H=\Gamma \cup\{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C}. In this case, we have (12) with $n_{0} \neq 0$ and $\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha} \notin 2 \pi \mathbb{Q}$. By (13), for $y \in H \backslash N$, we have $G(y)=e^{\lambda a+n b}$ with $\left(n+n_{0}\right)\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right) \in 2 \pi \mathbb{Z}$. This implies: $n=-n_{0}$ and $G(y)=e^{\lambda a-n_{0} b}$. Therefore, we have: $|G(y)|=e^{\mu \alpha}$ with $\mu=\lambda-n_{0} \frac{\beta}{\alpha}$, and so $|G|(H \backslash N) \subset e^{\alpha \mathbb{R}}$. Since $|G|$ is not constant, (19) implies: $G(0)=0$. By the connectedness of H, we get: $|G|(H)=e^{\alpha I} \cup\{0\}$ where $I=(-\infty, \delta \mid$ for some $\delta(\mid$ means either) or]). Using (19), we have by induction: $(|G|(H))^{n} \subset|G|(H)(n \in \mathbb{N})$. We deduce: $|G|(H)=e^{\alpha \mathbb{R}} \cup\{0\}=[0,+\infty)$.

So, in all cases, we have $|G|(H)=[0,+\infty)$. From (17) we see, by letting $u=|G(x)|, v=|G(y)|$, that $\varphi:[0,+\infty) \rightarrow \mathbb{K}$ is a continuous solution of the Cauchy's power functional equation: $\varphi(u v)=\varphi(u) \varphi(v)$. Since F is not constant, φ is not constant and we get (cf. [1]): $\varphi(u)=\left\{\begin{array}{ll}u^{\gamma} & \text { if } u>0 \\ 0 & \text { if } u=0\end{array}\right.$ where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$.

We deduce from (7) and (16):

$$
F(x)= \begin{cases}|G(x)|^{\gamma} & \text { if } x \notin N \\ 0 & \text { if } x \in N\end{cases}
$$

This implies with (15): $x \in N \Longleftrightarrow|x| \in N$ and

$$
\begin{equation*}
|G(x)|=|G(|x|)| \quad(x \in H) \tag{20}
\end{equation*}
$$

Finally, we determine G.
In the case $H=\mathbb{R},(20)$ implies: $|G(x)|=c|x|(x \in \mathbb{R})$ with $c>0$ and we get either $G(x)=d x(x \in \mathbb{R})$ or $G(x)=d|x|(x \in \mathbb{R})$ where d is some nonzero real number. Since we assume $h(y, z)=-1$ for some y and z in \mathbb{R}, we have: $G(x)=-d|x|(x \in \mathbb{R})$ where d is some positive real number.

In the case $H=\mathbb{C}$, the form (ii) of $|G|$ satisfies (20) if, and only if, $\psi \equiv d$ where d is some positive real number. Therefore, $|G|$ has the form (i) and we deduce (14) in this case. The hypothesis that $h(y, z)$ is not a root of 1 for some y and z in \mathbb{C} implies that θ is not constant.

Let us finally consider the case where $H=\Gamma \cup\{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C}. If we suppose $G\left(y_{0}\right)=0$ for some y_{0} in Γ, we have by (19): $G\left(\lambda y_{0}\right)=0(\lambda \geq 0)$. We get from (20): $G\left(\lambda\left|y_{0}\right|\right)=0(\lambda \geq 0)$ which implies: $G(\lambda)=0(\lambda \geq 0)$. (20) implies that G is identically zero which is not the case. Therefore, we have $N=\{0\}$. So, $H \backslash\{0\}$ is connected and is therefore of the form: $H \backslash\{0\}=\left\{z \in \mathbb{C}: z=|z|^{\frac{a}{\alpha}} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right.}\right\}$ for some $p_{0} \in \mathbb{Z}$. This brings a contradiction with the fact that $|G|(H)=[0,+\infty) \subset H$. Therefore, this case does not occur.

In the other case, we have the following result:
Proposition 3. Let us suppose that H is given by Lemma 1. Let $F: H \rightarrow \mathbb{K}$ and $G: H \rightarrow H$ be nonconstant continuous solutions of (2) such that $H \backslash G^{-1}(0)$ is connected in the case where H is not included in \mathbb{R}.

We suppose that, for all y and z in $H \backslash G^{-1}(0), h(y, z)$ is either equal to 1 in the case $H=\mathbb{R}$, or a root of 1 in the case where H is not included in \mathbb{R}.

Then, • in the the case where $H=\Gamma \cup\{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C},

$$
G(x)= \begin{cases}d x & \text { if } x \in e^{a \mathbb{R}+p_{0} b} \tag{21}\\ 0 & \text { if } x \notin e^{a \mathbb{R}+p_{0} b}\end{cases}
$$

where p_{0} is some integer in \mathbb{Z} and d is some element of $e^{a \mathbb{R}-p_{0} b}$,

- in the cases $H=\mathbb{R}, H=\Gamma \cup\{0\}$ with $b=0, H=\mathbb{C}$, either

$$
\begin{equation*}
G(x)=d x \quad(x \in H) \tag{22}
\end{equation*}
$$

where d is some element of $H \backslash\{0\}$ or, in the case $H=\mathbb{R}$ only,

$$
\begin{equation*}
G(x)=\operatorname{Sup}(-c x, d x) \quad(x \in \mathbb{R}) \tag{23}
\end{equation*}
$$

where c and d are some nonnegative real numbers satisfying $d>-c$, or, in the case $H=\mathbb{C}$ only,

$$
G(x)= \begin{cases}0 \text { if } x=0 \text { or } & \text { if } x \neq 0 \text { and } \frac{x}{|x|^{1+i \delta}} \in \mathcal{N} \tag{24}\\ e^{\frac{2 i p \pi}{n}}\left(|x| \psi\left(\frac{x}{|x|^{1+i \delta}}\right)\right)^{1+i \delta} & \text { if } x \neq 0 \text { and } \frac{x}{|x|^{1+i \delta}} \notin \mathcal{N}\end{cases}
$$

where p is some integer in \mathbb{Z}, n is some positive integer, δ is some real number, $\psi: U \rightarrow[0,+\infty[$ is some continuous function which satisfies: $\psi\left(e^{\frac{i \pi}{n}} x\right)=\psi(x)(x \in U)$ in the case $p \neq k n(k \in \mathbb{Z}), \mathcal{N}=\psi^{-1}(0)$ and $U \backslash \mathcal{N}$ is connected, and, in all cases,

$$
F(x)= \begin{cases}|G(x)|^{\gamma} & \text { if } G(x) \neq 0 \tag{25}\\ 0 & \text { if } G(x)=0\end{cases}
$$

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$, in the case $H=\mathbb{R}$ and (22),

$$
F(x)= \begin{cases}|G(x)|^{\gamma} \operatorname{sign} G(x) & \text { if } G(x) \neq 0 \tag{26}\\ 0 & \text { if } G(x)=0\end{cases}
$$

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$, in the case $H=\mathbb{C}$ and (22),

$$
F(x)= \begin{cases}|G(x)|^{\gamma}(G(x))^{k} & \text { if } G(x) \neq 0 \tag{27}\\ 0 & \text { if } G(x)=0\end{cases}
$$

where k belongs to \mathbb{Z} and γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>-k$.
Proof. We noticed already that we have $h(y, z)=1(y, z \in H \backslash N)$ in the case $H=\Gamma \cup\{0\}$ with $b=0$. So, in the cases $H=\mathbb{R}$ and $H=\Gamma \cup\{0\}$ with $b=0, G: H \rightarrow H$ is a nonconstant continuous solution of the functional equation:

$$
\begin{equation*}
G(x G(y))=G(x) G(y) \quad(x, y \in H) \tag{4bis}
\end{equation*}
$$

If $H=\mathbb{R}$, (4bis) is nothing but (4) and Theorem 1 of [3] implies that G has either the form (22) or the form (23).

We have in this case either $G(H)=[0,+\infty)$ or $G(H)=\mathbb{R}$. By (9), $\varphi: H \rightarrow \mathbb{K}$ is a nonconstant continuous solution of the Cauchy's power functional equation. We deduce (cf. [1]): either

$$
\varphi(u)=\left\{\begin{array}{ll}
|u|^{\gamma} & \text { if } u \neq 0 \\
0 & \text { if } u=0
\end{array} \quad \text { or } \quad \varphi(u)= \begin{cases}|u|^{\gamma} \operatorname{sign} u & \text { if } u \neq 0 \\
0 & \text { if } u=0\end{cases}\right.
$$

where $\operatorname{sgn} u=\frac{u}{|u|}$ and γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$. From (7), we deduce the forms (25) and (26) for F.

In the case $H=\Gamma \cup\{0\}$ with $b=0$, since $G(H)$ is a connected part of H containing 0 , we have $G(H)=e^{a I} \cup\{0\}$ where $I=(-\infty, \delta \mid$ for some real number δ. We get from (4bis) by induction: $(G(H))^{n} \subset G(H)$ $(n \in \mathbb{N})$ which implies $G(H)=H$. If $G\left(y_{0}\right)=0$ for $y_{0} \in \Gamma$, we get: $G\left(y_{0} G(y)\right)=0(y \in H)$, which contradicts $G \not \equiv 0$. We deduce $N=\{0\}$. The function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying: $G\left(e^{\lambda a}\right)=e^{a \phi(\lambda)}(\lambda \in \mathbb{R})$ is defined by: $\phi(\lambda)=\frac{1}{\alpha} \ln \left|G\left(e^{\lambda a}\right)\right|(\lambda \in \mathbb{R})$, and, by (4bis), ϕ is a nonconstant continuous solution of the functional equation:

$$
\begin{equation*}
\phi(\lambda+\phi(\mu))=\phi(\lambda)+\phi(\mu) \quad(\lambda, \mu \in \mathbb{R}) . \tag{28}
\end{equation*}
$$

We get from [5]: $\phi(\lambda)=\lambda+\eta(\lambda \in \mathbb{R})$ where η is an arbitrary real number and we deduce that G has the form (22).

In the case $H=\mathbb{C}$, the hypothesis, the connectedness of $\mathbb{C} \backslash N$ and the continuity of G imply that the range of h is a connected part of $e^{2 i \pi \mathbb{Q}}$, which is totally disconnected. Therefore, h is a constant function and there exists λ_{0} in $e^{2 i \pi \mathbb{Q}}$ such that we have with (11):

$$
\left\{\begin{array}{l}
G(x G(y))=\lambda_{0} G(x) G(y) \tag{29}\\
F\left(\lambda_{0} x\right)=F(x)
\end{array} \quad(x, y \in \mathbb{C})\right.
$$

In this case, $G: \mathbb{C} \rightarrow \mathbb{C}$ is a nonconstant continuous solution of the functional equation (3) which satisfies (29) and such that $\mathbb{C} \backslash N$ is connected. Therefore, it has one of the forms given in Theorem 2 of [3].
G of the form (22), where d is some nonzero complex number, satisfies (29) if, and only if, $\lambda_{0}=1$. In this case, we have $G(\mathbb{C})=\mathbb{C}$. Therefore, by (9), $\varphi: \mathbb{C} \rightarrow \mathbb{K}$ is a nonconstant continuous solution of the Cauchy's power functional equation: $\varphi(u v)=\varphi(u) \varphi(v)$. If u and v belong to $\mathbb{C} \backslash\{0\}$, we see, by letting $u=e^{x}, v=e^{y}$, that the function $\phi: \mathbb{C} \rightarrow \mathbb{K}$ defined by: $\phi(x)=\varphi\left(e^{x}\right)(x \in \mathbb{C})$ is a nonconstant continuous solution of the Cauchy's exponential functional equation: $\phi(x+y)=\phi(x) \cdot \phi(y)(x, y \in \mathbb{C})$. We get from [1]: $\phi(x)=e^{\gamma x+\delta \bar{x}}(x \in \mathbb{C})$ where γ and δ are some complex numbers. This implies: $\left.\varphi(u)=u^{\gamma} \bar{u}^{\delta} u \in \mathbb{C} \backslash\{0\}\right)$. Such a function is continuous on $\mathbb{C} \backslash(-\infty, 0] . \varphi$ is continuous on $(-\infty, 0)$ if, and only if, $e^{i \pi(\gamma-\delta)}=e^{-i \pi(\gamma-\delta)}$ i.e. $\gamma-\delta=k \in \mathbb{Z}$. We deduce: $\varphi(u)=|u|^{\gamma} \bar{u}^{-k}(u \in \mathbb{C} \backslash\{0\})$. This function is continuous at 0 if, and only if, $\operatorname{Re} \gamma>k$. From (7), we get the form (27) for F.

$$
G \text { of the form: } G(x)=\left\{\begin{array}{ll}
d|x| \theta(|x|) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}, \text { where } d\right. \text { is some positive }
$$

real number and $\theta:(0,+\infty) \rightarrow U$ is some continuous function, satisfies (29) if and only if: $\theta(d|x||y|)=\lambda_{0} \theta(|x|) \theta(|y|)(x, y \in \mathbb{C} \backslash\{0\})$. By letting $u=d|x|, v=d|y|$, we see that the function $\tau:(0,+\infty) \rightarrow U$ defined by: $\tau(u)=\lambda_{0} \theta\left(\frac{u}{d}\right) \quad(u>0)$ is a continuous solution of the Cauchy's power functional equation: $\tau(u v)=\tau(u) \tau(v)$. We deduce (cf. [1]): $\tau(u)=u^{i \delta}$ $(u>0)$ where δ is some real number, and we get: $G(x)=\frac{1}{\lambda_{0}}(d|x|)^{1+i \delta}$ $(x \in \mathbb{C} \backslash\{0\})$. Therefore, in this case, G is of the form (24) with $\psi \equiv d$.

If G is of the form (24), we have: $G(\mathbb{C})=e^{\frac{2 i p \pi}{n}} e^{(1+i \delta) I} \cup\{0\}$ where $I=(-\infty, \delta \mid$ for some real number δ. Using (10), we have by induction: $(|G|(x))^{n} \in|G|(\mathbb{C})(n \in \mathbb{N}, x \in \mathbb{C})$. We deduce:

$$
G(\mathbb{C})=e^{\frac{2 i p \pi}{n}} e^{(1+i \delta) \mathbb{R}} \cup\{0\}=\frac{1}{\lambda_{0}} e^{(1+i \delta) \mathbb{R}} \cup\{0\}
$$

Let us consider now the case where $H=\Gamma \cup\{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C}. We have (12) and (13) with $\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha} \in 2 \pi \mathbb{Q}$. Since $G(H)$ is a connected part of H containing 0 , we get from (13): $G(H)=e^{a I} e^{-i n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)} \cup\{0\}$ where $I=(-\infty, \delta \mid$ for
some real number δ. By using (10), we prove as before that $I=\mathbb{R}$ and we deduce: $G(H)=\frac{1}{\lambda_{0}} e^{a \mathbb{R}} \cup\{0\}$.

In the three cases: $H=\mathbb{C}$ and G of the form (24), $H=\Gamma \cup\{0\}$ with $b=0, H=\Gamma \cup\{0\}$ not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C}, we have: $G(H)=\frac{1}{\lambda_{0}} e^{\eta \mathbb{R}} \cup\{0\}$ where η is respectively $(1+i \delta)$ and a. Since by (29) we have: $\varphi\left(\lambda_{0} x\right)=\varphi(x)(x \in H)$, the function $\phi: \mathbb{R} \rightarrow \mathbb{K}$ defined by: $\phi(x)=\varphi\left(e^{\eta x}\right)(x \in \mathbb{R})$ is by (9) a nonconstant continuous solution of the Cauchy's exponential functional equation: $\phi(x+y)=\phi(x) \cdot \phi(y)$. We get from [1]: $\phi(x)=e^{\gamma x}(x \in \mathbb{R})$ where γ is some element of \mathbb{K}. Since φ is continuous at 0 and $\varphi(0)=0$, we deduce: $\varphi(u)=\left\{\begin{array}{ll}|u|^{\gamma} & \text { if } u \neq 0 \\ 0 & \text { if } u=0\end{array}\right.$ where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$. We obtain the form (25) for F.

Let us now determine G in the case where $H=\Gamma \cup\{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C}. Since $H \backslash N$ is connected, in the same way as we proved (13), we can prove that there exists some p_{0} in \mathbb{Z} such that we have: $x=|x|^{\frac{a}{\alpha}} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}(x \in H \backslash N)$. Therefore, we have: $H \backslash N=e^{a I} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}$ where I is an interval of \mathbb{R}. Let us suppose $I \neq \mathbb{R}$. Then, there exists y_{0} in $e^{a \mathbb{R}} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}$ such that $G\left(y_{0}\right)=0$. (10) and (13) imply: $G\left(y_{0} e^{a \mathbb{R}} e^{-i n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}\right)=0$. However, by (11), (12) and (25), we have also:

$$
\begin{equation*}
|G(x)|=\left|G\left(e^{i n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)} x\right)\right| \quad(x \in H) \tag{30}
\end{equation*}
$$

We deduce: $G\left(y_{0} e^{a \mathbb{R}}\right)=G\left(e^{a \mathbb{R}} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}\right)=0$ which brings the contradiction. So, we have obtained:

$$
\begin{equation*}
H \backslash N=e^{a \mathbb{R}} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}=e^{a \mathbb{R}+p_{0} b} \tag{31}
\end{equation*}
$$

By (30), if x belongs to $H \backslash N, e^{i k n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)} x$ belongs also to $H \backslash N$ for all k in \mathbb{Z}. (31) implies: $n_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right) \in 2 \pi \mathbb{Z}$. We deduce: $h(y, z)=1$ and, by (13), $G(H)=e^{a \mathbb{R}} \cup\{0\}$. The definition of $h(y, z)$ implies that $G: H \rightarrow \mathbb{K}$ is a nonconstant continuous solution of (4bis). The function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying: $G\left(e^{\lambda a} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}\right)=e^{\phi(\lambda) a}(\lambda \in \mathbb{R})$ is defined by: $\phi(\lambda)=\frac{1}{\alpha} \ln \left|G\left(e^{\lambda a} e^{i p_{0}\left(\beta^{\prime}-\beta \frac{\alpha^{\prime}}{\alpha}\right)}\right)\right|(\lambda \in \mathbb{R})$, and (4bis) implies that ϕ is a
nonconstant continuous solution of the functional equation (28). We get from [5]: $\phi(\lambda)=\lambda+\eta(\lambda \in \mathbb{R})$ where η is an arbitrary real number. We deduce that G has the form (21).

Since all the forms of G and F given in the Propositions 2 and 3 are solutions of (2), we have got the following result.

Theorem 1. Let us suppose that H is given by Lemma 1. All continuous solutions $F: H \rightarrow K$ and $G: H \rightarrow H$ of the functional equation (2) such that $H \backslash G^{-1}(0)$ is connected in the case where H is not included in \mathbb{R}, are given by: either
(i) $F \equiv 0$ or $F \equiv 1, G$ arbitrary, or
(ii) in the cases $H=\mathbb{R}, H=\Gamma \cup\{0\}$ with $b=0, H=\mathbb{C}, G$ is given by (22), or
(iii) in the case $H=\mathbb{R}$ only, either G is of the form (23), or $G(x)=-d|x|$ ($x \in \mathbb{R}$) where d is an arbitrary positive real number, or
(iv) in the case where $H=\Gamma \cup\{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C}, G is of the form (21), or
(v) in the case $H=\mathbb{C}$ only, G is either of the form (14) or of the form (24),
and, in all cases F is given by (25), in the case $H=\mathbb{R}$ and (22) only F is given by (26), in the case $H=\mathbb{C}$ and (22) only F is given by (27).

4. Case where H does not contain 0

 or $H \backslash\{0\}$ is a not multiplicative group.We shall restrict ourselves to the case where H is an interval of \mathbb{R}. The only possibilities for H such that H does not contain 0 or $H \backslash\{0\}$ is a not multiplicative group, but $H^{2} \subseteq H$, are:

$$
\begin{gathered}
H=(0,+\infty) ; H=\mid a,+\infty), \quad a \geq 1 \\
H=|b, a|, \quad-1 \leq b \leq 0<a \leq 1, b^{2} \leq a
\end{gathered}
$$

where | means either (or [or) or].
In order to get φ, and so F, from (9), we shall use the following result that we can obtain from [6] or [1]:

Lemma 3. If I is a subinterval of $(0,+\infty)$, all the continuous solutions $\varphi: I \cup I^{2} \rightarrow \mathbb{K} \backslash\{0\}$ of the Cauchy's power functional equation: $\varphi(u v)=\varphi(u) \varphi(v)(u, v \in I)$ are given by:

$$
\varphi(u)= \begin{cases}A u^{\gamma} & (u \in I) \\ A^{2} u^{\gamma} & \left(u \in I^{2}\right)\end{cases}
$$

where A and γ are arbitrary elements of K such that $A \neq 0(A=1$ if $\left.I^{2} \cap I \neq \emptyset\right)$.

In order to apply this Lemma to (9), we shall study $F^{-1}(0)$ and $G^{-1}(0)$ when F and G are continuous solutions of (2) and F is not constant.

We first remark that, if 0 belongs to H, we have $F(0)=0$, since $x=0$ in (2) gives: $F(0)=F(0) F(y)(y \in H)$.

We have the following result.
Lemma 4. Let $F: H \rightarrow \mathbb{K}$ and $G: H \rightarrow H$ be continuous solutions of (2) such that F is not constant. Then, we have: $F^{-1}(0)=G^{-1}(0)$.

If $0 \notin H, F$ and G do not vanish.
If $0 \in H$, either F and G vanish only at 0 , or, in the case $H=|b, a|$ with $b<0$ only, we may have:

$$
\begin{cases}F(x)=G(x)=0 & \forall x \geq 0(\text { resp. } x \leq 0) \\ F(x) \neq 0, G(x)>0 & \forall x<0(\text { resp. } x>0)\end{cases}
$$

Proof. We denote $I=G(H)$, which is a nontrivial interval of \mathbb{R} included in H.

Let us suppose that there exists y_{0} in H such that $F\left(y_{0}\right)=0$.
First, in the case $H=(0,+\infty)$, we have $G\left(y_{0}\right)>0$ and (2) with x replaced by $\frac{x}{G\left(y_{0}\right)}$ and $y=y_{0}$ implies that F is identically zero, which is not the case. Therefore, F does not vanish in this case.

In the other cases, we have by (2):

$$
\begin{array}{lllll}
\text { either } & G\left(y_{0}\right) \neq 0 & \text { and } & F(x)=0 & \left(x \in G\left(y_{0}\right) \cdot H\right) \\
\text { or } & G\left(y_{0}\right)=0 & \text { and } & F(x)=0 & \left(x \in y_{0} . I\right) .
\end{array}
$$

Since F is not identically zero, the continuity of F implies that there exists z_{0} in $H \backslash\{0\}$ such that $0<\left|F\left(z_{0}\right)\right|<1$. Letting $x=z_{0} \cdot\left(G\left(z_{0}\right)\right)^{n-1}, y=z_{0}$
in (2), we get by induction:

$$
\begin{equation*}
F\left(z_{0} \cdot\left(G\left(z_{0}\right)\right)^{n}\right)=\left(F\left(z_{0}\right)\right)^{n+1} \neq 0 \quad(n \in \mathbb{N}) \tag{34}
\end{equation*}
$$

Since $0<\left|F\left(z_{0}\right)\right|<1$, we have $\lim _{n \rightarrow+\infty}\left(F\left(z_{0}\right)\right)^{n+1}=0$ and therefore $\left|G\left(z_{0}\right)\right| \neq 1$.

If $H=\mid a,+\infty), a \geq 1$, we have $G\left(z_{0}\right)>1$ and there exists n in \mathbb{N} such that $z_{0} \cdot\left(G\left(z_{0}\right)\right)^{n}$ belongs to $G\left(y_{0}\right) \cdot H$. This is impossible by (32) and (34). Therefore, F does not vanish in this case.

If $H=|b, a|$ with $-1 \leq b \leq 0<a \leq 1$, we have $\left|G\left(z_{0}\right)\right|<1$. Let us suppose first $G\left(y_{0}\right) \neq 0$. Then, there exists n in \mathbb{N} such that $z_{0} \cdot\left(G\left(z_{0}\right)\right)^{n}$ belongs to $G\left(y_{0}\right) \cdot H$. This is impossible by (32) and (34). We deduce first that, if $0 \notin H, F$ does not vanish.

Then, if $0 \in H$, we must have $G\left(y_{0}\right)=0$. By (2), we get:

$$
\begin{equation*}
\text { if } \quad 0 \in H, \quad F\left(y_{0}\right)=0 \Longleftrightarrow G\left(y_{0}\right)=0 \tag{35}
\end{equation*}
$$

In particular, we have in this case $F(0)=G(0)=0$. Suppose now that there exists $y_{0} \neq 0$ in H such that $F\left(y_{0}\right)=0$. We have $G\left(y_{0}\right)=0$. But, there exists n in \mathbb{N} such that $z_{0} \cdot\left(G\left(z_{0}\right)\right)^{n}$ belongs to $y_{0} \cdot I$, except maybe in the case where b is negative and I is included in $[0,+\infty)$. This is impossible by (33) and (34). Therefore, by (35), except in the latter case, if $0 \in H$, F and G vanish only at 0 .

Let us consider now the case $H=|b, a|, b<0, I \subset[0,+\infty)$. Let us suppose that $y_{0}>0$ satisfies $F\left(y_{0}\right)=0$. Then, by (35), we have $G\left(y_{0}\right)=0$. If F is not identically zero on $\left[0, a \mid\right.$, there exists z_{0} in $(0, a)$ such that $0<\left|F\left(z_{0}\right)\right|<1$ and there exists n in \mathbb{N} such that $z_{0} \cdot\left(G\left(z_{0}\right)\right)^{n}$ belongs to $y_{0} I$. This is impossible by (33) and (34). Therefore, F is identically zero on $\left[0, a \mid\right.$. Similarly, if there exists y_{0} in $\left.\mid b, 0\right)$ such that $F\left(y_{0}\right)=0, F$ is identically zero on $\mid b, 0]$. Using (35), we deduce that we may have in this case:
either $\quad F(x)=G(x)=0 \forall x \leq 0 ; \quad F(x) \neq 0, \quad G(x)>0 \quad \forall x>0$
or $\quad F(x)=G(x)=0 \forall x \geq 0 ; \quad F(x) \neq 0, \quad G(x)>0 \quad \forall x<0$.
Using Lemmas 3 and 4, we shall now prove the following result.
Theorem 2. If $H=(0,+\infty)$ or $H=\mid a,+\infty)$ with $a \geq 1$ or $H=|b, a|$ with $-1 \leq b \leq 0<a \leq 1, b^{2} \leq a$, all continuous solutions $F: H \rightarrow K$ and $G: H \rightarrow H$ of the functional equation (2) are given by:

- $F \equiv 0$ or $F \equiv 1, G$ arbitrary,
-

$$
\begin{equation*}
G(x)=c x \quad(x \in H) \tag{36}
\end{equation*}
$$

where $c>0$ if $H=(0,+\infty), c \geq 1$ if $H=\mid a,+\infty), 0<c \leq 1$ if $H=(0, a \mid$, $\operatorname{Sup}\left(\frac{b}{a}, \frac{a}{b}\right) \leq c \leq 1, c \neq 0$ if $H=|b, a|, b<0,\left(\operatorname{Sup}\left(\frac{b}{a}, \frac{a}{b}\right)<c \leq 1\right.$ if $H=(b, a], a \geq|b|$, or $H=[b, a), a \leq|b|)$
and, in the case $H=|b, a|$ with $b<0$ only,

$$
\begin{align*}
& G(x)=-c|x|(x \in H) \text { with } 0<c \leq \operatorname{Inf}\left(1, \frac{|b|}{a}\right) \\
& \left.\quad\left(c<\operatorname{Inf}\left(1, \frac{|b|}{a}\right)\right) \text { if } H=(b, a],|b| \leq a\right) \tag{37}\\
& G(x)=\operatorname{Sup}\left(-c_{2} x, c_{1} x\right)(x \in H) \text { with } 0 \leq c_{1} \leq 1,0 \leq c_{2} \leq \frac{a}{|b|}, \\
& \quad c_{1}+c_{2} \neq 0 \quad\left(c_{2}<\frac{a}{|b|} \text { if } H=[b, a)\right), \tag{38}
\end{align*}
$$

- if $0 \notin H, F(x)=(G(x))^{\gamma}(x \in H)$ where γ is an arbitrary nonzero element of \mathbb{K},
if $0 \in H$,

$$
F(x)= \begin{cases}|G(x)|^{\gamma} & \text { if } G(x) \neq 0 \tag{39}\\ 0 & \text { if } G(x)=0\end{cases}
$$

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$, and, in the case where $H=|b, a|$ and G is of the form (36) only,

$$
F(x)= \begin{cases}|G(x)|^{\gamma} \operatorname{sign} G(x) & \text { if } x \neq 0 \tag{40}\\ 0 & \text { if } x=0\end{cases}
$$

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma>0$.
Proof. Let $F: H \rightarrow \mathbb{K}$ and $G: H \rightarrow H$ be continuous solutions of (2) such that F is not constant.

1. We consider first the cases: $H=(0,+\infty)$, or $H=\mid a,+\infty), a \geq 1$, or $H=(0, a \mid, a \leq 1$.

By Lemma $4, F$ and G do not vanish. So, by (9) and with $I=G(H)$, $\varphi: I \cup I^{2} \subseteq H \subseteq(0,+\infty) \rightarrow \mathbb{K} \backslash\{0\}$ is a nonconstant continuous solution of the Cauchy's power functional equation. By Lemma 3, we have:
$\varphi(u)=A u^{\gamma}(u \in I)$ where A and γ are some nonzero elements of \mathbb{K}. By (7), we get: $F(x)=A(G(x))^{\gamma}(x \in H)$. With (2) we obtain:

$$
\begin{equation*}
G(x G(y))^{\gamma}=A(G(x))^{\gamma}(G(y))^{\gamma} \quad(x, y \in H) \tag{41}
\end{equation*}
$$

If $\operatorname{Re} \gamma \neq 0$, we get: $G(x G(y))=B G(x) G(y)(x, y \in H)$ with $B=$ $|A|^{\frac{1}{\operatorname{Re} \gamma}}$. If $\operatorname{Re} \gamma=0$, we have $\gamma=e^{i c}, c \neq 0$. (41) implies that $A=e^{i c^{\prime}}$ and, by the continuity of G, there exists n in \mathbb{Z} such that: $G(x G(y))=$ $e^{\frac{2 \pi n+c^{\prime}}{c}} G(x) G(y)(x, y \in H)$.

So, in all cases, there exists $B>0$ such that:

$$
\begin{equation*}
G(x G(y))=B G(x) G(y) \quad(x, y \in H) . \tag{42}
\end{equation*}
$$

This implies:

$$
\begin{equation*}
G(x t)=B G(x) t \quad(x \in H, t \in I) . \tag{43}
\end{equation*}
$$

Let us now determine I. By (42) we have by induction:

$$
\begin{equation*}
G\left(x(G(y))^{n}\right)=G(x)(B G(y))^{n} \quad(x \in H, t \in I) . \tag{44}
\end{equation*}
$$

Since G is not constant, there exists y in I such that $B G(y) \neq 1$.
In the case $H=(0,+\infty)$, since the formula (44) is true for all n in \mathbb{Z}, we have with for example $B G(y)>1: \lim _{n \rightarrow+\infty}(B G(y))^{n}=+\infty$ and $\lim _{n \rightarrow-\infty}(B G(y))^{n}=0$. We deduce from (44): $I=H=(0,+\infty)$.

In the other cases: if $B G(y)>1$, we have $\lim _{n \rightarrow+\infty}(B G(y))^{n}=+\infty$, and (44) implies: $\left.\left.I=\mid a_{1},+\infty\right), H=\mid a,+\infty\right)$ with $a_{1} \geq a$, if $B G(y)<1$, we have $\lim _{n \rightarrow+\infty}(B G(y))^{n}=0$, and (44) implies: $I=\left(0, a_{1} \mid\right.$, $H=\left(0, a \mid\right.$ with $a_{1} \leq a$.

If $I=H=(0,+\infty)$, (43) with $x=1$ implies the expression (36) for G.
In the other cases, we have from (43): $G(x)=\frac{G(x t)}{B t}(x \in H, t \in I)$. Since at belongs to H, the continuity of G on H implies that $\delta=\lim _{x \rightarrow a, x \in H} G(x)$ exists and is positive. We have:

$$
\begin{equation*}
G(a t)=B \delta t \quad(t \in I) \tag{45}
\end{equation*}
$$

Now, for all x and y in $H, x G(y)$ belongs to $a I$ and we have by (42) and (45): $G(x)=\frac{G(x G(y))}{B G(y)}=\frac{\delta}{a} x$. So, in all these cases, we have the expression (36) for G. The conditions on c are given by the fact that G takes its values in H. (41) implies now $A=1$, and therefore $F(x)=(G(x))^{\gamma}(x \in H)$.
2. Let us consider now the case $H=[0, a \mid, a \leq 1$.

By Lemma $4 F$ and G vanish only at 0 . Therefore, $F:(0, a \mid \rightarrow \mathbb{K} \backslash\{0\}$ and $G:(0, a \mid \rightarrow(0, a \mid$ are nonconstant continuous solutions of (2). Using the continuity of F and G at 0 , we deduce from the previous case that G has the form (36) and F has the form (39).
3. Finally let us consider the case $H=|b, a|,-1 \leq b<0<a \leq 1, b^{2} \leq a$.
3.1. We shall first investigate the case $I=[0, \alpha \mid \subseteq[0, a \mid$.

By Lemma 4 and (7) we have: $F(y)=\varphi(G(y))=0 \Longleftrightarrow G(y)=0$. Therefore, φ does not vanish on $(0, \alpha \mid$. By (9), Lemma 3 and the fact that $\left(0, \alpha^{2} \mid \subset\left(0, \alpha \mid\right.\right.$, we have: $\varphi(u)=u^{\gamma}(u \in(0, \alpha \mid)$ where γ is some nonzero element of \mathbb{K}. Lemma $4,(7),(8)$ and the continuity of F imply that F has the form (39) with $\operatorname{Re} \gamma>0$. Using (2), we get:

$$
\begin{equation*}
G(x G(y))=G(x) G(y) \quad(x, y \in H) \tag{46}
\end{equation*}
$$

This implies: $G(x t)=G(x) . t(x \in H, t \in I)$. Let us fix $t>0$ in I. Since at and $b t$ belong to H, the continuity of G on I implies that
$\delta_{1}=\lim _{x \rightarrow a-0} G(x)=\frac{G(a t)}{t}$ and $\delta_{2}=\lim _{x \rightarrow b+0} G(x)=\frac{G(b t)}{t}$ exist and are nonnegative. We deduce:

$$
G(x)=\left\{\begin{array}{ll}
c_{1} x & \text { if } x \in[0, a \alpha \mid \tag{47}\\
c_{2} x & \text { if } x \in \mid b \alpha, 0]
\end{array} \quad \text { with } \quad c_{1} \geq 0 \quad \text { and } \quad c_{2} \leq 0\right.
$$

Now, for all x and y in H with $G(y) \neq 0, x G(y)$ belongs to αH and we have by (46) and (47):

$$
G(x)=\frac{G(x G(y))}{G(y)}= \begin{cases}c_{1} x & \text { if } x \in[0, a \mid \\ c_{2} x & \text { if } x \in \mid b, 0] .\end{cases}
$$

We deduce that G has the form (38). The conditions on c_{1} and c_{2} come from the fact that G is not identically zero and takes its values in H.
3.2. Let us investigate now the case $I=\mid \beta, 0] \subseteq \mid b, 0]$.

Like in $\S 3.1 . \varphi$ does not vanish on $\mid \beta, 0)$ and satisfies: $\varphi(u v)=\varphi(u) \varphi(v)$ $(u, v \in \mid \beta, 0))$. Let us denote: $\lambda=\varphi\left(u_{0}\right) \neq 0$ for some fixed u_{0} in $\mid \beta, 0)$. The function $\phi:\left(0, \left.\frac{\beta}{u_{0}} \right\rvert\, \rightarrow \mathbb{K} \backslash\{0\}\right.$ defined by: $\phi(x)=\frac{1}{\lambda^{2}} \varphi\left(u_{0}^{2} x\right)$ $\left(x \in\left(0, \left.\frac{\beta}{u_{0}} \right\rvert\,\right)\right.$ is a nonconstant continuous solution of the Cauchy's power functional equation. We get from Lemma 3: $\phi(x)=x^{\gamma}\left(x \in\left(0, \left.\frac{\beta}{u_{0}} \right\rvert\,\right)\right.$ where γ is some element of \mathbb{K}. We deduce: $\varphi(u)=\frac{1}{\lambda} \varphi\left(u_{0} u\right)=\lambda \phi\left(\frac{u}{u_{0}}\right)=A|u|^{\gamma}$ $(u \in \mid \beta, 0))$ where A is some element of $\mathbb{K} \backslash\{0\}$. The continuity of F at 0 and (7) imply:

$$
F(x)= \begin{cases}A|G(x)|^{\gamma} & \text { if } G(x) \neq 0 \\ 0 & \text { if } G(x)=0\end{cases}
$$

with $\operatorname{Re} \gamma>0$. Using (2), we see that there exists $B=|A|^{\frac{1}{\operatorname{Re} \gamma}}>0$ such that:

$$
\begin{equation*}
G(x G(y))=-B G(x) G(y) \quad(x, y \in H) \tag{48}
\end{equation*}
$$

With the same argument as in 3.1., we can prove that G has the form:

$$
G(x)=\left\{\begin{array}{ll}
c_{1} x & \text { if } x \in[0, a \mid \tag{49}\\
c_{2} x & \text { if } x \in \mid b, 0]
\end{array} \quad \text { with } \quad c_{1} \leq 0 \quad \text { and } \quad c_{2} \geq 0\right.
$$

Now, if $x \in(0, a \mid$ and $G(y) \neq 0, x G(y)$ belongs to $\mid b, 0)$ and we have by (48) and (49): $G(x G(y))=c_{2} x G(y)=-B G(x) G(y)=-B c_{1} x G(y)$ which implies $c_{2}=-B c_{1}$. Similarly with $\left.x \in \mid b, 0\right)$ we prove $c_{1}=-B c_{2}$. This implies $B=1$ and $c_{1}=-c_{2}$. From (2) we have $A=1$. Therefore, G has the form (37) and F has the form (39). The conditions on c are imposed by the fact that G takes its values in H.
3.3. Let us finally investigate the case $I=|\beta, \alpha| \subseteq|b, a|, \beta<0<\alpha$.

By Lemma $4 F$ and G vanish only at 0 . By (9) φ is a nonconstant continuous solution of the restricted Cauchy's power functional equations:

$$
\varphi(u v)=\varphi(u) \varphi(v) \quad(u, v \in(0, \alpha \mid) \quad(\operatorname{resp} .(u, v \in \mid \beta, 0)))
$$

As in 3.1. and in 3.2. there exist $A, \gamma_{1}, \gamma_{2}$ in \mathbb{K}, with $A \neq 0, \operatorname{Re} \gamma_{1}>0$, $\operatorname{Re} \gamma_{2}>0$ such that $\varphi(u)=u^{\gamma_{1}}\left(u \in(0, \alpha \mid)\right.$ and $\left.\varphi(u)=A|u|^{\gamma_{2}}(u \in \mid \beta, 0)\right)$.

Now, if $u \in \mid \beta, 0)$, there exists $0<\alpha^{\prime}<\alpha$ such that $\left.u v \in \mid \beta, 0\right)$ for all $v \in\left(0, \alpha^{\prime}\right)$ and we have: $\varphi(u v)=A|u v|^{\gamma_{2}}=A|u|^{\gamma_{2}} v^{\gamma_{1}}$. This implies: $\gamma_{2}=\gamma_{1}=\gamma$.

Furthermore, if $u \in \mid \beta, 0)$, there exists $v \in \mid \beta, 0)$ such that $u v \in(0, \alpha \mid$ and we have: $\varphi(u v)=u v^{\gamma}=A^{2}|u|^{\gamma}|v|^{\gamma}$, which implies $A= \pm 1$. So, we have obtained:

$$
\text { either } \quad \varphi(u)=\left\{\begin{array}{ll}
|u|^{\gamma} & \text { if } u \neq 0 \\
0 & \text { if } u=0
\end{array} \text { or } \quad \varphi(u)= \begin{cases}|u|^{\gamma} \operatorname{sign} u & \text { if } u \neq 0 \\
0 & \text { if } u=0 .\end{cases}\right.
$$

We deduce that F has either the form (39) or the form (40). (2) implies now: $|G(x G(y))|=|G(x)||G(y)|(x, y \in H)$, which implies: $|G(x t)|=|G(x)||t|(x \in H, t \in I)$. With the same argument as in 3.1., we can prove that $|G|$ has the form:

$$
|G(x)|=\left\{\begin{array}{ll}
c_{1}|x| & \text { if } x \in a I \\
c_{2}|x| & \text { if } x \in b I
\end{array} \quad \text { where } c_{1} \text { and } c_{2}\right. \text { are positive. }
$$

Since $a I \cap b I$ is a nontrivial interval, we have $c_{1}=c_{2}=c$. Now, for all x and y in H with $y \neq 0, x G(y)$ belongs to $a I \cup b I$ and we have: $|G(x)|=\frac{|G(x G(y))|}{|G(y)|}=c|x|$. Since G is neither always nonpositive nor always nonnegative, we deduce that G is of the form (36). The conditions on c are obtained from the fact that G takes its values in H.

Corollary (cf. [3]). If $H=(0,+\infty)$ or $H=\mid a,+\infty)$ with $a \geq 1$ or $H=|b, a|$ with $-1 \leq b \leq 0<a \leq 1, b^{2} \leq a$, all continuous solutions $f: H \rightarrow H$ of the functional equation: $f(x f(y))=f(x) f(y)(x, y \in H)$ are given by $f=\phi_{\mid H}$ where $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is an arbitrary continuous solution of the functional equation (4) satisfying $\phi(H) \subseteq H$. ϕ is unique in the case $H=|b, a|, b<0$.

References

[1] J. Aczél and J. G. Dhombres, Functional Equations in Several Variables, Encyclopaedia of Mathematics, Vol. 31, Cambridge University Press, Cambridge, 1989.
[2] N. Bourbaki, Eléments de Mathématiques, Topologie Générale, chapitre VII, Diffusion C.C.L.S., Masson, 1974.
[3] N. Brillouët-Belluot, More about some functional equations of multiplicative symmetry, Publ. Math. Debrecen 58 (2001), 575-585.
[4] J. G. Dhombres, Functional Equations on Semi-Groups arising from the theory of means, Nanta Math. 5, no. 3 (1972), 48-66.
[5] J. G. Dhombres, Solution générale sur un groupe abélien de l'équation fonctionnelle: $f(x * f(y))=f(y * f(x))$, Aequationes Math. 15 (1977), 173-193.
[6] F. Radó and J. A. Baker, Pexider's equation and aggregation of allocations, Aequationes Math. 32 (1987), 227-239.

NICOLE BRILLOUËT-BELLUOT
ECOLE CENTRALE DE NANTES
DÉPARTEMENT D'INFORMATIQUE ET DE MATHÉMATIQUES
1 RUE DE LA NOË
BP 92101, 44321 NANTES CEDEX 3
FRANCE
E-mail: Nicole.Belluot@ec-nantes.fr
(Received December 9, 2002; accepted March 4, 2003)

