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Pexider generalization of a functional equation
of multiplicative symmetry

By NICOLE BRILLOUET-BELLUOT (Nantes)

Abstract. Let K be either R or C. The problem of finding the continuous
solutions f, g, h : K→ K of the functional equation:

f(xg(y)) = h(x)h(y) (x, y ∈ K) (1)

may be reduced to the problem of finding the continuous solutions F,G : K→ K
of the functional equation:

F (xG(y)) = F (x)F (y) (x, y ∈ K). (2)

In the present paper, we obtain the continuous solutions F : H → K and G :
H → H of (2) when H is a nontrivial connected subset of K satisfying H2 ⊆ H.

1. Introduction

Let K be either R or C. In [3] we obtained the continuous solutions
f : K→ K of the functional equations of multiplicative symmetry:

f(xf(y)) = f(yf(x)) (x, y ∈ K) (3)

f(xf(y)) = f(x)f(y) (x, y ∈ K) (4)
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Key words and phrases: Pexider functional equation, multiplicative symmetry, con-
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under the hypothesis that f(C) \ {0} is connected if f is not constant and
if K = C.

In the present paper we consider a Pexider generalization of the func-
tional equation (4). More precisely, we look for the continuous solutions
f, g, h : K→ K of the functional equation:

f(xg(y)) = h(x)h(y) (x, y ∈ K) (1)

We have the following result:

Proposition 1. All the continuous solutions f, g, h : K → K of the

functional equation:

f(xg(y)) = h(x)h(y) (x, y ∈ K) (1)

are the following:

(i) either g ≡ 0 and

• if K = R, f is arbitrary but f(0) ≥ 0 and either h ≡
√

f(0) or

h ≡ −
√

f(0)
• if K = C, f is arbitrary and either h ≡

√
f(0) or h ≡ −

√
f(0)

where
√

f(0) is one of the square roots of f(0).

(ii) or g 6≡ 0 and

f(x) = β2F
(x

α

)
, h(x) = βF (x), g(y) = αG(y) (x, y ∈ K) (5)

where α and β are arbitrary elements of K such that α 6= 0 and

F, G : K→ K are continuous solutions of the functional equation:

F (xG(y)) = F (x)F (y) (x, y ∈ K). (2)

Proof. The case (i) is obvious. If g is not identically zero, there
exists y0 in K such that g(y0) = α 6= 0. Letting y = y0 in (1), we get:
f(αx) = h(x)h(y0) (x ∈ K).

The case h(y0) = 0 leads to f ≡ 0 and h ≡ 0, which are obviously
solutions of (1) for an arbitrary function g.

So, we suppose now h(y0) = β 6= 0 and we get: h(x) = 1
β f(αx)

(x ∈ K). If we define: F (x) = 1
β2 f(αx) (x ∈ K), G(y) = 1

αg(y) (y ∈ K), F

and G are solutions of (2).
Conversely, if F and G are solutions of (2) and if f , g, h are defined

by (5) with α 6= 0, f , g, h are solutions of (1). ¤
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In the sequel we will solve the functional equation (2) on a subset of K.
In the whole paper, U will denote {z ∈ C; |z| = 1} .

2. Problem of finding the continuous solutions of (2)

Let H be a nontrivial connected subset of C satisfying H2 ⊆ H, where
H2 = {xy; x∈H, y ∈H}. We look for the continuous solutions F :H→K
and G : H → H of the functional equation (2). F ≡ 0 and F ≡ 1 are the
only constant solutions of (2) for an arbitrary continuous function G.

From now on, we suppose that F is a nonconstant continuous solution
of (2). This implies that G is not constant.

We have by (2):

F (x)F (y)F (z) = F (xG(y))F (z) = F (xG(y)G(z))

= F (x)F (yG(z)) = F (xG(yG(z))).

We deduce:

F (xG(yG(z)) = F (xG(y)G(z)) (x, y, z ∈ H). (6)

Since F is not identically zero, there exists x0 in H such that F (x0) 6= 0
and we have from (2):

F (y) = ϕ(G(y)) (y ∈ H) (7)

where ϕ : H → K is the continuous function defined by:

ϕ(y) =
F (x0y)
F (x0)

(y ∈ H). (8)

Using (2), (6), (7) and (8), we get:

F (xG(y)) = ϕ(G(xG(y)) = ϕ(G(x)G(y))

= F (x)F (y) = ϕ(G(x))ϕ(G(y)).

We deduce:

ϕ(G(x)G(y)) = ϕ(G(x))ϕ(G(y)) (x, y ∈ H). (9)

So, if we determine the range of G, we can deduce ϕ : G(H) → K by using
the continuous solutions of the Cauchy’s power functional equation, and
we get F from (7).
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3. Case where H contains 0
and H \ {0} is a multiplicative group

We have first the following result whose method of proof has been used
in [3].

Lemma 1. The only closed connected subsets H of C containing 0

such that H \ {0} is a multiplicative group are : H = C and H = Γ ∪ {0}
with Γ = {eλa+nb; n ∈ Z, λ ∈ R} where a, b ∈ C, Re a 6= 0 and either

b = 0 or {a, b} is a basis of the real vector space C.

Proof. The mapping h defined by: h(x) = ex (x ∈ C) is a continu-
ous homomorphism from the additive group (C, +) onto the multiplicative
group (C \ {0}, .). Since M = H \ {0} is a closed subgroup of (C \ {0}, .),
h−1(M) is a closed additive subgroup of (C, +). We deduce that we have
the following possibilities (cf. [2]):

(i) h−1(M) = aR;

(ii) h−1(M) = aZ where a is some nonzero complex number;

(iii) h−1(M) = aZ+ bZ;

(iv) h−1(M) = aR+ bZ where {a, b} is a basis of the real vector space C;

(v) h−1(M) = C;

(vi) h−1(M) = {0}.
Since H is connected, the cases (ii), (iii) and (vi) do not occur. The cases
(v), (i) and (iv) lead to the result. ¤

Remark. The only closed connected subsets H of C containing 0 and
included in R, such that H \{0} is a multiplicative group, are H = [0, +∞)
and H = R, which correspond respectively to the cases a ∈ R, Im b

2π ∈ Z
and a ∈ R, Im b

π ∈ 2Z+ 1.

If H is given by Lemma 1, we have the following result concerning (2).

Lemma 2. Let us suppose that H is given by Lemma 1. If F : H → K,

G : H → H are continuous solutions of (2) such that F is not constant, G

is a nonconstant solution of the following functional equation:

|G(yG(z))| = |G(y)| |G(z)] (y, z ∈ H). (10)
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Proof. If F , G are continuous solutions of (2), they satisfy (6).
If G(y)G(z) 6= 0, we define: h(y, z) = G(yG(z))

G(y)G(z) which belongs to H.
With x replaced by x

G(y)G(z) in (6), we get: F (xh(y, z)) = F (x) (x ∈ H).
Since F is not constant, we have h(y, z) 6= 0 and

F (x(h(y, z))n) = F (x) (x ∈ H, n ∈ Z). (11)

If |h(y, z) 6= 1, (11) and the continuity of F at 0 would imply that F is
constant, which is not the case. Therefore, we have |h(y, z)| = 1 i.e. (10).

If G(y)G(z) = 0, we have by (6): F (xG(yG(z)) = F (0) (x ∈ H).
Since F is not constant, we have G(yG(z)) = 0 which implies (10). ¤

From the functional equation (10), we will first determine G and then
we get F with (9) and (7).

Let F : H → K and G : H → H be nonconstant continuous solutions
of (2). We denote N = G−1(0) and we suppose that H \N is connected if
H is not included in R.

By (10), the function h : (H \ N) × (H \ N) → H \ {0} defined by:
h(y, z) = G(yG(z))

G(y)G(z) (y, z ∈ H \N) takes its values in U ∩H.
If H = Γ ∪ {0} with b = 0, we have: h(y, z) = 1 (y, z ∈ H \N).
If H = R, h(y, z) belongs to {−1, 1} for all y and z in H \N .
If H = Γ ∪ {0} is not included in R and {a, b} is a basis of the real

vector space C, we have: h(y, z) = eλa+nb = ein(β′−β α′
α

) (y, z ∈ H \ N)
with a = α + iα′, b = β + iβ′, β′ − β α′

α 6= 0. Since H \ N is connected,
there exists some n0 in Z such that

h(y, z) = ein0(β′−β α′
α

) (y, z ∈ H \N). (12)

Moreover, if y belongs to H \N , we have G(y) = eλa+nb and
|G(y)| = eλα+nβ , which implies: λ = 1

α(ln |G(y)| − nβ). We deduce:

G(y) = |G(y)| a
α ein(β′−β α′

α
). Since H \N is connected, {G(y).|G(y)|− a

α ; y ∈
H \ N} is a connected subset of {ein(β′−β α′

α
); n ∈ Z} which is a discrete

set of points of U . Therefore, there exists some m0 in Z such that we have:
G(y) = |G(y)| a

α eim0(β′−β α′
α

) (y ∈ H \ N). The definition of h(y, z), (10)

and (12) imply: ein0(β′−β α′
α

) = e−im0(β′−β α′
α

). We deduce:

G(y) = |G(y)| a
α e−in0(β′−β α′

α
) (y ∈ H \N). (13)
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In a first case, we have the following result:

Proposition 2. Let us suppose that H is given by Lemma 1. Let

F : H → K and G : H → H be nonconstant continuous solutions of (2)
such that H \ G−1(0) is connected in the case where H is not included

in R.

We suppose that there exists y and z in H \G−1(0) such that

if H = R, h(y, z) = −1
if H is not included in R, h(y, z) is not a root of 1.

Then, if H = R, G(x) = −d|x| (x ∈ R),
if H is not included in R, we have H = C and

G(x) =

{
0 if x = 0

dxθ(x) if x 6= 0
(14)

where d is some positive real number and θ : C \ {0} → U is some noncon-

stant continuous function and, in both cases,

F (x) =

{
(d|x|)γ if x 6= 0

0 if x = 0

where γ is some element of K such that Re γ > 0.

Proof. In the case H = R, we deduce from (11) that F is an even
function.

In the case where H is not included in R, {(h(y, z)n}n∈Z is dense in U .
The fact that H is closed, the continuity of F and (11) imply : U ⊂ H

and F (λx) = F (x) (x ∈ H, λ ∈ U). Therefore, we have: |x| ∈ H if x ∈ H

and F (x) = F (|x| x
|x|) = F (|x|) (x ∈ H \ {0}).

So, in both cases, we have:

F (x) = F (|x|) (x ∈ H). (15)

By (8), we deduce:
ϕ(y) = ϕ(|y|) (y ∈ H). (16)

Therefore, we have by (9):

ϕ(|G(x)| |G(y)|) = ϕ(|G(x)|)ϕ(|G(y)|) (x, y ∈ H). (17)
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We first determine the range of |G|. (15) and (2) imply:

F (x|G(y)|) = F (x)F (y) (x, y ∈ H) (18)

The functional equation (18) is of the form (2) where G is replaced by |G|.
By Lemma 2, |G| : H → [0,+∞) is a nonconstant continuous solution of
the following functional equation:

|G(y.|G(z)|)| = |G(y)||G(z)| (y, z ∈ H) (19)

which is nothing but the functional equation (4). We deduce from Theo-
rem 1 of [3] and from the Remark following this theorem:
• in the case H = R, |G(x)| = Sup(−cx, dx) (x ∈ R) where c and d are

nonnegative real numbers satisfying d > −c

• in the case H = C either

(i) |G(x)| = d|x|(x ∈ C) where d is some positive real number, or

(ii) |G(x)| =





0 if x = 0 or if x 6= 0 and
x

|x| ∈ N

|x|ψ
(

x

|x|
)

if x 6= 0 and
x

|x| /∈ N

where ψ : U → [0,+∞) is some continuous function with
N = ψ−1(0) such that U \ N is connected.

Let us now consider the case where H = Γ ∪ {0} is not included in R
and {a, b} is a basis of the real vector space C. In this case, we have
(12) with n0 6= 0 and β′ − β α′

α /∈ 2πQ. By (13), for y ∈ H \ N , we have
G(y) = eλa+nb with (n + n0)(β′ − β α′

α ) ∈ 2πZ. This implies: n = −n0 and
G(y) = eλa−n0b. Therefore, we have: |G(y)| = eµα with µ = λ− n0

β
α , and

so |G|(H \ N) ⊂ eαR. Since |G| is not constant, (19) implies: G(0) = 0.
By the connectedness of H, we get: |G|(H) = eαI ∪{0} where I = (−∞, δ|
for some δ ( | means either ) or ]). Using (19), we have by induction:
(|G|(H))n ⊂ |G|(H) (n ∈ N). We deduce: |G|(H) = eαR ∪ {0} = [0, +∞).

So, in all cases, we have |G|(H) = [0,+∞). From (17) we see, by
letting u = |G(x)|, v = |G(y)|, that ϕ : [0, +∞) → K is a continuous
solution of the Cauchy’s power functional equation: ϕ(uv) = ϕ(u)ϕ(v).
Since F is not constant, ϕ is not constant and we get (cf. [1]):

ϕ(u) =

{
uγ if u > 0

0 if u = 0
where γ is some element of K such that Re γ > 0.
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We deduce from (7) and (16):

F (x) =

{
|G(x)|γ if x /∈ N

0 if x ∈ N
.

This implies with (15): x ∈ N ⇐⇒ |x| ∈ N and

|G(x)| = |G(|x|)| (x ∈ H) (20)

Finally, we determine G.
In the case H = R, (20) implies: |G(x)| = c|x|(x ∈ R) with c > 0 and

we get either G(x) = dx(x ∈ R) or G(x) = d|x| (x ∈ R) where d is some
nonzero real number. Since we assume h(y, z) = −1 for some y and z in R,
we have: G(x) = −d|x| (x ∈ R) where d is some positive real number.

In the case H = C, the form (ii) of |G| satisfies (20) if, and only if,
ψ ≡ d where d is some positive real number. Therefore, |G| has the form
(i) and we deduce (14) in this case. The hypothesis that h(y, z) is not a
root of 1 for some y and z in C implies that θ is not constant.

Let us finally consider the case where H = Γ∪{0} is not included in R
and {a, b} is a basis of the real vector space C. If we suppose G(y0) = 0
for some y0 in Γ, we have by (19): G(λy0) = 0 (λ ≥ 0). We get from
(20): G(λ|y0|) = 0 (λ ≥ 0) which implies: G(λ) = 0 (λ ≥ 0). (20)
implies that G is identically zero which is not the case. Therefore, we
have N = {0}. So, H \ {0} is connected and is therefore of the form:

H \ {0} = {z ∈ C : z = |z| a
α eip0(β′−β α′

α } for some p0 ∈ Z. This brings a
contradiction with the fact that |G|(H) = [0, +∞) ⊂ H. Therefore, this
case does not occur. ¤

In the other case, we have the following result:

Proposition 3. Let us suppose that H is given by Lemma 1. Let

F : H → K and G : H → H be nonconstant continuous solutions of (2)
such that H \ G−1(0) is connected in the case where H is not included

in R.

We suppose that, for all y and z in H \G−1(0), h(y, z) is either equal

to 1 in the case H = R, or a root of 1 in the case where H is not included

in R.
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Then, • in the the case where H = Γ ∪ {0} is not included in R and

{a, b} is a basis of the real vector space C,

G(x) =

{
dx if x ∈ eaR+p0b

0 if x /∈ eaR+p0b
(21)

where p0 is some integer in Z and d is some element of eaR−p0b,
• in the cases H = R, H = Γ ∪ {0} with b = 0, H = C, either

G(x) = dx (x ∈ H) (22)

where d is some element of H \ {0} or, in the case H = R only,

G(x) = Sup(−cx, dx) (x ∈ R) (23)

where c and d are some nonnegative real numbers satisfying d > −c,

or, in the case H = C only,

G(x) =





0 if x = 0 or if x 6= 0 and
x

|x|1+iδ
∈ N

e
2ipπ

n

(
|x|ψ

(
x

|x|1+iδ

))1+iδ

if x 6= 0 and
x

|x|1+iδ
/∈ N

(24)

where p is some integer in Z, n is some positive integer, δ is some real

number, ψ : U → [0, +∞[ is some continuous function which satisfies:

ψ(e
iπ
n x) = ψ(x)(x ∈ U) in the case p 6= kn (k ∈ Z), N = ψ−1(0) and

U \ N is connected,

and, in all cases,

F (x) =

{
|G(x)|γ if G(x) 6= 0

0 if G(x) = 0
(25)

where γ is some element of K such that Re γ > 0,

in the case H = R and (22),

F (x) =

{
|G(x)|γ signG(x) if G(x) 6= 0

0 if G(x) = 0
(26)

where γ is some element of K such that Re γ > 0,

in the case H = C and (22),

F (x) =

{
|G(x)|γ(G(x))k if G(x) 6= 0

0 if G(x) = 0
(27)
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where k belongs to Z and γ is some element of K such that Re γ > −k.

Proof. We noticed already that we have h(y, z) = 1 (y, z ∈ H \N) in
the case H = Γ∪{0} with b = 0. So, in the cases H = R and H = Γ∪{0}
with b = 0, G : H → H is a nonconstant continuous solution of the
functional equation:

G(xG(y)) = G(x)G(y) (x, y ∈ H). (4bis)

If H = R, (4bis) is nothing but (4) and Theorem 1 of [3] implies that G

has either the form (22) or the form (23).
We have in this case either G(H) = [0, +∞) or G(H) = R. By (9),

ϕ : H → K is a nonconstant continuous solution of the Cauchy’s power
functional equation. We deduce (cf. [1]): either

ϕ(u) =

{
|u|γ if u 6= 0

0 if u = 0
or ϕ(u) =

{
|u|γsignu if u 6= 0

0 if u = 0

where sgnu = u
|u| and γ is some element of K such that Re γ > 0. From

(7), we deduce the forms (25) and (26) for F .
In the case H = Γ ∪ {0} with b = 0, since G(H) is a connected part

of H containing 0, we have G(H) = eaI ∪ {0} where I = (−∞, δ| for
some real number δ. We get from (4bis) by induction: (G(H))n ⊂ G(H)
(n ∈ N) which implies G(H) = H. If G(y0) = 0 for y0 ∈ Γ, we get:
G(y0G(y)) = 0 (y ∈ H), which contradicts G 6≡ 0. We deduce N = {0}.
The function φ : R → R satisfying: G(eλa) = eaφ(λ)(λ ∈ R) is defined by:
φ(λ) = 1

α ln |G(eλa)|(λ ∈ R), and, by (4bis), φ is a nonconstant continuous
solution of the functional equation:

φ(λ + φ(µ)) = φ(λ) + φ(µ) (λ, µ ∈ R). (28)

We get from [5]: φ(λ) = λ+η (λ ∈ R) where η is an arbitrary real number
and we deduce that G has the form (22).

In the case H = C, the hypothesis, the connectedness of C \ N and
the continuity of G imply that the range of h is a connected part of e2iπQ,
which is totally disconnected. Therefore, h is a constant function and there
exists λ0 in e2iπQ such that we have with (11):

{
G(xG(y)) = λ0G(x)G(y)

F (λ0x) = F (x)
(x, y ∈ C). (29)
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In this case, G : C → C is a nonconstant continuous solution of the func-
tional equation (3) which satisfies (29) and such that C \N is connected.
Therefore, it has one of the forms given in Theorem 2 of [3].

G of the form (22), where d is some nonzero complex number, satisfies
(29) if, and only if, λ0 = 1. In this case, we have G(C) = C. Therefore, by
(9), ϕ : C→ K is a nonconstant continuous solution of the Cauchy’s power
functional equation: ϕ(uv) = ϕ(u)ϕ(v). If u and v belong to C \ {0}, we
see, by letting u = ex, v = ey, that the function φ : C → K defined by:
φ(x) = ϕ(ex) (x ∈ C) is a nonconstant continuous solution of the Cauchy’s
exponential functional equation: φ(x + y) = φ(x).φ(y) (x, y ∈ C). We get
from [1]: φ(x) = eγx+δx̄ (x ∈ C) where γ and δ are some complex numbers.
This implies: ϕ(u) = uγ ūδ u ∈ C \ {0}). Such a function is continuous on
C\(−∞, 0]. ϕ is continuous on (−∞, 0) if, and only if, eiπ(γ−δ) = e−iπ(γ−δ)

i.e. γ−δ = k ∈ Z. We deduce: ϕ(u) = |u|γ ū−k (u ∈ C\{0}). This function
is continuous at 0 if, and only if, Re γ > k. From (7), we get the form (27)
for F .

G of the form: G(x) =

{
d|x|θ(|x|) if x 6= 0

0 if x = 0
, where d is some positive

real number and θ : (0, +∞) → U is some continuous function, satisfies
(29) if and only if: θ(d|x| |y|) = λ0θ(|x|)θ(|y|) (x, y ∈ C \ {0}). By letting
u = d|x|, v = d|y|, we see that the function τ : (0, +∞) → U defined
by: τ(u) = λ0θ(u

d ) (u > 0) is a continuous solution of the Cauchy’s power
functional equation: τ(uv) = τ(u)τ(v). We deduce (cf. [1]): τ(u) = uiδ

(u > 0) where δ is some real number, and we get: G(x) = 1
λ0

(d|x|)1+iδ

(x ∈ C \ {0}). Therefore, in this case, G is of the form (24) with ψ ≡ d.
If G is of the form (24), we have: G(C) = e

2ipπ
n e(1+iδ)I ∪ {0} where

I = (−∞, δ| for some real number δ. Using (10), we have by induction:
(|G|(x))n ∈ |G|(C) (n ∈ N, x ∈ C). We deduce:

G(C) = e
2ipπ

n e(1+iδ)R ∪ {0} =
1
λ0

e(1+iδ)R ∪ {0}.

Let us consider now the case where H = Γ ∪ {0} is not included in R
and {a, b} is a basis of the real vector space C. We have (12) and (13)
with β′ − β α′

α ∈ 2πQ. Since G(H) is a connected part of H containing 0,

we get from (13): G(H) = eaIe−in0(β′−β α′
α

) ∪ {0} where I = (−∞, δ| for
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some real number δ. By using (10), we prove as before that I = R and we
deduce: G(H) = 1

λ0
eaR ∪ {0}.

In the three cases: H = C and G of the form (24), H = Γ ∪ {0}
with b = 0, H = Γ ∪ {0} not included in R and {a, b} is a basis of the
real vector space C, we have: G(H) = 1

λ0
eηR ∪ {0} where η is respectively

(1 + iδ) and a. Since by (29) we have: ϕ(λ0x) = ϕ(x) (x ∈ H), the
function φ : R → K defined by: φ(x) = ϕ(eηx) (x ∈ R) is by (9) a
nonconstant continuous solution of the Cauchy’s exponential functional
equation: φ(x + y) = φ(x) · φ(y). We get from [1]: φ(x) = eγx (x ∈ R)
where γ is some element of K. Since ϕ is continuous at 0 and ϕ(0) = 0, we

deduce: ϕ(u) =

{
|u|γ if u 6= 0

0 if u = 0
where γ is some element of K such that

Re γ > 0. We obtain the form (25) for F .
Let us now determine G in the case where H = Γ∪{0} is not included

in R and {a, b} is a basis of the real vector space C. Since H \ N is
connected, in the same way as we proved (13), we can prove that there

exists some p0 in Z such that we have: x = |x| a
α eip0(β′−β α′

α
) (x ∈ H \N).

Therefore, we have: H \ N = eaIeip0(β′−β α′
α

) where I is an interval of R.

Let us suppose I 6= R. Then, there exists y0 in eaReip0(β′−β α′
α

) such that
G(y0) = 0. (10) and (13) imply: G(y0e

aRe−in0(β′−β α′
α

)) = 0. However, by
(11), (12) and (25), we have also:

|G(x)| = |G(ein0(β′−β α′
α

)x)| (x ∈ H). (30)

We deduce: G(y0e
aR) = G(eaReip0(β′−β α′

α
)) = 0 which brings the contra-

diction. So, we have obtained:

H \N = eaReip0(β′−β α′
α

) = eaR+p0b (31)

By (30), if x belongs to H \ N , eikn0(β′−β α′
α

)x belongs also to H \ N for
all k in Z. (31) implies: n0(β′ − β α′

α ) ∈ 2πZ. We deduce: h(y, z) = 1
and, by (13), G(H) = eaR ∪ {0}. The definition of h(y, z) implies that
G : H → K is a nonconstant continuous solution of (4bis). The function

φ : R → R satisfying: G(eλaeip0(β′−β α′
α

)) = eφ(λ)a(λ ∈ R) is defined by:

φ(λ) = 1
α ln |G(eλaeip0(β′−β α′

α
))| (λ ∈ R), and (4bis) implies that φ is a
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nonconstant continuous solution of the functional equation (28). We get
from [5]: φ(λ) = λ + η (λ ∈ R) where η is an arbitrary real number. We
deduce that G has the form (21). ¤

Since all the forms of G and F given in the Propositions 2 and 3 are
solutions of (2), we have got the following result.

Theorem 1. Let us suppose that H is given by Lemma 1. All con-

tinuous solutions F : H → K and G : H → H of the functional equation

(2) such that H \G−1(0) is connected in the case where H is not included

in R, are given by: either

(i) F ≡ 0 or F ≡ 1, G arbitrary, or

(ii) in the cases H = R, H = Γ ∪ {0} with b = 0, H = C, G is given by

(22), or

(iii) in the case H = R only , either G is of the form (23), or G(x) = −d|x|
(x ∈ R) where d is an arbitrary positive real number, or

(iv) in the case where H = Γ ∪ {0} is not included in R and {a, b} is a

basis of the real vector space C, G is of the form (21), or

(v) in the case H = C only, G is either of the form (14) or of the form

(24),

and, in all cases F is given by (25), in the case H = R and (22) only F is

given by (26), in the case H = C and (22) only F is given by (27).

4. Case where H does not contain 0
or H \ {0} is a not multiplicative group.

We shall restrict ourselves to the case where H is an interval of R.
The only possibilities for H such that H does not contain 0 or H \ {0} is
a not multiplicative group, but H2 ⊆ H, are:

H = (0,+∞); H = |a,+∞), a ≥ 1;

H = |b, a|, −1 ≤ b ≤ 0 < a ≤ 1, b2 ≤ a

where | means either ( or [ or ) or ].
In order to get ϕ, and so F , from (9), we shall use the following result

that we can obtain from [6] or [1]:
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Lemma 3. If I is a subinterval of (0, +∞), all the continuous solutions

ϕ : I ∪ I2 → K \ {0} of the Cauchy’s power functional equation:

ϕ(uv) = ϕ(u)ϕ(v)(u, v ∈ I) are given by:

ϕ(u) =

{
Auγ (u ∈ I)

A2uγ (u ∈ I2)

where A and γ are arbitrary elements of K such that A 6= 0 (A = 1 if

I2 ∩ I 6= ∅).
In order to apply this Lemma to (9), we shall study F−1(0) and G−1(0)

when F and G are continuous solutions of (2) and F is not constant.
We first remark that, if 0 belongs to H, we have F (0) = 0, since x = 0

in (2) gives: F (0) = F (0)F (y) (y ∈ H).
We have the following result.

Lemma 4. Let F : H → K and G : H → H be continuous solutions

of (2) such that F is not constant. Then, we have: F−1(0) = G−1(0).

If 0 /∈ H, F and G do not vanish.

If 0 ∈ H, either F and G vanish only at 0, or, in the case H = |b, a|
with b < 0 only, we may have:

{
F (x) = G(x) = 0 ∀x ≥ 0 (resp. x ≤ 0)

F (x) 6= 0, G(x) > 0 ∀x < 0 (resp. x > 0).

Proof. We denote I = G(H), which is a nontrivial interval of R
included in H.

Let us suppose that there exists y0 in H such that F (y0) = 0.
First, in the case H = (0, +∞), we have G(y0) > 0 and (2) with x

replaced by x
G(y0) and y = y0 implies that F is identically zero, which is

not the case. Therefore, F does not vanish in this case.
In the other cases, we have by (2):

either G(y0) 6= 0 and F (x) = 0 (x ∈ G(y0).H) (32)

or G(y0) = 0 and F (x) = 0 (x ∈ y0.I). (33)

Since F is not identically zero, the continuity of F implies that there exists
z0 in H \{0} such that 0 < |F (z0)| < 1. Letting x = z0.(G(z0))n−1, y = z0
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in (2), we get by induction:

F (z0.(G(z0))n) = (F (z0))n+1 6= 0 (n ∈ N). (34)

Since 0 < |F (z0)| < 1, we have limn→+∞(F (z0))n+1 = 0 and therefore
|G(z0)| 6= 1.

If H = |a,+∞), a ≥ 1, we have G(z0) > 1 and there exists n in N
such that z0.(G(z0))n belongs to G(y0).H. This is impossible by (32) and
(34). Therefore, F does not vanish in this case.

If H = |b, a| with −1 ≤ b ≤ 0 < a ≤ 1, we have |G(z0)| < 1. Let us
suppose first G(y0) 6= 0. Then, there exists n in N such that z0.(G(z0))n

belongs to G(y0).H. This is impossible by (32) and (34). We deduce first
that, if 0 /∈ H, F does not vanish.

Then, if 0 ∈ H, we must have G(y0) = 0. By (2), we get:

if 0 ∈ H, F (y0) = 0 ⇐⇒ G(y0) = 0. (35)

In particular, we have in this case F (0) = G(0) = 0. Suppose now that
there exists y0 6= 0 in H such that F (y0) = 0. We have G(y0) = 0. But,
there exists n in N such that z0.(G(z0))n belongs to y0.I, except maybe in
the case where b is negative and I is included in [0,+∞). This is impossible
by (33) and (34). Therefore, by (35), except in the latter case, if 0 ∈ H,
F and G vanish only at 0.

Let us consider now the case H = |b, a|, b < 0, I ⊂ [0,+∞). Let us
suppose that y0 > 0 satisfies F (y0) = 0. Then, by (35), we have G(y0) = 0.
If F is not identically zero on [0, a|, there exists z0 in (0, a) such that
0 < |F (z0)| < 1 and there exists n in N such that z0.(G(z0))n belongs to
y0I. This is impossible by (33) and (34). Therefore, F is identically zero
on [0, a|. Similarly, if there exists y0 in |b, 0) such that F (y0) = 0, F is
identically zero on |b, 0]. Using (35), we deduce that we may have in this
case:

either F (x) = G(x) = 0 ∀x ≤ 0; F (x) 6= 0, G(x) > 0 ∀x > 0

or F (x) = G(x) = 0 ∀x ≥ 0; F (x) 6= 0, G(x) > 0 ∀x < 0. ¤
Using Lemmas 3 and 4, we shall now prove the following result.

Theorem 2. If H = (0,+∞) or H = |a, +∞) with a ≥ 1 or H = |b, a|
with −1 ≤ b ≤ 0 < a ≤ 1, b2 ≤ a, all continuous solutions F : H → K and

G : H → H of the functional equation (2) are given by:
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• F ≡ 0 or F ≡ 1, G arbitrary,

•
G(x) = cx (x ∈ H) (36)

where c > 0 if H = (0,+∞), c ≥ 1 if H = |a,+∞), 0 < c ≤ 1 if H = (0, a|,
Sup( b

a , a
b ) ≤ c ≤ 1, c 6= 0 if H = |b, a|, b < 0, (Sup( b

a , a
b ) < c ≤ 1 if

H = (b, a], a ≥ |b|, or H = [b, a), a ≤ |b|)
and, in the case H = |b, a| with b < 0 only,

G(x) = −c|x|(x ∈ H) with 0 < c ≤ Inf
(

1,
|b|
a

)

(
c < Inf

(
1,
|b|
a

))
if H = (b, a], |b| ≤ a) (37)

G(x) = Sup(−c2x, c1x) (x ∈ H) with 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ a

|b| ,

c1 + c2 6= 0
(

c2 <
a

|b| if H = [b, a)
)

, (38)

• if 0 /∈ H, F (x) = (G(x))γ (x ∈ H) where γ is an arbitrary nonzero

element of K,

if 0 ∈ H,

F (x) =

{
|G(x)|γ if G(x) 6= 0

0 if G(x) = 0
(39)

where γ is some element of K such that Re γ > 0,

and, in the case where H = |b, a| and G is of the form (36) only,

F (x) =

{
|G(x)|γ sign G(x) if x 6= 0

0 if x = 0
(40)

where γ is some element of K such that Re γ > 0.

Proof. Let F : H → K and G : H → H be continuous solutions
of (2) such that F is not constant.

1. We consider first the cases: H = (0, +∞), or H = |a,+∞), a ≥ 1, or
H = (0, a|, a ≤ 1.
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By Lemma 4, F and G do not vanish. So, by (9) and with I = G(H),
ϕ : I ∪ I2 ⊆ H ⊆ (0, +∞) → K \ {0} is a nonconstant continuous solution
of the Cauchy’s power functional equation. By Lemma 3, we have:
ϕ(u) = Auγ(u ∈ I) where A and γ are some nonzero elements of K. By
(7), we get: F (x) = A(G(x))γ (x ∈ H). With (2) we obtain:

G(xG(y))γ = A(G(x))γ(G(y))γ (x, y ∈ H). (41)

If Re γ 6= 0, we get: G(xG(y)) = BG(x) G(y) (x, y ∈ H) with B =
|A| 1

Re γ . If Re γ = 0, we have γ = eic, c 6= 0. (41) implies that A = eic′

and, by the continuity of G, there exists n in Z such that: G(xG(y)) =

e
2πn+c′

c G(x)G(y) (x, y ∈ H).
So, in all cases, there exists B > 0 such that:

G(xG(y)) = BG(x)G(y) (x, y ∈ H). (42)

This implies:
G(xt) = BG(x)t (x ∈ H, t ∈ I). (43)

Let us now determine I. By (42) we have by induction:

G(x(G(y))n) = G(x)(BG(y))n (x ∈ H, t ∈ I). (44)

Since G is not constant, there exists y in I such that BG(y) 6= 1.
In the case H = (0,+∞), since the formula (44) is true for all n in Z,

we have with for example BG(y) > 1 : limn→+∞(BG(y))n = +∞ and
limn→−∞(BG(y))n = 0. We deduce from (44): I = H = (0,+∞).

In the other cases: if BG(y) > 1, we have limn→+∞(BG(y))n = +∞,
and (44) implies: I = |a1, +∞), H = |a, +∞) with a1 ≥ a,
if BG(y) < 1, we have lim

n→+∞(BG(y))n = 0, and (44) implies: I = (0, a1|,
H = (0, a| with a1 ≤ a.

If I = H = (0, +∞), (43) with x = 1 implies the expression (36) for G.
In the other cases, we have from (43): G(x)= G(xt)

Bt (x∈H, t∈ I).
Since at belongs to H, the continuity of G on H implies that
δ = limx→a,x∈H G(x) exists and is positive. We have:

G(at) = Bδt (t ∈ I). (45)
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Now, for all x and y in H, xG(y) belongs to aI and we have by (42) and
(45): G(x) = G(xG(y))

BG(y) = δ
ax. So, in all these cases, we have the expression

(36) for G. The conditions on c are given by the fact that G takes its values
in H. (41) implies now A = 1, and therefore F (x) = (G(x))γ(x ∈ H).

2. Let us consider now the case H = [0, a|, a ≤ 1.
By Lemma 4 F and G vanish only at 0. Therefore, F : (0, a| → K\{0}

and G : (0, a| → (0, a| are nonconstant continuous solutions of (2). Using
the continuity of F and G at 0, we deduce from the previous case that G

has the form (36) and F has the form (39).

3. Finally let us consider the case H = |b, a|, −1 ≤ b < 0 < a ≤ 1, b2 ≤ a.

3.1. We shall first investigate the case I = [0, α| ⊆ [0, a|.
By Lemma 4 and (7) we have: F (y) = ϕ(G(y)) = 0 ⇐⇒ G(y) = 0.

Therefore, ϕ does not vanish on (0, α|. By (9), Lemma 3 and the fact that
(0, α2| ⊂ (0, α|, we have: ϕ(u) = uγ (u ∈ (0, α|) where γ is some nonzero
element of K. Lemma 4, (7), (8) and the continuity of F imply that F has
the form (39) with Re γ > 0. Using (2), we get:

G(xG(y)) = G(x)G(y) (x, y ∈ H). (46)

This implies: G(xt) = G(x).t (x ∈ H, t ∈ I). Let us fix t > 0 in I. Since
at and bt belong to H, the continuity of G on I implies that
δ1 = limx→a−0 G(x) = G(at)

t and δ2 = limx→b+0 G(x) = G(bt)
t exist and are

nonnegative. We deduce:

G(x) =

{
c1x if x ∈ [0, aα|
c2x if x ∈ |bα, 0]

with c1 ≥ 0 and c2 ≤ 0 (47)

Now, for all x and y in H with G(y) 6= 0, xG(y) belongs to αH and we
have by (46) and (47):

G(x) =
G(xG(y))

G(y)
=

{
c1x if x ∈ [0, a|
c2x if x ∈ |b, 0].

We deduce that G has the form (38). The conditions on c1 and c2 come
from the fact that G is not identically zero and takes its values in H.
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3.2. Let us investigate now the case I = |β, 0] ⊆ |b, 0].
Like in §3.1. ϕ does not vanish on |β, 0) and satisfies: ϕ(uv) = ϕ(u)ϕ(v)

(u, v ∈ |β, 0)). Let us denote: λ = ϕ(u0) 6= 0 for some fixed u0 in
|β, 0). The function φ : (0, β

u0
| → K \ {0} defined by: φ(x) = 1

λ2 ϕ(u2
0x)

(x ∈ (0, β
u0
|) is a nonconstant continuous solution of the Cauchy’s power

functional equation. We get from Lemma 3: φ(x) = xγ(x ∈ (0, β
u0
|) where

γ is some element of K. We deduce: ϕ(u) =
1
λ

ϕ(u0u) = λφ(
u

u0
) = A|u|γ

(u ∈ |β, 0)) where A is some element of K \ {0}. The continuity of F at 0
and (7) imply:

F (x) =

{
A|G(x)|γ if G(x) 6= 0

0 if G(x) = 0

with Re γ > 0. Using (2), we see that there exists B = |A| 1
Re γ > 0 such

that:

G(xG(y)) = −BG(x)G(y) (x, y ∈ H). (48)

With the same argument as in 3.1., we can prove that G has the form:

G(x) =

{
c1x if x ∈ [0, a|
c2x if x ∈ |b, 0]

with c1 ≤ 0 and c2 ≥ 0. (49)

Now, if x ∈ (0, a| and G(y) 6= 0, x G(y) belongs to |b, 0) and we have by
(48) and (49): G(xG(y)) = c2xG(y) = −BG(x)G(y) = −Bc1xG(y) which
implies c2 = −Bc1. Similarly with x ∈ |b, 0) we prove c1 = −Bc2. This
implies B = 1 and c1 = −c2. From (2) we have A = 1. Therefore, G has
the form (37) and F has the form (39).The conditions on c are imposed
by the fact that G takes its values in H.

3.3. Let us finally investigate the case I = |β, α| ⊆ |b, a|, β < 0 < α.
By Lemma 4 F and G vanish only at 0. By (9) ϕ is a nonconstant

continuous solution of the restricted Cauchy’s power functional equations:

ϕ(uv) = ϕ(u)ϕ(v) (u, v ∈ (0, α|) (resp. (u, v ∈ |β, 0))).

As in 3.1. and in 3.2. there exist A, γ1, γ2 in K, with A 6= 0, Re γ1 > 0,
Re γ2 > 0 such that ϕ(u) = uγ1 (u ∈ (0, α|) and ϕ(u) = A|u|γ2 (u ∈ |β, 0)).
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Now, if u ∈ |β, 0), there exists 0 < α′ < α such that uv ∈ |β, 0) for
all v ∈ (0, α′) and we have: ϕ(uv) = A|uv|γ2 = A|u|γ2vγ1 . This implies:
γ2 = γ1 = γ.

Furthermore, if u ∈ |β, 0), there exists v ∈ |β, 0) such that uv ∈ (0, α|
and we have: ϕ(uv) = uvγ = A2|u|γ |v|γ , which implies A = ±1. So, we
have obtained:

either ϕ(u) =

{
|u|γ if u 6= 0

0 if u = 0
or ϕ(u) =

{
|u|γ sign u if u 6= 0

0 if u = 0.

We deduce that F has either the form (39) or the form (40). (2) implies
now: |G(xG(y))| = |G(x)| |G(y)| (x, y ∈ H), which implies:
|G(xt)| = |G(x)| |t| (x ∈ H, t ∈ I). With the same argument as in 3.1., we
can prove that |G| has the form:

|G(x)| =
{

c1|x| if x ∈ aI

c2|x| if x ∈ bI
where c1 and c2 are positive.

Since aI ∩ bI is a nontrivial interval, we have c1 = c2 = c. Now, for
all x and y in H with y 6= 0, xG(y) belongs to aI ∪ bI and we have:
|G(x)| = |G(xG(y))|

|G(y)| = c|x|. Since G is neither always nonpositive nor
always nonnegative, we deduce that G is of the form (36). The conditions
on c are obtained from the fact that G takes its values in H. ¤

Corollary (cf. [3]). If H = (0,+∞) or H = |a,+∞) with a ≥ 1 or

H = |b, a| with −1 ≤ b ≤ 0 < a ≤ 1, b2 ≤ a, all continuous solutions

f : H → H of the functional equation: f(xf(y)) = f(x)f(y) (x, y ∈ H)
are given by f = φ|H where φ : R→ R is an arbitrary continuous solution

of the functional equation (4) satisfying φ(H) ⊆ H. φ is unique in the case

H = |b, a|, b < 0.
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nelle: f(x ∗ f(y)) = f(y ∗ f(x)), Aequationes Math. 15 (1977), 173–193.
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