Publ. Math. Debrecen 64/1-2 (2004), 107–127

Pexider generalization of a functional equation of multiplicative symmetry

By NICOLE BRILLOUET-BELLUOT (Nantes)

Abstract. Let \mathbb{K} be either \mathbb{R} or \mathbb{C} . The problem of finding the continuous solutions $f, g, h : \mathbb{K} \to \mathbb{K}$ of the functional equation:

$$f(xg(y)) = h(x)h(y) \qquad (x, y \in \mathbb{K})$$
(1)

may be reduced to the problem of finding the continuous solutions $F, G : \mathbb{K} \to \mathbb{K}$ of the functional equation:

$$F(xG(y)) = F(x)F(y) \qquad (x, y \in \mathbb{K}).$$
(2)

In the present paper, we obtain the continuous solutions $F : H \to \mathbb{K}$ and $G : H \to H$ of (2) when H is a nontrivial connected subset of \mathbb{K} satisfying $H^2 \subseteq H$.

1. Introduction

Let \mathbb{K} be either \mathbb{R} or \mathbb{C} . In [3] we obtained the continuous solutions $f : \mathbb{K} \to \mathbb{K}$ of the functional equations of multiplicative symmetry:

$$f(xf(y)) = f(yf(x)) \qquad (x, y \in \mathbb{K})$$
(3)

$$f(xf(y)) = f(x)f(y) \qquad (x, y \in \mathbb{K})$$
(4)

Mathematics Subject Classification: Primary 39B22, 39B32.

Key words and phrases: Pexider functional equation, multiplicative symmetry, connected subset, multiplicative group.

under the hypothesis that $f(\mathbb{C}) \setminus \{0\}$ is connected if f is not constant and if $\mathbb{K} = \mathbb{C}$.

In the present paper we consider a Pexider generalization of the functional equation (4). More precisely, we look for the continuous solutions $f, g, h : \mathbb{K} \to \mathbb{K}$ of the functional equation:

$$f(xg(y)) = h(x)h(y) \qquad (x, y \in \mathbb{K})$$
(1)

We have the following result:

Proposition 1. All the continuous solutions $f, g, h : \mathbb{K} \to \mathbb{K}$ of the functional equation:

$$f(xg(y)) = h(x)h(y) \qquad (x, y \in \mathbb{K})$$
(1)

are the following:

(i) either $g \equiv 0$ and

- if $\mathbb{K} = \mathbb{R}$, f is arbitrary but $f(0) \ge 0$ and either $h \equiv \sqrt{f(0)}$ or $h \equiv -\sqrt{f(0)}$
- if $\mathbb{K} = \mathbb{C}$, f is arbitrary and either $h \equiv \sqrt{f(0)}$ or $h \equiv -\sqrt{f(0)}$ where $\sqrt{f(0)}$ is one of the square roots of f(0).

(ii) or $g \not\equiv 0$ and

$$f(x) = \beta^2 F\left(\frac{x}{\alpha}\right), \ h(x) = \beta F(x), \ g(y) = \alpha G(y) \quad (x, y \in \mathbb{K})$$
(5)

where α and β are arbitrary elements of \mathbb{K} such that $\alpha \neq 0$ and $F, G : \mathbb{K} \to \mathbb{K}$ are continuous solutions of the functional equation:

$$F(xG(y)) = F(x)F(y) \qquad (x, y \in \mathbb{K}).$$
(2)

PROOF. The case (i) is obvious. If g is not identically zero, there exists y_0 in \mathbb{K} such that $g(y_0) = \alpha \neq 0$. Letting $y = y_0$ in (1), we get: $f(\alpha x) = h(x)h(y_0)$ ($x \in \mathbb{K}$).

The case $h(y_0) = 0$ leads to $f \equiv 0$ and $h \equiv 0$, which are obviously solutions of (1) for an arbitrary function g.

So, we suppose now $h(y_0) = \beta \neq 0$ and we get: $h(x) = \frac{1}{\beta}f(\alpha x)$ $(x \in \mathbb{K})$. If we define: $F(x) = \frac{1}{\beta^2}f(\alpha x)$ $(x \in \mathbb{K})$, $G(y) = \frac{1}{\alpha}g(y)$ $(y \in \mathbb{K})$, F and G are solutions of (2).

Conversely, if F and G are solutions of (2) and if f, g, h are defined by (5) with $\alpha \neq 0, f, g, h$ are solutions of (1).

In the sequel we will solve the functional equation (2) on a subset of \mathbb{K} . In the whole paper, U will denote $\{z \in \mathbb{C}; |z| = 1\}$.

2. Problem of finding the continuous solutions of (2)

Let H be a nontrivial connected subset of \mathbb{C} satisfying $H^2 \subseteq H$, where $H^2 = \{xy; x \in H, y \in H\}$. We look for the continuous solutions $F: H \to \mathbb{K}$ and $G: H \to H$ of the functional equation (2). $F \equiv 0$ and $F \equiv 1$ are the only constant solutions of (2) for an arbitrary continuous function G.

From now on, we suppose that F is a nonconstant continuous solution of (2). This implies that G is not constant.

We have by (2):

$$F(x)F(y)F(z) = F(xG(y))F(z) = F(xG(y)G(z))$$
$$= F(x)F(yG(z)) = F(xG(yG(z))).$$

We deduce:

$$F(xG(yG(z)) = F(xG(y)G(z)) \qquad (x, y, z \in H).$$
(6)

Since F is not identically zero, there exists x_0 in H such that $F(x_0) \neq 0$ and we have from (2):

$$F(y) = \varphi(G(y)) \qquad (y \in H) \tag{7}$$

where $\varphi: H \to K$ is the continuous function defined by:

$$\varphi(y) = \frac{F(x_0 y)}{F(x_0)} \qquad (y \in H).$$
(8)

Using (2), (6), (7) and (8), we get:

$$F(xG(y)) = \varphi(G(xG(y))) = \varphi(G(x)G(y))$$
$$= F(x)F(y) = \varphi(G(x))\varphi(G(y)).$$

We deduce:

$$\varphi(G(x)G(y)) = \varphi(G(x))\varphi(G(y)) \qquad (x, y \in H).$$
(9)

So, if we determine the range of G, we can deduce $\varphi : G(H) \to K$ by using the continuous solutions of the Cauchy's power functional equation, and we get F from (7).

3. Case where *H* contains 0 and $H \setminus \{0\}$ is a multiplicative group

We have first the following result whose method of proof has been used in [3].

Lemma 1. The only closed connected subsets H of \mathbb{C} containing 0 such that $H \setminus \{0\}$ is a multiplicative group are : $H = \mathbb{C}$ and $H = \Gamma \cup \{0\}$ with $\Gamma = \{e^{\lambda a + nb}; n \in \mathbb{Z}, \lambda \in \mathbb{R}\}$ where $a, b \in \mathbb{C}$, $\operatorname{Re} a \neq 0$ and either b = 0 or $\{a, b\}$ is a basis of the real vector space \mathbb{C} .

PROOF. The mapping h defined by: $h(x) = e^x$ $(x \in \mathbb{C})$ is a continuous homomorphism from the additive group $(\mathbb{C}, +)$ onto the multiplicative group $(\mathbb{C} \setminus \{0\}, .)$. Since $M = H \setminus \{0\}$ is a closed subgroup of $(\mathbb{C} \setminus \{0\}, .)$, $h^{-1}(M)$ is a closed additive subgroup of $(\mathbb{C}, +)$. We deduce that we have the following possibilities (cf. [2]):

- (i) $h^{-1}(M) = a\mathbb{R};$
- (ii) $h^{-1}(M) = a\mathbb{Z}$ where a is some nonzero complex number;
- (iii) $h^{-1}(M) = a\mathbb{Z} + b\mathbb{Z};$
- (iv) $h^{-1}(M) = a\mathbb{R} + b\mathbb{Z}$ where $\{a, b\}$ is a basis of the real vector space \mathbb{C} ;
- (v) $h^{-1}(M) = \mathbb{C};$
- (vi) $h^{-1}(M) = \{0\}.$

Since H is connected, the cases (ii), (iii) and (vi) do not occur. The cases (v), (i) and (iv) lead to the result.

Remark. The only closed connected subsets H of \mathbb{C} containing 0 and included in \mathbb{R} , such that $H \setminus \{0\}$ is a multiplicative group, are $H = [0, +\infty)$ and $H = \mathbb{R}$, which correspond respectively to the cases $a \in \mathbb{R}$, $\frac{\text{Im} b}{2\pi} \in \mathbb{Z}$ and $a \in \mathbb{R}$, $\frac{\text{Im} b}{\pi} \in 2\mathbb{Z} + 1$.

If H is given by Lemma 1, we have the following result concerning (2).

Lemma 2. Let us suppose that H is given by Lemma 1. If $F : H \to \mathbb{K}$, $G : H \to H$ are continuous solutions of (2) such that F is not constant, G is a nonconstant solution of the following functional equation:

$$|G(yG(z))| = |G(y)| |G(z)] \qquad (y, z \in H).$$
(10)

PROOF. If F, G are continuous solutions of (2), they satisfy (6).

If $G(y)G(z) \neq 0$, we define: $h(y,z) = \frac{G(yG(z))}{G(y)G(z)}$ which belongs to H. With x replaced by $\frac{x}{G(y)G(z)}$ in (6), we get: F(xh(y,z)) = F(x) ($x \in H$). Since F is not constant, we have $h(y,z) \neq 0$ and

$$F(x(h(y,z))^n) = F(x) \qquad (x \in H, n \in \mathbb{Z}).$$

$$(11)$$

If $|h(y,z) \neq 1$, (11) and the continuity of F at 0 would imply that F is constant, which is not the case. Therefore, we have |h(y,z)| = 1 i.e. (10).

If G(y)G(z) = 0, we have by (6): $F(xG(yG(z)) = F(0) \ (x \in H)$. Since F is not constant, we have G(yG(z)) = 0 which implies (10).

From the functional equation (10), we will first determine G and then we get F with (9) and (7).

Let $F: H \to \mathbb{K}$ and $G: H \to H$ be nonconstant continuous solutions of (2). We denote $N = G^{-1}(0)$ and we suppose that $H \setminus N$ is connected if H is not included in \mathbb{R} .

By (10), the function $h : (H \setminus N) \times (H \setminus N) \to H \setminus \{0\}$ defined by: $h(y,z) = \frac{G(yG(z))}{G(y)G(z)} (y, z \in H \setminus N)$ takes its values in $U \cap H$.

If $H = \Gamma \cup \{0\}$ with b = 0, we have: h(y, z) = 1 $(y, z \in H \setminus N)$.

If $H = \mathbb{R}$, h(y, z) belongs to $\{-1, 1\}$ for all y and z in $H \setminus N$.

If $H = \Gamma \cup \{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} , we have: $h(y, z) = e^{\lambda a + nb} = e^{in(\beta' - \beta \frac{\alpha'}{\alpha})}$ $(y, z \in H \setminus N)$ with $a = \alpha + i\alpha'$, $b = \beta + i\beta'$, $\beta' - \beta \frac{\alpha'}{\alpha} \neq 0$. Since $H \setminus N$ is connected, there exists some n_0 in \mathbb{Z} such that

$$h(y,z) = e^{in_0(\beta' - \beta \frac{\alpha'}{\alpha})} \qquad (y,z \in H \setminus N).$$
(12)

Moreover, if y belongs to $H \setminus N$, we have $G(y) = e^{\lambda a + nb}$ and

 $|G(y)| = e^{\lambda \alpha + n\beta}, \text{ which implies: } \lambda = \frac{1}{\alpha} (\ln |G(y)| - n\beta). \text{ We deduce:} G(y) = |G(y)|^{\frac{\alpha}{\alpha}} e^{in(\beta' - \beta\frac{\alpha'}{\alpha})}. \text{ Since } H \setminus N \text{ is connected}, \{G(y).|G(y)|^{-\frac{\alpha}{\alpha}}; y \in H \setminus N\} \text{ is a connected subset of } \{e^{in(\beta' - \beta\frac{\alpha'}{\alpha})}; n \in \mathbb{Z}\} \text{ which is a discrete set of points of } U. \text{ Therefore, there exists some } m_0 \text{ in } \mathbb{Z} \text{ such that we have:} G(y) = |G(y)|^{\frac{\alpha}{\alpha}} e^{im_0(\beta' - \beta\frac{\alpha'}{\alpha})} (y \in H \setminus N). \text{ The definition of } h(y, z), (10) \text{ and } (12) \text{ imply: } e^{in_0(\beta' - \beta\frac{\alpha'}{\alpha})} = e^{-im_0(\beta' - \beta\frac{\alpha'}{\alpha})}. \text{ We deduce:}$

$$G(y) = |G(y)|^{\frac{a}{\alpha}} e^{-in_0(\beta' - \beta \frac{\alpha'}{\alpha})} \qquad (y \in H \setminus N).$$
(13)

In a first case, we have the following result:

Proposition 2. Let us suppose that H is given by Lemma 1. Let $F: H \to \mathbb{K}$ and $G: H \to H$ be nonconstant continuous solutions of (2) such that $H \setminus G^{-1}(0)$ is connected in the case where H is not included in \mathbb{R} .

We suppose that there exists y and z in $H \setminus G^{-1}(0)$ such that

if $H = \mathbb{R}$, h(y, z) = -1

 $\begin{array}{l} \text{if H is not included in \mathbb{R}, $h(y,z)$ is not a root of 1.}\\ \text{Then, if $H=\mathbb{R}$, $G(x)=-d|x|$ }(x\in\mathbb{R})$, \end{array}$

if H is not included in \mathbb{R} , we have $H = \mathbb{C}$ and

$$G(x) = \begin{cases} 0 & \text{if } x = 0\\ dx\theta(x) & \text{if } x \neq 0 \end{cases}$$
(14)

where d is some positive real number and $\theta : \mathbb{C} \setminus \{0\} \to U$ is some nonconstant continuous function and, in both cases,

$$F(x) = \begin{cases} (d|x|)^{\gamma} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

where γ is some element of K such that $\operatorname{Re} \gamma > 0$.

PROOF. In the case $H = \mathbb{R}$, we deduce from (11) that F is an even function.

In the case where H is not included in \mathbb{R} , $\{(h(y, z)^n\}_{n\in\mathbb{Z}} \text{ is dense in } U$. The fact that H is closed, the continuity of F and (11) imply : $U \subset H$ and $F(\lambda x) = F(x)$ ($x \in H, \lambda \in U$). Therefore, we have: $|x| \in H$ if $x \in H$ and $F(x) = F(|x|\frac{x}{|x|}) = F(|x|)$ ($x \in H \setminus \{0\}$).

So, in both cases, we have:

$$F(x) = F(|x|)$$
 $(x \in H).$ (15)

By (8), we deduce:

$$\varphi(y) = \varphi(|y|) \qquad (y \in H). \tag{16}$$

Therefore, we have by (9):

$$\varphi(|G(x)||G(y)|) = \varphi(|G(x)|)\varphi(|G(y)|) \qquad (x, y \in H).$$

$$(17)$$

Pexider generalization of a functional equation... 113

We first determine the range of |G|. (15) and (2) imply:

$$F(x|G(y)|) = F(x)F(y) \qquad (x, y \in H)$$
(18)

The functional equation (18) is of the form (2) where G is replaced by |G|. By Lemma 2, $|G| : H \to [0, +\infty)$ is a nonconstant continuous solution of the following functional equation:

$$|G(y, |G(z)|)| = |G(y)||G(z)| \qquad (y, z \in H)$$
(19)

which is nothing but the functional equation (4). We deduce from Theorem 1 of [3] and from the Remark following this theorem:

- in the case $H = \mathbb{R}$, $|G(x)| = \operatorname{Sup}(-cx, dx)$ $(x \in \mathbb{R})$ where c and d are nonnegative real numbers satisfying d > -c
- in the case $H = \mathbb{C}$ either
 - (i) $|G(x)| = d|x| (x \in \mathbb{C})$ where d is some positive real number, or

(ii)
$$|G(x)| = \begin{cases} 0 & \text{if } x = 0 \text{ or if } x \neq 0 \text{ and } \frac{x}{|x|} \in \mathcal{N} \\ |x|\psi\left(\frac{x}{|x|}\right) & \text{if } x \neq 0 \text{ and } \frac{x}{|x|} \notin \mathcal{N} \end{cases}$$

where $\psi: U \to [0, +\infty)$ is some continuous function with $\mathcal{N} = \psi^{-1}(0)$ such that $U \setminus \mathcal{N}$ is connected.

Let us now consider the case where $H = \Gamma \cup \{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} . In this case, we have (12) with $n_0 \neq 0$ and $\beta' - \beta \frac{\alpha'}{\alpha} \notin 2\pi \mathbb{Q}$. By (13), for $y \in H \setminus N$, we have $G(y) = e^{\lambda a + nb}$ with $(n + n_0)(\beta' - \beta \frac{\alpha'}{\alpha}) \in 2\pi \mathbb{Z}$. This implies: $n = -n_0$ and $G(y) = e^{\lambda a - n_0 b}$. Therefore, we have: $|G(y)| = e^{\mu \alpha}$ with $\mu = \lambda - n_0 \frac{\beta}{\alpha}$, and so $|G|(H \setminus N) \subset e^{\alpha \mathbb{R}}$. Since |G| is not constant, (19) implies: G(0) = 0. By the connectedness of H, we get: $|G|(H) = e^{\alpha I} \cup \{0\}$ where $I = (-\infty, \delta|$ for some δ (| means either) or]). Using (19), we have by induction: $(|G|(H))^n \subset |G|(H) \ (n \in \mathbb{N})$. We deduce: $|G|(H) = e^{\alpha \mathbb{R}} \cup \{0\} = [0, +\infty)$.

So, in all cases, we have $|G|(H) = [0, +\infty)$. From (17) we see, by letting u = |G(x)|, v = |G(y)|, that $\varphi : [0, +\infty) \to \mathbb{K}$ is a continuous solution of the Cauchy's power functional equation: $\varphi(uv) = \varphi(u)\varphi(v)$. Since F is not constant, φ is not constant and we get (cf. [1]):

$$\varphi(u) = \begin{cases} u^{\gamma} & \text{if } u > 0\\ 0 & \text{if } u = 0 \end{cases} \text{ where } \gamma \text{ is some element of } \mathbb{K} \text{ such that } \operatorname{Re} \gamma > 0. \end{cases}$$

We deduce from (7) and (16):

$$F(x) = \begin{cases} |G(x)|^{\gamma} & \text{if } x \notin N \\ 0 & \text{if } x \in N \end{cases}$$

This implies with (15): $x \in N \iff |x| \in N$ and

$$|G(x)| = |G(|x|)| \qquad (x \in H)$$
(20)

Finally, we determine G.

In the case $H = \mathbb{R}$, (20) implies: $|G(x)| = c|x| (x \in \mathbb{R})$ with c > 0 and we get either $G(x) = dx(x \in \mathbb{R})$ or G(x) = d|x| $(x \in \mathbb{R})$ where d is some nonzero real number. Since we assume h(y, z) = -1 for some y and z in \mathbb{R} , we have: G(x) = -d|x| $(x \in \mathbb{R})$ where d is some positive real number.

In the case $H = \mathbb{C}$, the form (ii) of |G| satisfies (20) if, and only if, $\psi \equiv d$ where d is some positive real number. Therefore, |G| has the form (i) and we deduce (14) in this case. The hypothesis that h(y, z) is not a root of 1 for some y and z in \mathbb{C} implies that θ is not constant.

Let us finally consider the case where $H = \Gamma \cup \{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} . If we suppose $G(y_0) = 0$ for some y_0 in Γ , we have by (19): $G(\lambda y_0) = 0$ ($\lambda \ge 0$). We get from (20): $G(\lambda | y_0 |) = 0$ ($\lambda \ge 0$) which implies: $G(\lambda) = 0$ ($\lambda \ge 0$). (20) implies that G is identically zero which is not the case. Therefore, we have $N = \{0\}$. So, $H \setminus \{0\}$ is connected and is therefore of the form: $H \setminus \{0\} = \{z \in \mathbb{C} : z = |z|^{\frac{\alpha}{\alpha}} e^{ip_0(\beta' - \beta \frac{\alpha'}{\alpha})}$ for some $p_0 \in \mathbb{Z}$. This brings a contradiction with the fact that $|G|(H) = [0, +\infty) \subset H$. Therefore, this case does not occur.

In the other case, we have the following result:

Proposition 3. Let us suppose that H is given by Lemma 1. Let $F: H \to \mathbb{K}$ and $G: H \to H$ be nonconstant continuous solutions of (2) such that $H \setminus G^{-1}(0)$ is connected in the case where H is not included in \mathbb{R} .

We suppose that, for all y and z in $H \setminus G^{-1}(0)$, h(y, z) is either equal to 1 in the case $H = \mathbb{R}$, or a root of 1 in the case where H is not included in \mathbb{R} .

Then, • in the the case where $H = \Gamma \cup \{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} ,

$$G(x) = \begin{cases} dx & \text{if } x \in e^{a\mathbb{R} + p_0 b} \\ 0 & \text{if } x \notin e^{a\mathbb{R} + p_0 b} \end{cases}$$
(21)

where p_0 is some integer in \mathbb{Z} and d is some element of $e^{a\mathbb{R}-p_0b}$,

• in the cases $H = \mathbb{R}$, $H = \Gamma \cup \{0\}$ with b = 0, $H = \mathbb{C}$, either

$$G(x) = dx \qquad (x \in H) \tag{22}$$

where d is some element of $H \setminus \{0\}$ or, in the case $H = \mathbb{R}$ only,

$$G(x) = \operatorname{Sup}(-cx, dx) \qquad (x \in \mathbb{R})$$
(23)

where c and d are some nonnegative real numbers satisfying d > -c, or, in the case $H = \mathbb{C}$ only,

$$G(x) = \begin{cases} 0 \text{ if } x = 0 \text{ or} & \text{if } x \neq 0 \text{ and } \frac{x}{|x|^{1+i\delta}} \in \mathcal{N} \\ e^{\frac{2ip\pi}{n}} \left(|x|\psi\left(\frac{x}{|x|^{1+i\delta}}\right) \right)^{1+i\delta} & \text{if } x \neq 0 \text{ and } \frac{x}{|x|^{1+i\delta}} \notin \mathcal{N} \end{cases}$$
(24)

where p is some integer in \mathbb{Z} , n is some positive integer, δ is some real number, $\psi : U \to [0, +\infty[$ is some continuous function which satisfies: $\psi(e^{\frac{i\pi}{n}}x) = \psi(x)(x \in U)$ in the case $p \neq kn$ $(k \in \mathbb{Z})$, $\mathcal{N} = \psi^{-1}(0)$ and $U \setminus \mathcal{N}$ is connected,

and, in all cases,

$$F(x) = \begin{cases} |G(x)|^{\gamma} & \text{if } G(x) \neq 0\\ 0 & \text{if } G(x) = 0 \end{cases}$$
(25)

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma > 0$, in the case $H = \mathbb{R}$ and (22),

$$F(x) = \begin{cases} |G(x)|^{\gamma} \operatorname{sign} G(x) & \text{if } G(x) \neq 0\\ 0 & \text{if } G(x) = 0 \end{cases}$$
(26)

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma > 0$, in the case $H = \mathbb{C}$ and (22),

$$F(x) = \begin{cases} |G(x)|^{\gamma} (G(x))^k & \text{if } G(x) \neq 0\\ 0 & \text{if } G(x) = 0 \end{cases}$$
(27)

where k belongs to \mathbb{Z} and γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma > -k$.

PROOF. We noticed already that we have h(y, z) = 1 $(y, z \in H \setminus N)$ in the case $H = \Gamma \cup \{0\}$ with b = 0. So, in the cases $H = \mathbb{R}$ and $H = \Gamma \cup \{0\}$ with b = 0, $G : H \to H$ is a nonconstant continuous solution of the functional equation:

$$G(xG(y)) = G(x)G(y) \qquad (x, y \in H).$$
(4bis)

If $H = \mathbb{R}$, (4bis) is nothing but (4) and Theorem 1 of [3] implies that G has either the form (22) or the form (23).

We have in this case either $G(H) = [0, +\infty)$ or $G(H) = \mathbb{R}$. By (9), $\varphi : H \to \mathbb{K}$ is a nonconstant continuous solution of the Cauchy's power functional equation. We deduce (cf. [1]): either

$$\varphi(u) = \begin{cases} |u|^{\gamma} & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases} \quad \text{or} \quad \varphi(u) = \begin{cases} |u|^{\gamma} \text{sign} u & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases}$$

where $\operatorname{sgn} u = \frac{u}{|u|}$ and γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma > 0$. From (7), we deduce the forms (25) and (26) for F.

In the case $H = \Gamma \cup \{0\}$ with b = 0, since G(H) is a connected part of H containing 0, we have $G(H) = e^{aI} \cup \{0\}$ where $I = (-\infty, \delta|$ for some real number δ . We get from (4bis) by induction: $(G(H))^n \subset G(H)$ $(n \in \mathbb{N})$ which implies G(H) = H. If $G(y_0) = 0$ for $y_0 \in \Gamma$, we get: $G(y_0G(y)) = 0$ $(y \in H)$, which contradicts $G \neq 0$. We deduce $N = \{0\}$. The function $\phi : \mathbb{R} \to \mathbb{R}$ satisfying: $G(e^{\lambda a}) = e^{a\phi(\lambda)}(\lambda \in \mathbb{R})$ is defined by: $\phi(\lambda) = \frac{1}{\alpha} \ln |G(e^{\lambda a})| (\lambda \in \mathbb{R})$, and, by (4bis), ϕ is a nonconstant continuous solution of the functional equation:

$$\phi(\lambda + \phi(\mu)) = \phi(\lambda) + \phi(\mu) \qquad (\lambda, \mu \in \mathbb{R}).$$
(28)

We get from [5]: $\phi(\lambda) = \lambda + \eta \ (\lambda \in \mathbb{R})$ where η is an arbitrary real number and we deduce that G has the form (22).

In the case $H = \mathbb{C}$, the hypothesis, the connectedness of $\mathbb{C} \setminus N$ and the continuity of G imply that the range of h is a connected part of $e^{2i\pi\mathbb{Q}}$, which is totally disconnected. Therefore, h is a constant function and there exists λ_0 in $e^{2i\pi\mathbb{Q}}$ such that we have with (11):

$$\begin{cases} G(xG(y)) = \lambda_0 G(x)G(y) \\ F(\lambda_0 x) = F(x) \end{cases} \quad (x, y \in \mathbb{C}).$$
(29)

In this case, $G : \mathbb{C} \to \mathbb{C}$ is a nonconstant continuous solution of the functional equation (3) which satisfies (29) and such that $\mathbb{C} \setminus N$ is connected. Therefore, it has one of the forms given in Theorem 2 of [3].

G of the form (22), where d is some nonzero complex number, satisfies (29) if, and only if, $\lambda_0 = 1$. In this case, we have $G(\mathbb{C}) = \mathbb{C}$. Therefore, by (9), $\varphi : \mathbb{C} \to \mathbb{K}$ is a nonconstant continuous solution of the Cauchy's power functional equation: $\varphi(uv) = \varphi(u)\varphi(v)$. If u and v belong to $\mathbb{C} \setminus \{0\}$, we see, by letting $u = e^x$, $v = e^y$, that the function $\phi : \mathbb{C} \to \mathbb{K}$ defined by: $\phi(x) = \varphi(e^x) \ (x \in \mathbb{C})$ is a nonconstant continuous solution of the Cauchy's exponential functional equation: $\phi(x + y) = \phi(x).\phi(y) \ (x, y \in \mathbb{C})$. We get from [1]: $\phi(x) = e^{\gamma x + \delta \bar{x}} \ (x \in \mathbb{C})$ where γ and δ are some complex numbers. This implies: $\varphi(u) = u^{\gamma} \bar{u}^{\delta} \ u \in \mathbb{C} \setminus \{0\}$. Such a function is continuous on $\mathbb{C} \setminus (-\infty, 0]$. φ is continuous on $(-\infty, 0)$ if, and only if, $e^{i\pi(\gamma-\delta)} = e^{-i\pi(\gamma-\delta)}$ i.e. $\gamma - \delta = k \in \mathbb{Z}$. We deduce: $\varphi(u) = |u|^{\gamma} \bar{u}^{-k} \ (u \in \mathbb{C} \setminus \{0\})$. This function is continuous at 0 if, and only if, $\operatorname{Re} \gamma > k$. From (7), we get the form (27) for F.

G of the form:
$$G(x) = \begin{cases} d|x|\theta(|x|) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$
, where d is some positive

real number and $\theta : (0, +\infty) \to U$ is some continuous function, satisfies (29) if and only if: $\theta(d|x||y|) = \lambda_0 \theta(|x|) \theta(|y|)$ $(x, y \in \mathbb{C} \setminus \{0\})$. By letting u = d|x|, v = d|y|, we see that the function $\tau : (0, +\infty) \to U$ defined by: $\tau(u) = \lambda_0 \theta(\frac{u}{d})$ (u > 0) is a continuous solution of the Cauchy's power functional equation: $\tau(uv) = \tau(u)\tau(v)$. We deduce (cf. [1]): $\tau(u) = u^{i\delta}$ (u > 0) where δ is some real number, and we get: $G(x) = \frac{1}{\lambda_0} (d|x|)^{1+i\delta}$ $(x \in \mathbb{C} \setminus \{0\})$. Therefore, in this case, G is of the form (24) with $\psi \equiv d$.

If G is of the form (24), we have: $G(\mathbb{C}) = e^{\frac{2ip\pi}{n}} e^{(1+i\delta)I} \cup \{0\}$ where $I = (-\infty, \delta|$ for some real number δ . Using (10), we have by induction: $(|G|(x))^n \in |G|(\mathbb{C}) \ (n \in \mathbb{N}, x \in \mathbb{C})$. We deduce:

$$G(\mathbb{C}) = e^{\frac{2ip\pi}{n}} e^{(1+i\delta)\mathbb{R}} \cup \{0\} = \frac{1}{\lambda_0} e^{(1+i\delta)\mathbb{R}} \cup \{0\}.$$

Let us consider now the case where $H = \Gamma \cup \{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} . We have (12) and (13) with $\beta' - \beta \frac{\alpha'}{\alpha} \in 2\pi \mathbb{Q}$. Since G(H) is a connected part of H containing 0, we get from (13): $G(H) = e^{aI} e^{-in_0(\beta' - \beta \frac{\alpha'}{\alpha})} \cup \{0\}$ where $I = (-\infty, \delta)$ for some real number δ . By using (10), we prove as before that $I = \mathbb{R}$ and we deduce: $G(H) = \frac{1}{\lambda_0} e^{a\mathbb{R}} \cup \{0\}.$

In the three cases: $H = \mathbb{C}$ and G of the form (24), $H = \Gamma \cup \{0\}$ with b = 0, $H = \Gamma \cup \{0\}$ not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} , we have: $G(H) = \frac{1}{\lambda_0} e^{\eta \mathbb{R}} \cup \{0\}$ where η is respectively $(1 + i\delta)$ and a. Since by (29) we have: $\varphi(\lambda_0 x) = \varphi(x)$ $(x \in H)$, the function $\phi : \mathbb{R} \to \mathbb{K}$ defined by: $\phi(x) = \varphi(e^{\eta x})$ $(x \in \mathbb{R})$ is by (9) a nonconstant continuous solution of the Cauchy's exponential functional equation: $\phi(x + y) = \phi(x) \cdot \phi(y)$. We get from [1]: $\phi(x) = e^{\gamma x}$ $(x \in \mathbb{R})$ where γ is some element of \mathbb{K} . Since φ is continuous at 0 and $\varphi(0) = 0$, we deduce: $\varphi(u) = \begin{cases} |u|^{\gamma} & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases}$ where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma > 0$. We obtain the form (25) for F.

Let us now determine G in the case where $H = \Gamma \cup \{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} . Since $H \setminus N$ is connected, in the same way as we proved (13), we can prove that there exists some p_0 in \mathbb{Z} such that we have: $x = |x|^{\frac{a}{\alpha}} e^{ip_0(\beta' - \beta \frac{\alpha'}{\alpha})}$ ($x \in H \setminus N$). Therefore, we have: $H \setminus N = e^{aI} e^{ip_0(\beta' - \beta \frac{\alpha'}{\alpha})}$ where I is an interval of \mathbb{R} .

Let us suppose $I \neq \mathbb{R}$. Then, there exists y_0 in $e^{a\mathbb{R}}e^{ip_0(\beta'-\beta\frac{\alpha'}{\alpha})}$ such that $G(y_0) = 0$. (10) and (13) imply: $G(y_0e^{a\mathbb{R}}e^{-in_0(\beta'-\beta\frac{\alpha'}{\alpha})}) = 0$. However, by (11), (12) and (25), we have also:

$$|G(x)| = |G(e^{in_0(\beta' - \beta \frac{\alpha'}{\alpha})}x)| \qquad (x \in H).$$

$$(30)$$

We deduce: $G(y_0 e^{a\mathbb{R}}) = G(e^{a\mathbb{R}} e^{ip_0(\beta' - \beta \frac{\alpha'}{\alpha})}) = 0$ which brings the contradiction. So, we have obtained:

$$H \setminus N = e^{a\mathbb{R}} e^{ip_0(\beta' - \beta \frac{\alpha'}{\alpha})} = e^{a\mathbb{R} + p_0 b}$$
(31)

By (30), if x belongs to $H \setminus N$, $e^{ikn_0(\beta'-\beta\frac{\alpha'}{\alpha})}x$ belongs also to $H \setminus N$ for all k in Z. (31) implies: $n_0(\beta'-\beta\frac{\alpha'}{\alpha}) \in 2\pi\mathbb{Z}$. We deduce: h(y,z) = 1and, by (13), $G(H) = e^{a\mathbb{R}} \cup \{0\}$. The definition of h(y,z) implies that $G: H \to \mathbb{K}$ is a nonconstant continuous solution of (4bis). The function $\phi: \mathbb{R} \to \mathbb{R}$ satisfying: $G(e^{\lambda a}e^{ip_0(\beta'-\beta\frac{\alpha'}{\alpha})}) = e^{\phi(\lambda)a}(\lambda \in \mathbb{R})$ is defined by: $\phi(\lambda) = \frac{1}{\alpha} \ln |G(e^{\lambda a}e^{ip_0(\beta'-\beta\frac{\alpha'}{\alpha})})|$ ($\lambda \in \mathbb{R}$), and (4bis) implies that ϕ is a

nonconstant continuous solution of the functional equation (28). We get from [5]: $\phi(\lambda) = \lambda + \eta$ ($\lambda \in \mathbb{R}$) where η is an arbitrary real number. We deduce that G has the form (21).

Since all the forms of G and F given in the Propositions 2 and 3 are solutions of (2), we have got the following result.

Theorem 1. Let us suppose that H is given by Lemma 1. All continuous solutions $F : H \to K$ and $G : H \to H$ of the functional equation (2) such that $H \setminus G^{-1}(0)$ is connected in the case where H is not included in \mathbb{R} , are given by: either

- (i) $F \equiv 0$ or $F \equiv 1$, G arbitrary, or
- (ii) in the cases $H = \mathbb{R}$, $H = \Gamma \cup \{0\}$ with b = 0, $H = \mathbb{C}$, G is given by (22), or
- (iii) in the case $H = \mathbb{R}$ only, either G is of the form (23), or G(x) = -d|x| $(x \in \mathbb{R})$ where d is an arbitrary positive real number, or
- (iv) in the case where $H = \Gamma \cup \{0\}$ is not included in \mathbb{R} and $\{a, b\}$ is a basis of the real vector space \mathbb{C} , G is of the form (21), or
- (v) in the case $H = \mathbb{C}$ only, G is either of the form (14) or of the form (24),

and, in all cases F is given by (25), in the case $H = \mathbb{R}$ and (22) only F is given by (26), in the case $H = \mathbb{C}$ and (22) only F is given by (27).

4. Case where *H* does not contain 0 or $H \setminus \{0\}$ is a not multiplicative group.

We shall restrict ourselves to the case where H is an interval of \mathbb{R} . The only possibilities for H such that H does not contain 0 or $H \setminus \{0\}$ is a not multiplicative group, but $H^2 \subseteq H$, are:

$$H = (0, +\infty); \ H = |a, +\infty), \quad a \ge 1;$$
$$H = |b, a|, \quad -1 \le b \le 0 < a \le 1, \ b^2 \le a$$

where | means either (or [or) or].

In order to get φ , and so F, from (9), we shall use the following result that we can obtain from [6] or [1]:

Lemma 3. If I is a subinterval of $(0, +\infty)$, all the continuous solutions $\varphi : I \cup I^2 \to \mathbb{K} \setminus \{0\}$ of the Cauchy's power functional equation: $\varphi(uv) = \varphi(u)\varphi(v)(u, v \in I)$ are given by:

$$\varphi(u) = \begin{cases} Au^{\gamma} & (u \in I) \\ A^2 u^{\gamma} & (u \in I^2) \end{cases}$$

where A and γ are arbitrary elements of K such that $A \neq 0$ (A = 1 if $I^2 \cap I \neq \emptyset$).

In order to apply this Lemma to (9), we shall study $F^{-1}(0)$ and $G^{-1}(0)$ when F and G are continuous solutions of (2) and F is not constant.

We first remark that, if 0 belongs to H, we have F(0) = 0, since x = 0 in (2) gives: F(0) = F(0)F(y) ($y \in H$).

We have the following result.

Lemma 4. Let $F : H \to \mathbb{K}$ and $G : H \to H$ be continuous solutions of (2) such that F is not constant. Then, we have: $F^{-1}(0) = G^{-1}(0)$.

If $0 \notin H$, F and G do not vanish.

If $0 \in H$, either F and G vanish only at 0, or, in the case H = |b, a| with b < 0 only, we may have:

$$\begin{cases} F(x) = G(x) = 0 & \forall x \ge 0 \text{ (resp. } x \le 0) \\ F(x) \ne 0, G(x) > 0 & \forall x < 0 \text{ (resp. } x > 0). \end{cases}$$

PROOF. We denote I = G(H), which is a nontrivial interval of \mathbb{R} included in H.

Let us suppose that there exists y_0 in H such that $F(y_0) = 0$.

First, in the case $H = (0, +\infty)$, we have $G(y_0) > 0$ and (2) with x replaced by $\frac{x}{G(y_0)}$ and $y = y_0$ implies that F is identically zero, which is not the case. Therefore, F does not vanish in this case.

In the other cases, we have by (2):

either
$$G(y_0) \neq 0$$
 and $F(x) = 0$ $(x \in G(y_0).H)$ (32)

or
$$G(y_0) = 0$$
 and $F(x) = 0$ $(x \in y_0.I).$ (33)

Since F is not identically zero, the continuity of F implies that there exists z_0 in $H \setminus \{0\}$ such that $0 < |F(z_0)| < 1$. Letting $x = z_0 \cdot (G(z_0))^{n-1}$, $y = z_0$

in (2), we get by induction:

$$F(z_0.(G(z_0))^n) = (F(z_0))^{n+1} \neq 0 \qquad (n \in \mathbb{N}).$$
(34)

Since $0 < |F(z_0)| < 1$, we have $\lim_{n \to +\infty} (F(z_0))^{n+1} = 0$ and therefore $|G(z_0)| \neq 1$.

If $H = |a, +\infty)$, $a \ge 1$, we have $G(z_0) > 1$ and there exists n in \mathbb{N} such that $z_0.(G(z_0))^n$ belongs to $G(y_0).H$. This is impossible by (32) and (34). Therefore, F does not vanish in this case.

If H = |b, a| with $-1 \le b \le 0 < a \le 1$, we have $|G(z_0)| < 1$. Let us suppose first $G(y_0) \ne 0$. Then, there exists n in \mathbb{N} such that $z_0.(G(z_0))^n$ belongs to $G(y_0).H$. This is impossible by (32) and (34). We deduce first that, if $0 \notin H$, F does not vanish.

Then, if $0 \in H$, we must have $G(y_0) = 0$. By (2), we get:

if
$$0 \in H$$
, $F(y_0) = 0 \iff G(y_0) = 0$. (35)

In particular, we have in this case F(0) = G(0) = 0. Suppose now that there exists $y_0 \neq 0$ in H such that $F(y_0) = 0$. We have $G(y_0) = 0$. But, there exists n in \mathbb{N} such that $z_0.(G(z_0))^n$ belongs to $y_0.I$, except maybe in the case where b is negative and I is included in $[0, +\infty)$. This is impossible by (33) and (34). Therefore, by (35), except in the latter case, if $0 \in H$, F and G vanish only at 0.

Let us consider now the case $H = |b, a|, b < 0, I \subset [0, +\infty)$. Let us suppose that $y_0 > 0$ satisfies $F(y_0) = 0$. Then, by (35), we have $G(y_0) = 0$. If F is not identically zero on [0, a], there exists z_0 in (0, a) such that $0 < |F(z_0)| < 1$ and there exists n in \mathbb{N} such that $z_0.(G(z_0))^n$ belongs to y_0I . This is impossible by (33) and (34). Therefore, F is identically zero on [0, a]. Similarly, if there exists y_0 in $|b, 0\rangle$ such that $F(y_0) = 0, F$ is identically zero on |b, 0]. Using (35), we deduce that we may have in this case:

either
$$F(x) = G(x) = 0 \ \forall x \le 0; \quad F(x) \ne 0, \quad G(x) > 0 \quad \forall x > 0$$

or
$$F(x) = G(x) = 0 \ \forall x \ge 0$$
; $F(x) \ne 0$, $G(x) > 0 \ \forall x < 0$. \Box

Using Lemmas 3 and 4, we shall now prove the following result.

Theorem 2. If $H = (0, +\infty)$ or $H = |a, +\infty)$ with $a \ge 1$ or H = |b, a|with $-1 \le b \le 0 < a \le 1$, $b^2 \le a$, all continuous solutions $F : H \to K$ and $G : H \to H$ of the functional equation (2) are given by:

• $F \equiv 0$ or $F \equiv 1$, G arbitrary,

$$G(x) = cx \qquad (x \in H) \tag{36}$$

where c > 0 if $H = (0, +\infty)$, $c \ge 1$ if $H = |a, +\infty)$, $0 < c \le 1$ if H = (0, a|, $\operatorname{Sup}(\frac{b}{a}, \frac{a}{b}) \le c \le 1$, $c \ne 0$ if H = |b, a|, b < 0, $(\operatorname{Sup}(\frac{b}{a}, \frac{a}{b}) < c \le 1$ if $H = (b, a], a \ge |b|$, or $H = [b, a), a \le |b|$)

and, in the case H = |b, a| with b < 0 only,

$$G(x) = -c|x|(x \in H) \text{ with } 0 < c \le \operatorname{Inf}\left(1, \frac{|b|}{a}\right)$$
$$\left(c < \operatorname{Inf}\left(1, \frac{|b|}{a}\right)\right) \text{ if } H = (b, a], \ |b| \le a)$$
(37)

$$G(x) = \operatorname{Sup}(-c_2 x, c_1 x) \ (x \in H) \text{ with } 0 \le c_1 \le 1, \ 0 \le c_2 \le \frac{a}{|b|},$$
$$c_1 + c_2 \ne 0 \quad \left(c_2 < \frac{a}{|b|} \text{ if } H = [b, a)\right), \tag{38}$$

• if $0 \notin H$, $F(x) = (G(x))^{\gamma}$ $(x \in H)$ where γ is an arbitrary nonzero element of \mathbb{K} , if $0 \in H$,

$$F(x) = \begin{cases} |G(x)|^{\gamma} & \text{if } G(x) \neq 0\\ 0 & \text{if } G(x) = 0 \end{cases}$$
(39)

where γ is some element of \mathbb{K} such that $\operatorname{Re} \gamma > 0$, and, in the case where H = |b, a| and G is of the form (36) only,

$$F(x) = \begin{cases} |G(x)|^{\gamma} \operatorname{sign} G(x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

$$\tag{40}$$

where γ is some element of K such that $\operatorname{Re} \gamma > 0$.

PROOF. Let $F : H \to \mathbb{K}$ and $G : H \to H$ be continuous solutions of (2) such that F is not constant.

1. We consider first the cases: $H = (0, +\infty)$, or $H = |a, +\infty)$, $a \ge 1$, or $H = (0, a|, a \le 1$.

By Lemma 4, F and G do not vanish. So, by (9) and with I = G(H), $\varphi: I \cup I^2 \subseteq H \subseteq (0, +\infty) \to \mathbb{K} \setminus \{0\}$ is a nonconstant continuous solution of the Cauchy's power functional equation. By Lemma 3, we have: $\varphi(u) = Au^{\gamma}(u \in I)$ where A and γ are some nonzero elements of \mathbb{K} . By (7), we get: $F(x) = A(G(x))^{\gamma}$ $(x \in H)$. With (2) we obtain:

$$G(xG(y))^{\gamma} = A(G(x))^{\gamma}(G(y))^{\gamma} \qquad (x, y \in H).$$

$$(41)$$

If $\operatorname{Re} \gamma \neq 0$, we get: $G(xG(y)) = BG(x) \ G(y) \ (x, y \in H)$ with $B = |A|^{\frac{1}{\operatorname{Re} \gamma}}$. If $\operatorname{Re} \gamma = 0$, we have $\gamma = e^{ic}, c \neq 0$. (41) implies that $A = e^{ic'}$ and, by the continuity of G, there exists n in \mathbb{Z} such that: $G(xG(y)) = e^{\frac{2\pi n + c'}{c}}G(x)G(y) \ (x, y \in H)$.

So, in all cases, there exists B > 0 such that:

$$G(xG(y)) = BG(x)G(y) \qquad (x, y \in H).$$

$$(42)$$

This implies:

$$G(xt) = BG(x)t \qquad (x \in H, t \in I).$$
(43)

Let us now determine I. By (42) we have by induction:

$$G(x(G(y))^n) = G(x)(BG(y))^n \qquad (x \in H, t \in I).$$
 (44)

Since G is not constant, there exists y in I such that $BG(y) \neq 1$.

In the case $H = (0, +\infty)$, since the formula (44) is true for all n in \mathbb{Z} , we have with for example BG(y) > 1: $\lim_{n \to +\infty} (BG(y))^n = +\infty$ and $\lim_{n \to -\infty} (BG(y))^n = 0$. We deduce from (44): $I = H = (0, +\infty)$.

In the other cases: if BG(y) > 1, we have $\lim_{n \to +\infty} (BG(y))^n = +\infty$, and (44) implies: $I = |a_1, +\infty)$, $H = |a, +\infty)$ with $a_1 \ge a$, if BG(y) < 1, we have $\lim_{n \to +\infty} (BG(y))^n = 0$, and (44) implies: $I = (0, a_1|, H = (0, a|$ with $a_1 \le a$.

If $I = H = (0, +\infty)$, (43) with x = 1 implies the expression (36) for G. In the other cases, we have from (43): $G(x) = \frac{G(xt)}{Bt}$ $(x \in H, t \in I)$.

Since at belongs to H, the continuity of G on H implies that $\delta = \lim_{x \to a, x \in H} G(x)$ exists and is positive. We have:

$$G(at) = B\delta t \qquad (t \in I). \tag{45}$$

Now, for all x and y in H, xG(y) belongs to aI and we have by (42) and (45): $G(x) = \frac{G(xG(y))}{BG(y)} = \frac{\delta}{a}x$. So, in all these cases, we have the expression (36) for G. The conditions on c are given by the fact that G takes its values in H. (41) implies now A = 1, and therefore $F(x) = (G(x))^{\gamma} (x \in H)$.

2. Let us consider now the case $H = [0, a], a \leq 1$.

By Lemma 4 F and G vanish only at 0. Therefore, $F : (0, a] \to \mathbb{K} \setminus \{0\}$ and $G : (0, a] \to (0, a]$ are nonconstant continuous solutions of (2). Using the continuity of F and G at 0, we deduce from the previous case that G has the form (36) and F has the form (39).

3. Finally let us consider the case $H = |b, a|, -1 \le b < 0 < a \le 1, b^2 \le a$.

3.1. We shall first investigate the case $I = [0, \alpha] \subseteq [0, \alpha]$.

By Lemma 4 and (7) we have: $F(y) = \varphi(G(y)) = 0 \iff G(y) = 0$. Therefore, φ does not vanish on $(0, \alpha|$. By (9), Lemma 3 and the fact that $(0, \alpha^2| \subset (0, \alpha|, \text{ we have: } \varphi(u) = u^{\gamma} \ (u \in (0, \alpha|) \text{ where } \gamma \text{ is some nonzero} element of K. Lemma 4, (7), (8) and the continuity of F imply that F has the form (39) with <math>\text{Re } \gamma > 0$. Using (2), we get:

$$G(xG(y)) = G(x)G(y) \qquad (x, y \in H).$$

$$(46)$$

This implies: G(xt) = G(x).t $(x \in H, t \in I)$. Let us fix t > 0 in I. Since at and bt belong to H, the continuity of G on I implies that $\delta_1 = \lim_{x \to a-0} G(x) = \frac{G(at)}{t}$ and $\delta_2 = \lim_{x \to b+0} G(x) = \frac{G(bt)}{t}$ exist and are nonnegative. We deduce:

$$G(x) = \begin{cases} c_1 x & \text{if } x \in [0, a\alpha] \\ c_2 x & \text{if } x \in [b\alpha, 0] \end{cases} \quad \text{with} \quad c_1 \ge 0 \quad \text{and} \quad c_2 \le 0 \qquad (47)$$

Now, for all x and y in H with $G(y) \neq 0$, xG(y) belongs to αH and we have by (46) and (47):

$$G(x) = \frac{G(xG(y))}{G(y)} = \begin{cases} c_1 x & \text{if } x \in [0, a] \\ c_2 x & \text{if } x \in [b, 0]. \end{cases}$$

We deduce that G has the form (38). The conditions on c_1 and c_2 come from the fact that G is not identically zero and takes its values in H.

3.2. Let us investigate now the case $I = [\beta, 0] \subseteq [b, 0]$.

Like in §3.1. φ does not vanish on $|\beta, 0\rangle$ and satisfies: $\varphi(uv) = \varphi(u)\varphi(v)$ $(u, v \in |\beta, 0\rangle)$. Let us denote: $\lambda = \varphi(u_0) \neq 0$ for some fixed u_0 in $|\beta, 0\rangle$. The function $\phi : (0, \frac{\beta}{u_0}| \to \mathbb{K} \setminus \{0\}$ defined by: $\phi(x) = \frac{1}{\lambda^2}\varphi(u_0^2x)$ $(x \in (0, \frac{\beta}{u_0}|)$ is a nonconstant continuous solution of the Cauchy's power functional equation. We get from Lemma 3: $\phi(x) = x^{\gamma}(x \in (0, \frac{\beta}{u_0}|)$ where γ is some element of \mathbb{K} . We deduce: $\varphi(u) = \frac{1}{\lambda}\varphi(u_0u) = \lambda\phi(\frac{u}{u_0}) = A|u|^{\gamma}$ $(u \in |\beta, 0\rangle)$ where A is some element of $\mathbb{K} \setminus \{0\}$. The continuity of F at 0 and (7) imply:

$$F(x) = \begin{cases} A|G(x)|^{\gamma} & \text{if } G(x) \neq 0\\ 0 & \text{if } G(x) = 0 \end{cases}$$

with $\operatorname{Re} \gamma > 0$. Using (2), we see that there exists $B = |A|^{\frac{1}{\operatorname{Re} \gamma}} > 0$ such that:

$$G(xG(y)) = -BG(x)G(y) \qquad (x, y \in H).$$

$$(48)$$

With the same argument as in 3.1, we can prove that G has the form:

$$G(x) = \begin{cases} c_1 x & \text{if } x \in [0, a] \\ c_2 x & \text{if } x \in [b, 0] \end{cases} \quad \text{with} \quad c_1 \le 0 \quad \text{and} \quad c_2 \ge 0.$$
(49)

Now, if $x \in (0, a|$ and $G(y) \neq 0$, x G(y) belongs to $|b, 0\rangle$ and we have by (48) and (49): $G(xG(y)) = c_2 xG(y) = -BG(x)G(y) = -Bc_1 xG(y)$ which implies $c_2 = -Bc_1$. Similarly with $x \in |b, 0\rangle$ we prove $c_1 = -Bc_2$. This implies B = 1 and $c_1 = -c_2$. From (2) we have A = 1. Therefore, G has the form (37) and F has the form (39). The conditions on c are imposed by the fact that G takes its values in H.

3.3. Let us finally investigate the case $I = |\beta, \alpha| \subseteq |b, \alpha|, \beta < 0 < \alpha$.

By Lemma 4 F and G vanish only at 0. By (9) φ is a nonconstant continuous solution of the restricted Cauchy's power functional equations:

$$\varphi(uv) = \varphi(u)\varphi(v) \quad (u, v \in (0, \alpha|) \qquad (\text{resp. } (u, v \in |\beta, 0))).$$

As in 3.1. and in 3.2. there exist A, γ_1 , γ_2 in \mathbb{K} , with $A \neq 0$, $\operatorname{Re} \gamma_1 > 0$, $\operatorname{Re} \gamma_2 > 0$ such that $\varphi(u) = u^{\gamma_1}$ ($u \in (0, \alpha|$) and $\varphi(u) = A|u|^{\gamma_2}$ ($u \in |\beta, 0\rangle$).

Now, if $u \in |\beta, 0\rangle$, there exists $0 < \alpha' < \alpha$ such that $uv \in |\beta, 0\rangle$ for all $v \in (0, \alpha')$ and we have: $\varphi(uv) = A|uv|^{\gamma_2} = A|u|^{\gamma_2}v^{\gamma_1}$. This implies: $\gamma_2 = \gamma_1 = \gamma$.

Furthermore, if $u \in |\beta, 0)$, there exists $v \in |\beta, 0)$ such that $uv \in (0, \alpha|$ and we have: $\varphi(uv) = uv^{\gamma} = A^2 |u|^{\gamma} |v|^{\gamma}$, which implies $A = \pm 1$. So, we have obtained:

either
$$\varphi(u) = \begin{cases} |u|^{\gamma} & \text{if } u \neq 0\\ 0 & \text{if } u = 0 \end{cases}$$
 or $\varphi(u) = \begin{cases} |u|^{\gamma} \text{ sign } u & \text{if } u \neq 0\\ 0 & \text{if } u = 0. \end{cases}$

We deduce that F has either the form (39) or the form (40). (2) implies now: $|G(xG(y))| = |G(x)| |G(y)| (x, y \in H)$, which implies:

|G(xt)| = |G(x)| |t| ($x \in H, t \in I$). With the same argument as in 3.1., we can prove that |G| has the form:

$$|G(x)| = \begin{cases} c_1|x| & \text{if } x \in aI \\ c_2|x| & \text{if } x \in bI \end{cases} \quad \text{where } c_1 \text{ and } c_2 \text{ are positive.}$$

Since $aI \cap bI$ is a nontrivial interval, we have $c_1 = c_2 = c$. Now, for all x and y in H with $y \neq 0$, xG(y) belongs to $aI \cup bI$ and we have: $|G(x)| = \frac{|G(xG(y))|}{|G(y)|} = c|x|$. Since G is neither always nonpositive nor always nonnegative, we deduce that G is of the form (36). The conditions on c are obtained from the fact that G takes its values in H. \Box

Corollary (cf. [3]). If $H = (0, +\infty)$ or $H = |a, +\infty)$ with $a \ge 1$ or H = |b, a| with $-1 \le b \le 0 < a \le 1$, $b^2 \le a$, all continuous solutions $f : H \to H$ of the functional equation: f(xf(y)) = f(x)f(y) $(x, y \in H)$ are given by $f = \phi_{|H}$ where $\phi : \mathbb{R} \to \mathbb{R}$ is an arbitrary continuous solution of the functional equation (4) satisfying $\phi(H) \subseteq H$. ϕ is unique in the case H = |b, a|, b < 0.

References

- J. ACZÉL and J. G. DHOMBRES, Functional Equations in Several Variables, Encyclopaedia of Mathematics, Vol. 31, Cambridge University Press, Cambridge, 1989.
- [2] N. BOURBAKI, Eléments de Mathématiques, Topologie Générale, chapitre VII, Diffusion C.C.L.S., Masson, 1974.

Pexider generalization of a functional equation...

- [3] N. BRILLOUËT-BELLUOT, More about some functional equations of multiplicative symmetry, *Publ. Math. Debrecen* 58 (2001), 575–585.
- [4] J. G. DHOMBRES, Functional Equations on Semi-Groups arising from the theory of means, Nanta Math. 5, no. 3 (1972), 48–66.
- [5] J. G. DHOMBRES, Solution générale sur un groupe abélien de l'équation fonctionnelle: f(x * f(y)) = f(y * f(x)), Aequationes Math. 15 (1977), 173–193.
- [6] F. RADÓ and J. A. BAKER, Pexider's equation and aggregation of allocations, Aequationes Math. 32 (1987), 227–239.

NICOLE BRILLOUËT-BELLUOT ECOLE CENTRALE DE NANTES DÉPARTEMENT D'INFORMATIQUE ET DE MATHÉMATIQUES 1 RUE DE LA NOË BP 92101, 44 321 NANTES CEDEX 3 FRANCE

E-mail: Nicole.Belluot@ec-nantes.fr

(Received December 9, 2002; accepted March 4, 2003)