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The Diophantine equation α
(

x
m

)
+ β

(
y
n

)
= γ

By TH. STOLL (Graz) and R. F. TICHY (Graz)

Abstract. The number of solutions of the Diophantine equation α
(

x
m

)
+

β
(

y
n

)
= γ with α, β, γ ∈ Q and m,n ∈ N, m 6= n in rational integers (x, y)

is investigated. We apply the general Bilu–Tichy-criterion [5] for polynomial
Diophantine equations f(x) = g(y) in order to obtain ineffective finiteness of
solutions (x, y) in the case m,n ≥ 3. Simplicity and two-interval-monotonicity of
the local extrema of

(
x
m

)
also guarantee finiteness in the case min(m,n) = 2.

1. A short account on history

W. Sierpiński [14] considered the problem to determine all triangular
numbers which are also tetrahedral. This means to determine the solutions
(k, x, y) of the equation

k =
(

x

3

)
=

(
y

2

)
with k, x, y ∈ N. (1.1)

In 1966, Avanesov [1] gave the complete solution, proving that k =
1, 10, 120, 1540, 7140 are the only numbers k which satisfy (1.1). Twenty
years later, Kiss [10] was able to show finiteness for the generalized equa-
tion (

x

p

)
=

(
y

2

)
with p being an arbitrary fixed odd prime. (1.2)
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His proof heavily relies on Baker’s theorem of finiteness of integer solutions
of hyperelliptic equations [2], so Kiss’ result is effective. He also uses the
simple fact that the polynomial f(x) =

(
x
p

)
+ 1

8 only has simple roots.
Furthermore, p has to be prime since Eisenstein’s irreducibility criterion
is applied. However, in 1993, Barja, Molinelli and Blanco Ferro [3]
observed that this assumption is not necessary for f(x) in order to have
just simple zeros, so that they obtained finiteness of the number of positive
integer solutions (x, y) of the Diophantine equation

(
x

m

)
=

(
y

2

)
for arbitrary fixed m ≥ 3. (1.3)

A special problem appearing in Section D3 of Guy’s book [9] of unsolved
problems in number theory is the following: Are (4, 2), (6, 6) and (10, 21)
the only positive integer pairs (x, y) with x ≥ 4 and y ≥ 2 such that the
equation (

x

4

)
=

(
y

2

)

holds? Pintér [11] and de Weger [6] gave the affirmative answer. The
tools are once more lower bounds of linear forms in logarithms of alge-
braic numbers. Other special Diophantine equations involving binomial
coefficient polynomials have been treated by these authors in [12], [7].

Recent work in a very similar subject area has been done by Bilu,

Brindza, Kirschenhofer, Pintér and Tichy in [4] where they could
show, that for m 6= 2, n ≥ 1 and (m, n) 6= (2, 1), the equation

x(x + 1) . . . (x + m− 1) = 1n + 2n + · · ·+ (y − 1)n

has at most finitely many solutions in rational integers x, y.
In the present paper we deal with a more general form of Diophan-

tine equation involving two binomial coefficients of the above type with
arbitrary multiplicative rational factors. However, as we use Bilu–Tichy’s
criterion for m,n ≥ 3 (see Section 3, Theorem 3.3) we loose control over
effective bounds of solutions, so that our result is ineffective. For the case
n = 2, Baker’s effective theorem about elliptic and hyperelliptic equations
applies (see for instance [13]).
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Theorem 1.1 (Baker, 1975). We consider the Diophantine equation

f(x) = by2 in (x, y) ∈ Q2 with f(x) ∈ Q[x] and b ∈ Q \ {0}. If f(x) has

at least three simple roots then all solutions satisfy max(|x|, |y|) ≤ C1 for

some computable C1 depending only on b and f .

2. Main theorem

Theorem 2.1.

1. The Diophantine equation

α

(
x

m

)
+ β

(
y

n

)
= γ with m > n ≥ 3, α, β, γ ∈ Q, α > 0, β 6= 0

has at most finitely many solutions in rational integers x, y.

2. The same holds for the case n = 2 and m ≥ 3 with exception of

m = 4,
8γ + β

α
∈

{
−1

3
,

3
16

}
.

Moreover, it holds max(|x|, |y|) < C1, where C1 is an effectively com-

putable constant depending only on α, β, γ and m.

Note that (1.3) is obtained by the choice of (α, β, γ) = (1,−1, 0) and
n = 2 in the second statement.

For the proof we need some information about monotonicity of extrema
of

∣∣(x
m

)∣∣. For convenience, we call a real polynomial f(x) two-interval-
monotone, if there exist two intervals I1 and I2 (one possibly empty) with
I1 ∪ I2 = (−∞,∞) such that the local extrema of |f(x)| are strictly de-
creasing on I1 and strictly increasing on I2.

Lemma 2.2. pm(x) =
(

x
m

)
with m ≥ 2 is two-interval-monotone.

Proof. Assume by induction that |pm(x)| has this property (obvi-
ously it holds for m = 2). Since |pm(x)| is symmetric with respect to
the line x = m−1

2 we just have to show that the local maxima of |pm(x)|
are decreasing on [0, (m − 1)/2] for all m. If m is even then there is an
extremum at x = m−1

2 and by symmetry that one with minimal value.

Then, multiplication with
∣∣∣x−m
m+1

∣∣∣ does not change the decreasing property
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of the extrema of |pm(x)|, but now this property holds on the larger in-
terval [0,m/2]. On the other hand, if m is odd, there are exactly two
extrema of minimal value. Again,

∣∣∣x−m
m+1

∣∣∣ |pm(x)| has the decreasing prop-
erty on the larger interval [0,m/2] because |x−m| is strictly decreasing on
[0, m], so in particular on [(m − 2)/2,m/2]. Now we are finished because
of pm+1(x) = x−m

m+1pm(x).

In order to apply Theorem 1.1 we have to examine the zero distribution
of the polynomial

(
x
m

)
+ δ for general δ ∈ Q. Lemma 2.2 enables us to give

a simple proof of the following property, which originally has been stated
by Yuan Ping-Zhi [15, Theorem 2].

Corollary 2.3. The polynomial
(

x
m

)
+ δ with δ ∈ Q and m≥ 3 has at

least three simple roots with exception of (m, δ) ∈ {(4,−3/128), (4, 1/24)}.
Proof. As

(
x
m

)
has exactly m − 1 simple real stationary points, all

non-real roots of
(

x
m

)
+ δ are simple. Moreover, the only multiple roots of(

x
m

)
+ δ are real roots of order two. By Lemma 2.2 there are at most two

extrema of the same value, which means that the number of roots of order
two of

(
x
m

)
+ δ is at most two. Consequently, there are always three simple

roots in case of m ≥ 7. If m = 3 then
(
x
3

)
+δ has exactly three simple roots

except in the case where |δ| =
√

3/27, which is a contradiction to δ ∈ Q.
Assume now m = 4. If δ 6= 1/24 and δ 6= −3/128 there are always four
simple roots (i.e. for δ ∈]−3/128, 1/24[ four simple real roots, for δ > 1/24
four simple non-real roots, for δ < −3/128 two simple real and two simple
non-real roots. Further we observe that

(
x
4

) − 3/128 has two simple real
roots and a real root of order two; on the other hand,

(
x
4

)
+ 1/24 has two

real roots of order two. In the case of m = 5 three simple roots are always
guaranteed. Finally, let m = 6. The condition p′6(x) = 0 yields five values,
namely x = 5

2 , 5
2± 1

6

√
105± 24

√
7. The points xi = 5

2± 1
6

√
105± 24

√
7 are

crucial and we have p(xi) = − 2
243 ± 7

1215

√
7, which is again a contradiction

to δ ∈ Q. This finishes the proof.
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3. Decomposition properties

Let f be a complex polynomial and η an arbitrary complex number.
Put δ(f ; η) := deg gcd(f − η, f ′). The following important decomposition
lemma is extracted from [8].

Lemma 3.1. Let f ∈ C[x] be non-constant and let f = p ◦ q, where

p, q ∈ C[x]. If deg p ≥ 2 then there exists η ∈ C with δ(f ; η) ≥ deg q.

Proof. Let ξ be a root of p′ (which exists by deg p ≥ 2) and put
η = p(ξ). Then both the polynomials f − η and f ′ are divisible by q − ξ,
hence deg q = deg(q − ξ) ≤ deg gcd(f − η, f ′).

Suppose f, p, q ∈ R[x], f = p ◦ q with deg p ≥ 2 and f just having
simple extremal points. Then ξ ∈ R and η ∈ R. In this case, δ(f ; η) can
easily be interpreted as the number of extremal points of f having value η.
If we further claim f to be two-interval-monotone then f has at most two
extremal points of the same value, i.e. δ(f ; η) ≤ 2 for all η ∈ R. As a
straight-forward consequence we have

Corollary 3.2. Let f ∈ R[x] be non-constant, two-interval-monotone

and having just simple extremal points. Further let λ1f(λ2x + λ3) + λ4 =
p(q(x)) with p(x), q(x) ∈ R[x], deg p ≥ 2 and λ1, λ2, λ3, λ4 ∈ R, λ1λ2 6= 0.

Then deg q ≤ 2.

Note that the double-shift x 7→ λ2x + λ3 and f 7→ λ1f + λ4 does not
affect two-interval-monotonicity and simplicity of extremal points. Sum-
ming up, the only possible decompositions of such polynomials f(x) are

(1) f(x) = e1h(x) + e0 with deg h = deg f , e0, e1 ∈ R and

(2) f(x) = φ(h(x)), h(x) being a real polynomial of degree at most two
and deg φ ≥ 2.

We recall from [5] a very comfortable criterion in order to decide
whether a given polynomial Diophantine equation f(x) = g(y) has in-
finitely many rational solutions with a bounded denominator or not. In
what follows θ, ρ ∈ Q \ {0}, q, s, t ∈ Z>0, r ∈ Z≥0 and v(x) ∈ Q[x] a
non-zero polynomial (which may be constant). We will use the following
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explicit definition of the s-th Dickson polynomial:

Ds(x, θ) =
bs/2c∑

i=0

ds,ix
s−2i with ds,i =

s

s− i

(
s− i

i

)
(−θ)i.

(fi(x), gi(x)) or switched with 1 ≤ i ≤ 5 is called a standard pair if it can
be represented by an explicit form listed in the following table. Depending
on i we say (fi, gi) is a standard pair of the first, second, third, fourth,
fifth kind, respectively.

kind explicit form of (fi(x), gi(x)), 1 ≤ i ≤ 5

first (xq, θxrv(x)q) with 0 ≤ r < q, (r, q) = 1, r + deg v > 0

second (x2, (θx2 + ρ)v(x)2)

third (Ds(x, θt), Dt(x, θs)) with (s, t) = 1

fourth
(
θ−s/2Ds(x, θ),−ρ−t/2Dt(x, ρ)

)
, with (s, t) = 2

fifth
(
(θx2 − 1)3, 3x4 − 4x3

)

Theorem 3.3 (Bilu–Tichy, 2000). Let f(x), g(x) ∈ Q[x] be non-cons-

tant polynomials. Then the following two assertions are equivalent:

(a) The equation f(x) = g(y) has infinitely many rational solutions with

a bounded denominator.

(b) f ◦ κ1 = φ ◦ fi and g ◦ κ2 = φ ◦ gi where κ1, κ2 ∈ Q[x] are linear,

φ(x) ∈ Q[x], and (fi, gi) is a standard pair.

In the sequel we use the notation φ(x) = ekx
k + ek−1x

k−1 + · · · + e0

and v(x) = vlx
l + vl−1x

l−1 + · · ·+ v0.

Proof of Main Theorem 2.1

1. While introducing new parameters (α ↔ −β
α and β ↔ γ

α) the
original equation becomes

pm(x) = αpn(y) + β.

First, let deg φ ≥ 2. Having in mind Corollary 3.2 and m 6= n, we observe
by looking at the five standard pairs, that we can straightly exclude the
standard pairs number two (v(x) must be a constant) and four (s = t = 2)
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as m 6= n. Standard pair number five can also be repelled because of
multiple roots. There remain the following cases to consider

Standard pair of the first kind:
pm(Ax + B) = φ(x2), αpn(Ãx + B̃) + β = φ(θv2

0x).

Standard pair of the first kind:
pm(Ax + B) = φ(θ(v2x

2 + v1x + v0)), αpn(Ãx + B̃) + β = φ(x).

Standard pair of the third kind:
pm(Ax + B) = φ(x2 − 2θ), αpn(Ãx + B̃) + β = φ(x).

We note that necessarily m = 2n since otherwise no representation can
exist. Just by linear transformation of the argument we get an polynomial
identity just in terms of the polynomials under consideration, i.e.

pm(x) = αpn(v2x
2 + v1x + v0) + β (3.1)

for some probably new parameters v2, v1, v0. The impossibility of such
a representation would imply deg φ = 1. Thereafter, the standard pair
of the first kind with q ≥ 3 and the standard pair of the fifth kind are
of no use since φ(xq), φ(3x4 − 4x3) respectively, have multiple extremal
points. Keeping in mind that m,n ≥ 3 we just have to deal with the repre-
sentations involving Dickson polynomials. However, Dickson polynomials
Ds(x, θ) are known to take exactly two different extremal values for s ≥ 3.
Hence, polynomials of the form λ1Ds(λ2x+λ3, θ)+λ4 have the same prop-
erty, so they have not got the two-interval-monotonicity property. Finally,
we just have to treat (3.1), i.e.

(
x

m

)
= α

(
v2x

2 + v1x + v0

n

)
+ β.

The impossibility of such an equation would fully settle the case n ≥ 3. We
first list explicitly the upper most coefficients of the polynomial n!

(
x
n

)
=

xn +k
(n)
n−1x

n−1 +k
(n)
n−2x

n−2 + · · ·+k
(n)
0 which can be calculated via multiple

sums and Maple

k
(n)
n−i =

∑

0≤j1<j2<···<ji≤n−1

i∏

k=1

(−jk)
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=
n−1∑

ji=ji−1+1

n−2∑

ji−1=ji−2+1

· · ·
n−i+1∑

j2=j1+1

n−i∑

j1=0

i∏

k=1

(−jk).

In particular, for small i,

k
(n)
n−1 = −1

2
n(n− 1)

k
(n)
n−2 =

1
24

n(n− 1)(n− 2)(3n− 1)

k
(n)
n−3 = − 1

48
n2(n− 1)2(n− 2)(n− 3)

k
(n)
n−4 =

1
5760

n(n− 1)(n− 2)(n− 3)(n− 4)(15n3 − 30n2 + 5n + 2)

k
(n)
n−5 = − 1

11520
n2(n− 1)2(n− 2)(n− 3)(n− 4)(n− 5)(3n2 − 7n− 2).

By immediate comparison of coefficients of upper powers of x we derive
the following list of equations in the variables α, β, v2, v1, v0, m, n.

Eq. 0 [xm] : 1 = αvn
2

Eq. 1 [xm−1] : k
(m)
m−1 = α

[
nvn−1

2 v1

]

Eq. 2 [xm−2] : k
(m)
m−2 = α

[
nvn−1

2 v0 +
n(n− 1)

2
vn−2
2 v2

1 + k
(n)
n−1v

n−1
2

]

Eq. 3 [xm−3] : k
(m)
m−3 = α

[
n(n− 1)vn−2

2 v1v0

+
n(n− 1)(n− 2)

6
vn−3
2 v3

1 + k
(n)
n−1(n− 1)vn−2

2 v1

]

Eq. 4 [xm−4] : k
(m)
m−4 = α

[
n(n− 1)

2
vn−2
2 v2

0 +
n(n− 1)(n− 2)

2
vn−3
2 v2

1v0

+
n(n− 1)(n− 2)(n− 3)

24
vn−4
2 v4

1 + k
(n)
n−1(n− 1)vn−2

2 v0

+k
(n)
n−1

(n− 1)(n− 2)
2

vn−3
2 v2

1 + k
(n)
n−2v

n−2
2

]
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Eq. 5 [xm−5] : k
(m)
m−5 = α

[
n(n− 1)

2
vn−3
2 v1v

2
0

+
n(n− 1)(n− 2)(n− 3)

6
vn−4
2 v3

1v0

+
n(n− 1)(n− 2)(n− 3)(n− 4)

120
vn−5
2 v5

1

+ k
(n)
n−1(n− 1)(n− 2)vn−3

2 v1v0

+k
(n)
n−1

(n− 1)(n− 2)(n− 3)
6

vn−4
2 v3

1 + k
(n)
n−2(n− 2)vn−3

2 v1

]

Eq. 6 [xm−6] : k
(m)
m−6 = α

[
n(n− 1)(n− 2)

6
vn−3
2 v3

0

+
n(n− 1)(n− 2)(n− 3)(n− 4)

24
vn−5
2 v4

1v0

+
n(n− 1)(n− 2)(n− 3)

4
vn−4
2 v2

1v2
0

+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

720
vn−6
2 v6

1

+ k
(n)
n−1

(n− 1)(n− 2)
2

vn−3
2 v2

0

+ k
(n)
n−1

(n− 1)(n− 2)(n− 3)
2

vn−4
2 v2

1v0

+ k
(n)
n−1

(n− 1)(n− 2)(n− 3)(n− 4)
24

vn−5
2 v4

1

+ k
(n)
n−2(n− 2)vn−3

2 v0

+k
(n)
n−2

(n− 2)(n− 3)
2

vn−4
2 v2

1 + k
(n)
n−3v

n−3
2

]
.

Note that the use of Eq. 4 and 5 requires n ≥ 3 respectively n ≥ 4 for
Eq. 6. By solving the system Eq. 0–4 we obtain v2

2 = 15/(16n2 − 4).
Obviously, a necessary condition consists in v2 ∈ Q, or equivalently, there
must be a solution to the equation

15
4n2 − 1

=
l21
l22
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with (l1, l2) = 1. One sees, that the Pellian equation 4n2− 15l22 = 1 has to
be satisfied. The smallest solutions in terms of n are n = 2 and n = 122.
Hence, we can use Eq. 6 without any further restriction on n. This gives a
single equation basically in terms of n, namely n(n2−1)(n2−4)(4n2−1)=0
which has no solution for n ≥ 3, a contradiction.

2. In case of n = 2 we rewrite the original equation in the following
way:

α

(
x

m

)
+ β

(
y

n

)
= γ, and equivalently,

(
x

m

)
− 8γ + β

8α
= − β

8α
(2y − 1)2.

By Corollary 2.3 the polynomial
(

x
m

)− 8γ+β
8α has at least three simple roots

with exception of the cases m = 4, 8γ+β
α = 3

16 and m = 4, 8γ+β
α = −1

3 .
Applying Theorem 1.1 to

(
x
m

) − 8γ+β
8α we immediately get the statement.

¤

Remark. We thank the referee for informing us about the paper of
Yuan Ping-Zhi [15] in order to improve Theorem 2.1. Csaba Rakaczki,
in a recent work, attacks the equation x(x− 1) · · · (x−m+ 1)= λy(y− 1)
· · · (y − n + 1) by another approach to obtain general ineffective results.
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