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Distribution of additive and g-additive functions under
some conditions

By I. KATAI (Budapest) and M. V. SUBBARAO (Edmonton)

Abstract. It is proved that an additive arithmetical function f under the
fulfilment of the conditions of the Erdés—Wintner theorem has a limit distribution
on the subset of the integers {n < z | w(n) = k}, where k = k(z) = (1 +
o(1))loglog x, and w(n) = number of prime divisors of n. Similar theorems are
proved for multiplicative and g-additive and g-multiplicative functions.

1. Introduction

1.1. Let ¢ > 2 be an integer, the g-ary expansion of some n € Ny let be
defined as

n=">Y ejn)d, (1.1)
j=0

where the digits €;(n) are taken from the set A, = {0,1,...,¢—1}. Let A,
be the set of g-additive functions, and M, be the set of g-multiplicative
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functions of modulus 1. f : Ny — R belongs to A, if f(0) =0, and

ﬂm=ZﬂMWﬂ

Jj=0

We say that g : Ng — C belongs to My, if g(0) = 1, |g(bg?)| = 1 for

every b € Ay, and
g(n) = [ 9(vd).
§=0
Let

a(n) = 2(n)
=0

the so called “sum of digits” function and let

Bun)= > 1 (h=1,...,q—1).

i(n)=h

H. DELANGE [1] proved that for some g € M, the limit

tim © 3" g(n) = M(g)

n<x

exists and M (g) # 0, if

mj::EZg(cqj)#O (j:07172v"')

q c€EAq

and
o0
Jj= cEhq

is convergent. Furthermore,
o0
=0

if (1.2) holds and (1.3) is convergent.

S (1-my) = i Cll( S (1-glea))

(1.2)

(1.3)
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Hence he deduced that for f € A, the values f(n) possess a limit
distribution if and only if both of the next series are convergent:

>N Fd), (1.4)

J bEA,
>N F0d). (1.5)
J beEA,
Let .
F(y) = I~ # o <o | fn) <o} (1.6
For some z and ¢ let N(z) = Hgiz] Thus N(¢"V) = N.
Let furthermore
M(N | 7“1,7"2,...,7“61,1) (17)

be the number of integers n < ¢~ for which gj(n) =r, (I=1,...,q —1).
It is clear that (1.7) is equal to

N!
TU!Tl!T‘Q! e T‘qfl!

)

where 79 := N — (r1 +ro+ ... +74-1).

Let furthermore Sy(r) be the set of the integers n < ¢V for which
ri=p0in)(j=1,...,q—1), 10 =N —(r1+...+rg—1).

Let 0n be a sequence tending to zero, and r be such a vector (for some
N), for which

‘ﬂf

1‘ 5 = 0,1,....q—1 1.
~ <N (j=0 q—1) (1.8)

holds.

Theorem 1. Assume that f € A, and that (1.4) and (1.5) are conver-

gent. Let rV) = (r((]N), rgN), . ,réﬁ) be such a sequence of r for which
(1.8) holds. Then
1
lim #{n<qN nGSN(ﬁ(N)) { f(n) <y} = F(y).
N N
N=co (N |, )
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Theorem 2. Let g € Mg, such that (1.2) holds and (1.3) is conver-
gent. Let rN) be a sequence of r satisfying the condition (1.8). Then

(Nl) ) > g(n) = (14on(1)) M(g).
. ,rq_l) neSn (z9)

M(N |

Theorem 3. Let ¢ =2, f € As, f(27) = O(1) (j € N),
NN = %Zjv:_ol f(2j)7

Assume that By — oo.
Let py — 0. Then

1 f(n) —kn o\
A}Er)lm@ {n < 2N } TN <y, a(n) = k} = o(y), (1.9)

uniformly as N — oo, and k = kN) satisfies
k/N —1/2| < pw. (1.10)

1.2. Let A be the set of real valued additive and M be the complex
valued multiplicative functions. We say that f € A, if f(mn) = f(m) +
f(n) holds for all coprime pairs of m,n. We say that g € M if g(mn) =
g(m) - g(n) whenever (m,n) =1, and g(1) = 1.

Let M C M be the set of g for which additionally |g(n)| =1 (n € N)
holds.

Let w(n) be the number of prime factors, 2(n) be the number of prime
power divisors of n. Then w, ) € A.

Let Uy = {n | w(n) =k}, Vi = {n | Q(n) = k}, furthermore m(z) =
#{n <z | n e U}, [[p(z) = #{n < z | n € V}. For the sake of
simplicity let z1 := logz, zo = log x1.

By using a theorem of J. KUBILIUS [2], one can prove that

me(z) = a:% (Zg__i)! (1 +0 (\/1?)) (1.11)

Hk(x) = x% (Zg__i)! <1 +0 (\/1?2» (1.12)
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whenever z — oo and k/xe — 1 as (r — o00). These formulas follow
directly from Theorem 21.4 in ELLiOTT [4].

A classical theorem of ERDOS and WINTNER (see in [4], Chapter 5)
says. An additive function f has a limit distribution if and only if each of
the next three series are convergent:

2
Sooip Y o) > o) (1.13)

Fp)>1 fo<t P e P

Assume that J, | 0, and that £ = k(x) is such a sequence of integers

for which

k
——1 O 1.14
L)< (110

We shall prove the following assertions.

Theorem 4. Assume that for f € A the series’ in (1.13) are conver-
gent and that (1.14) holds.
Then

li !
11m
w2 [T,(@)

where F' is a distribution function.

#{n<z, neV, f(n)<y}=F(y),

Theorem 5. Let g € M and assume that

Z 1—g(p)

» p

is convergent. Then

1‘[:(:1;) D9 =(1+0,(1)M(g) (¢ — o)
névi

uniformly as * — oo and (1.14) is satisfied.
Here

M(g)=]er = (1—1) (1+g(p)+g(pj>+...>.

p p p
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Remark 1. The Theorems 4 and 5 remain valid if we change Vi to Uy,
and [[, to m. The proofs became somewhat more complicated.

2. Theorem 1 can be interpreted as a result on the joint distribution
of the functions f, B1,...,84—1. Theorem 3 can be stated as a joint distri-
bution law of the functions f and «. A similar formulation can be made
for Theorem 4.

3. The referee of the paper suggested us to mention the possibility of
the reformulation of our theorems written above. We appreciate his or her
kind remarks.

2. Proof of Theorem 1

Let
2= 2 ) = ) f
nESN ) HGSN )
Then
¢—1 N—1
21: f(bq N—-1|r—1,...)
b=1 j=0
and the componentsin M(N—1|...)arery,...,7—1; rp—L, rpp1,...,7g—1.
Thus
MN—1]...;mp—1,...) 7
M(N|...,7,...) N’
consequently
1 q—1 ” N—-1
b .
=D ~ 2 fbd).
M(N|T1,...,T‘q,1) Zl ble =

Similarly, for ) ,, we have

M(le,_, ro1) Z >N rblrbz Z S Flbig?) f(bag)

b1¢b2 J1#£72

+Z N Z £(bg’™) f(bg”)

Jﬁﬁjz
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q—1
> T3P be)
=1 j

Let
g—1 - N-1 '
Ey = N : f(bq])
b=1 7=0
and consider the sum
1 2
Ay = - F
S W T, 2 Y )
neSn(r)

Then

1
Ay = —F?
N R T

which by the notation

Ab) =Y f(bg?), D)= Y f*(bg)
Jj=0 j=0
N-1
C(b1,b2) = »  f(b1¢’)f(b2g’)
=0
can be written as
1 Tb 2 2
A = (N — )( NA(b)> N(N )A (®)
2.1
Z ’rbl ’er b b + Z Tb - rb b) ( )
N(N 1,b2) .
by #by b
Hence we can deduce that
N—-1 g—1 .
Ay <c Z > o), (2:2)
=0 b=0

where ¢ is a constant which may depend on gq.
Indeed,
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thus the first summand on the right hand side of (2.1) is less than

¢S, D(b).

For the third summand we observe first that

|C(b1,b2)| < \/D(b1) v/ D(b2),

whence

> i Clbnb)| <2 (30 VD) < 230 D0)

b17#b2

Let € > 0 be fixed, M be a suitable large integer.

N+M

The integers n < ¢ can be written as n = t + mqg™, where t €

[O)qM - 1]7 me [07qN - 1]

Let B;(t)=mn; (j=1,...,9—1).
For fixed t, there exist exactly

M(N |r—m,...,7g—1 — Ng—1) (2.3)
integers m, for which gj(n) =r; (j = 1,...,q — 1) satisfy. For fixed M
and N — oo, the quantity (2.3) is

M
(;) (14 on(D)M(N + M |11, rg_1). (2.4)

Let far(u) = F(u-g™) (€ Ay).
Let R > 0 be a fixed number, and

KO (= = ng1) = #{fu(n)] > R, n € Sy(E)}
T=(r1—m1,. ., Tg-1— Ng-1) -

By using the convergence of (1.4), (1.5) and applying (2.2), we obtain
that

KJS\I;’) (7‘1 — M-y Tg—1— ﬁq—l)
M (2.5)
< 2nz(M)M(N+M |71 Tge1) s

where Tr(M) — 0 as M — oc.
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Let y € R be fixed. Let t(M,#2) ... ¢(P) be those integers in [0, g™ —1]
for which f(t(j)) <y — R. For a fixed tY), the number of those m < ¢™
for which n = tU) 4+ m - ¢M € Sy, (r), and f(n) >y, is less than

QTR(M)
qM

M(N+M|T1,...,T‘q,1). (26)

Let s, s®) ... 5(™ be those integers in [0, ¢™ —1] for which f(s?)) <
y + R. Similarly as above, the number of those m < ¢V for which n =
sO 4+ m-¢gM € Syim(r) and f(n) < —y is less than (2.6). Thus the
number of those n € Sy4ar(r) for which f(n) < y holds, is no less than

1
Zq—M (1= 2rr(M)) M(N + M | r1,...,74-1)
tJ

> <1_2T]\1;(]‘4)> <Z1)M(N+M |71,y Tqet)-

q ()

Consequently

1
lim

o N N
Moo (N Y,

x#{n<qN|n€SN(z), f(n) <y} >F(y—0)

and similarly, arguing with s*) instead of t#) we deduce that

1
lim sup
N—oco M (N | r&N),... r(ND

) q—
N
x{n<q" |neSn(r), f(n) <y} < F(y+0).
Here F' is defined by (1.6).
Thus, if y is a continuity point of F', then
1

. N —

7q—

The proof of Theorem 1 is completed.
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3. Proof of Theorem 2

Let g(n) € Mg, and assume that > (1 —m;) is convergent. It implies
that g(bg’) — 1 (j — oo, b # 0). Let f € A, be a real valued function,
defined for bg? by g(bg’) = i/ (b4') | We may assume that f(bg’) € [—m, 7,
furthermore, we obtain that the series

> Fbd), D)
are convergent.

Let fi(n) = f(n-¢"), g(n-q¢") = eft(") . Let M be a large integer and
consider the sum,

1
g(n). (3.1)
M(N+M|ry,...,rg—1) n<qu:+M

Since n = t + ¢™m implies that g(n) = g(t)e’/™ (m), and

Z (1 . eifM(m)) =o(1)M (N |ri —m,...,rg—1 — Ng—1)
m<gl¥
MESN (r1—11,...,7q—1—"1g—1)
due to the fact that the convergence of (1.3) implies that > Zg;é f(bg’)

and ZZ;(l) f?(bg’) are convergent.
Hence, by (2.1), applying for fjs instead of f, and by the remark that
(2.3) is equal to (2.4), we obtain that (3.1) equals to

q}w S t) | (1+on(1)).

t<qM

Hence the Theorem 2 readily follows.

4. Proof of Theorem 3

Let pr = [°°_a"dp(z) be the 7’th moment of the normal-law.

Let )

f(27) —nn
N

f]tf(2]): (]:O’aN_l)
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and fy(n) = Z;V 01 g;(n)f%(27) for n < 2N, Then f§(n) can be inter-
preted as a random variable © y which is a sum of the independent random
variables &, ...,&n—1, such that

f(2j)];"7N>‘

Pl =0 =1/2=p(&="2

One can calculate that £FOy = 0, and that

EOY =) E(&&)+ > B =1
uFU

Since maxo<j<n |f5(27)] < 5= — 0 (N — 00), from known theorem
of probability theory we obtain easﬂy that the moments Enjy converge
to fi.

Furthermore

EnN_ZQT > An(ha,.. k)

t=1 hi,....ht

where

An(hi,.. he) = > fam@y e,

lyeele

hi,...,h are positive integers such that h; + ...+ hy = r, and [1,...,1;
are running over the sequences of mutually distinct numbers from the set
{0,1,...,N —1}.

Since
(Ty) =) ( S Z An(h,. .. ),
k) pcoN t=1 i,k
a(n)=k

" (2)) =z 0o (3).

furthermore that Ay (hi, ..., ht) are bounded in N, we obtain that T](\;")k —
e, if N — 00, and k = kp satisfies the condition stated in the theorem.
Now by the Frechet—Shohat theorem we get immediately the assertion.
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5. Two lemmas

Let [[,(z | A) be the number of those integers n < z, for which n € Vj,
and (n, A) = 1. Let

282n) 1
s =2 ===
Q(n P
FA(SaZ) = Z = H < p) sz)'

(n,4)=1 p|A

Hence we obtain that

H (x]A) = Zu H (%) (5.1)

5|A

Let n:= %

If A< x9, then w(d) <w(A) < f(}g%o‘g < 2% whenever ¢ | A. We have

log ¢
log(log x — log §) = loglog = + log (1 _ 8 )
log

(22 4+ 0 (e(2)) )" = b exp (e(x)k> .

T2

From (1.12) we have that

[ (3 =510 00 (1o ()).

Furthermore
w(d)—1 . w(d)
k—7j 1
= 1 R —
Hk—w(é)(x) 11, @) ]1;[0 T2 — j ( +0 (@)) ’

and
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Thus, by (5.1) we deduce that

HﬁkxA Z/“L w(0) +0 Zn <eU\J/@—1> . (5.2)

5|A 5|A

Let 1y(A) = [Ta(1 — ).

The error term is less than

w(5
Zn \/7;—2 Z; [Ta+n/p).

5\,4 plA plA
We proved.
Lemma 6. If A < xo, then
[I(z ] A) 1 n
== =, (A)+ O 1/p 1+ -
M@ " v\t

Lemma 7. Let r > 1 be fixed, e(x) — 0, p1 <p2 < ...<Dpr (< xa(f”))

be primes, n = % — 1 as ¢ — oco. Then

il (2.

PRroOOF. It is enough to observe that
k—1
logz = (14 o(1))log% (loglogz/8)F~! = (ﬂcz + log (1 — 1°g5>> =

log z
(w2 + O (e(2)))* " = ab T exp(e(z)n) = (1 + 0x(1)25 " 0

6. Proof of Theorem 4

Let Y be a large constant, Py be the product of primes up to Y. Let
Ey be the set of integers m, for which P(m) <Y and 7y be those integers
v for which (v, Py) = 1. Let ¢y be a constant depending on Y, such that

cy — 00 asY — oo. Let E(n) = [[pe)np®, and
p<Y



180 I. Katai and M. V. Subbarao

It is known that

limsupé# {n<z|En)>Y"} < A(ey), (6.1)
r—00
where A(cy) — 0 as Y — oc.
From the convergence of the series’ under (1.13), there exists a se-
quence &p | 0 such that 37 ;5. 1/p < oo. Let P*={p|[f(p)| > ep}.
The density of the integers n < x for which p? | n for at least one
prime p > Y is less than ¢/Y. By using Turdn’s method we obtain that

> (Zf(p)_Am,y>2<CXH<1_;> 3 legp)’

v<X plv p<Y pEP*
(I/,Py)Zl pEP* Y <p<X

where )

p
Aoy = 3 10

pg'P* p

Y <p<Llzx
Let A > 0.

From the convergence of (1.13) we deduce that

é#{y <z (P = 1] [f@)] > A} < (A Y) ] <1 _ ;) L (62)
p<Y
where ¢(A,Y) — 0as Y — oo.
Let 1
Gal6) = Lt (n <2 | Fm) < ).

Let JM be the set of those m € Ey for which f(m) < A, and m < Y.
From (6.2) we obtain that

GX@)s*O(P”)( )3 1>+c<A7Y>+0<A<cy>> (6.3)

PY m<Y°Yy
meJéta
and P )
Gx(§) = SD(PYY) Y = —c(AY) +O0(Aley)). (6.4)
m<Y Y

meJs—4a
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Let
T = {y < ‘ (v, Py) =1, Q) =k — Q(m)}.
m
By using Lemma 5.2 in PRACHAR [3], according to

logloglogY

2loglogY
log Y 1 + 2loglog >

#{n<z|Pn) <Y} <exp (_

for Y > Y;, we deduce that

lim sup Z #{Ti,m} < Ai(ey),

P, A

where Aj(cy) — 0 as Y — oo, uniformly for k£ under the condition (1.14).
Observe furthermore that the number of those integers n € Vj for

which there exists a prime p > Y such that p? | n is at most oy (1) [, ().
From Lemma 1,

[I.(z | Py) loglogY e V)
i~ o0 (SR ). 69
furthermore

Hk(x\ppy):Hkay)—Hk(i‘Py> if p>Py. (6.6

It is clear that [[,.(z | pPy) =[],(x | Py) if p < Y.
Let S, be the set of those integers n < x, n € Vi, for which there
exists at least one prime divisor p € P*, p > Y. Then

5.« 0L, (5) -+ X,

peP*
p>Y

where in ), we sum over the primes p < z17P(Y) and in >, for the others.
We have

k—1

cr log p(Y)\*7*
>, D Zlgxl'(kzim(” o )

m<ar(@ p<i
Q(m)=k—1
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ie. X log p(¥) -
Hk<x>22<c<” P ) |

Let now p(Y') be defined so that

PY)= > 1/p
Y <p<oo
peP*
Then
lim sup #S, < cp(Y)Y2.

pil yAE
Let f, € A be defined for prime powers p® as follows:
ifa>2 p>Y,

ifa=1, peP* p>Y,
f(p*) otherwise.

0
J=(p*) =40

Let h(n) = f(n) — fz(n). Then, for each fixed A > 0,

lim sup
where ¢(A,Y) — 0 as Y — oo, for every fixed A > 0.
This assertion is obvious from (6.7).

Let X € [z,z], k1 = k + O(z3),

Yo (Xk)= Y fulv

v<X
(v,Py)=1
Q(v)=k1

ZXkl Y. W)

v<X
(V7PY):1
Q(v)=k1
We have

BRI SFAD) | N

C¥<x6

C#n Sz ne Vi ) > A} < (A, Y),

(6.7)

(6.10)

(6.11)
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k= 3 0 nm<;; ”)
+ Y L) fal Hklaﬂ<aﬁ’quy> (6.12)

p*qP<z
p%, qP<a®
pF£q

From (6.1), (6.2) we obtain that

oo Sk = 3 E8 o )+O<(log¢§?)c>>

Y<p<Xe

o ¥ )

Pz

p>Y, a>2
1
— (B 0 30y )
f=(p)
2 7P

Y <p<ax®

Furthermore,

1 B f2(p) 1
Hkl(X)ZQ—¢n(PY)Z » +O(YlogY>

f(p) f2(@)
+7,ZJ77(PY)p§1 nq

(Py) (Ei +Zﬁp(m> +0 <Y1§gY> '

Hence we obtain that

2
H,ﬂl(X) >, () =B <evy(Py) fi;gp)w(Yl;gY)

v<X Y <p<z®

(V,Py'):l
Q(v)=k1
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and so 1
= v 5 fo(v) — Ep)?
M x(R) 2 U0 -F)
v,Py)=1
(Q(zsfz)kl (6.13)
f2(p) log Y
S C1 Z T + 0 T .
Y <p<z®

Let A > 0 be a small constant as above. Then, by a suitable large Y,
from (6.13) we obtain that

1
—— # <X, veV,, WPy)=|f:(v)>A} <A (6.14
oA b P =S 2 A) <A (6.14)
for each k1, and for every large x.
Let 1
Fék)ﬁ:: #{fe(n) <& neVy, n<z}.
(©) 1= [ gy # L0 o <)

Let JM) as earlier be the collection of elements from &y for which
flm) <A\, m<Ye.
Let A =& — A, m € J& 2, Then, from (6.14) with X = o k=

k—$(m), we have that for all but A[[,. (7 | Py) of integers v, f.(mv) <¢.
Hence we obtain that

[ G | P)

FEM@E>1-4) > () + 0(1) (6.15)
meJ(E=A)
and similarly,
FHE©<ara) Y H’“*“ﬁl((g ) ). 60
meJ(E+A)
Since I (m P ) m)
s = T (Py) (hou(1)
therefore :

e=a-a Y T

meJ(E=2)

Un(Py) + 0x(1), (6.17)
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FPE <(1+8) Y, —

meJE+A)

Un(Py) + 0x(1). (6.18)

From the Erdés—Wintner theorem we know that
lim G.(§) = G(¢)
T— 00

exists for each continuity point £ of G.
From (6.17), (6.18) we obtain that

1imian,§k>(§)z(1—A)< 3 1/m> Ply) (6.19)

P
meJE-A) Y

limsunggk)(ﬁ)S(l—i—A)( > 1/m>90(;;y). (6.20)

meJE+A)
Comparing with (6.3) we deduce that
lim inf F® (&) > (1 — A)?lim sup G, (€ — 24) (6.21)
+O(c(AY)) + O(A(ey)) + O(A)
and similarly that
limsup F*)(€) < (14+A)2 limsup G, (£42A)+0(c¢(A, Y))+0(A). (6.22)
Hence, by Y — oo, then A — 0 we obtain that
lim FM(©) =G (= F(€)

holds.

Thus Theorem 4 is true.

7. Proof of Theorem 5

The proof is very similar to that of Theorem 4. Let Y be a large
constant, C'y — oo, as Y — oo. Then

Hk1<33) Zg(n): 1 Z g(m) Z g(v) + O(A(ey)), (7.1)
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where A(cy) — 0 as Y — oc.
Let f(p®) = arg g(p®) for prime power p®, and let the domain of f be
extended to n € Fy. The convergence of

Z 1—g(p)

> p

implies the convergence of the series

> > Ay Y 72

|f(p) |>1 If )I<1 |f(p)]

Let us observe that

Yo ) -n=i > f(V)+O< Z f"'<v>>- (7.3)

v v
(V7PY):1 (V)PY):I ( ) 1
Qv)=k—Q(m) Qv)=k—Q(m) Qv)=k—Q(m)

Arguing as earlier, we can prove that the right hand side of (7.3) is
less than ¢(Y) [[;_q@m) (Z | Py), where ¢(Y) — 0 as Y — oo.
Thus, from (7.1),

1 n o 9(m) , a(m) 1 .
Hm)%g() 4ol %; Q(l ») o)

whence

where




Distribution of additive and g-additive functions. .. 187

and so

1m1T@3:II(1_;><1+gf)+gga

Y —co
p

consequently Theorem 5 it follows immediately.
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