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Distribution of additive and q-additive functions under
some conditions

By I. KÁTAI (Budapest) and M. V. SUBBARAO (Edmonton)

Abstract. It is proved that an additive arithmetical function f under the
fulfilment of the conditions of the Erdős–Wintner theorem has a limit distribution
on the subset of the integers {n ≤ x | ω(n) = k}, where k = k(x) = (1 +
o(1)) log log x, and ω(n) = number of prime divisors of n. Similar theorems are
proved for multiplicative and q-additive and q-multiplicative functions.

1. Introduction

1.1. Let q ≥ 2 be an integer, the q-ary expansion of some n ∈ N0 let be
defined as

n =
∞∑

j=0

εj(n)qj , (1.1)

where the digits εj(n) are taken from the set Aq = {0, 1, . . . , q−1}. Let Aq

be the set of q-additive functions, and Mq be the set of q-multiplicative
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functions of modulus 1. f : N0 → R belongs to Aq, if f(0) = 0, and

f(n) =
∞∑

j=0

f(εj(n)qj).

We say that g : N0 → C belongs to Mq, if g(0) = 1, |g(bqj)| = 1 for
every b ∈ Aq, and

g(n) =
∞∏

j=0

g(bqj).

Let

α(n) =
∞∑

j=0

εj(n)

the so called “sum of digits” function and let

βh(n) =
∑

εj(n)=h

1 (h = 1, . . . , q − 1).

H. Delange [1] proved that for some g ∈Mq, the limit

lim
1
x

∑

n≤x

g(n) = M(g)

exists and M(g) 6= 0, if

mj :=
1
q

∑

c∈Aq

g(cqj) 6= 0 (j = 0, 1, 2, . . . ) (1.2)

and ∞∑

j=0

(1−mj) =
∞∑

j=0

1
q

( ∑

c∈Aq

(
1− g(cqj)

) )
(1.3)

is convergent. Furthermore,

M(g) =
∞∏

j=0

mj ,

if (1.2) holds and (1.3) is convergent.
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Hence he deduced that for f ∈ Aq the values f(n) possess a limit
distribution if and only if both of the next series are convergent:

∑

j

∑

b∈Aq

f(bqj), (1.4)

∑

j

∑

b∈Aq

f2(bqj). (1.5)

Let

F (y) := lim
x→∞

1
x

# {n < x | f(n) < y} . (1.6)

For some x and q let N(x) =
[ log x

log q

]
. Thus N(qN ) = N .

Let furthermore
M (N | r1, r2, . . . , rq−1) (1.7)

be the number of integers n < qN for which βl(n) = rl (l = 1, . . . , q − 1).
It is clear that (1.7) is equal to

N !
r0!r1!r2! . . . rq−1!

,

where r0 := N − (r1 + r2 + . . . + rq−1).
Let furthermore SN (r) be the set of the integers n < qN for which

rj = βj(n) (j = 1, . . . , q − 1), r0 = N − (r1 + . . . + rq−1).
Let δN be a sequence tending to zero, and r be such a vector (for some

N), for which
∣∣∣qrj

N
− 1

∣∣∣ < δN (j = 0, 1, . . . , q − 1) (1.8)

holds.

Theorem 1. Assume that f ∈ Aq and that (1.4) and (1.5) are conver-

gent. Let r(N) =
(
r
(N)
0 , r

(N)
1 , . . . , r

(N)
q−1

)
be such a sequence of r for which

(1.8) holds. Then

lim
N→∞

1

M
(
N | r(N)

1 , . . . , r
(N)
q−1

)#
{
n < qN n ∈ SN

(
r(N)

) ∣∣ f(n) < y
}

= F (y).
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Theorem 2. Let g ∈ Mq, such that (1.2) holds and (1.3) is conver-

gent. Let r(N) be a sequence of r satisfying the condition (1.8). Then

1

M
(
N | r(N)

1 , . . . , r
(N)
q−1

)
∑

n∈SN(r(N))
g(n) = (1 + oN (1))M(g).

Theorem 3. Let q = 2, f ∈ A2, f(2j) = O(1) (j ∈ N),
ηN = 1

N

∑N−1
j=0 f(2j),

B2
N :=

1
4

N−1∑

j=0

(
f(2j)− ηN

)2
.

Assume that BN →∞.

Let ρN → 0. Then

lim
N→∞

1(
N
k

)
{

n < 2N
∣∣∣ f(n)− kηN

BN
< y, α(n) = k

}
= φ(y), (1.9)

uniformly as N →∞, and k = k(N) satisfies

|k/N − 1/2| < ρN . (1.10)

1.2. Let A be the set of real valued additive and M be the complex
valued multiplicative functions. We say that f ∈ A, if f(mn) = f(m) +
f(n) holds for all coprime pairs of m,n. We say that g ∈ M if g(mn) =
g(m) · g(n) whenever (m, n) = 1, and g(1) = 1.

Let M⊆M be the set of g for which additionally |g(n)| = 1 (n ∈ N)
holds.

Let ω(n) be the number of prime factors, Ω(n) be the number of prime
power divisors of n. Then ω, Ω ∈ A.

Let Uk = {n | ω(n) = k}, Vk = {n | Ω(n) = k}, furthermore πk(x) =
#{n ≤ x | n ∈ Uk},

∏
k(x) = #{n ≤ x | n ∈ Vk}. For the sake of

simplicity let x1 := log x, x2 = log x1.
By using a theorem of J. Kubilius [2], one can prove that

πk(x) =
x

x1

xk−1
2

(k − 1)!

(
1 + O

(
1√
x2

))
(1.11)

∏
k
(x) =

x

x1

xk−1
2

(k − 1)!

(
1 + O

(
1√
x2

))
(1.12)
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whenever x → ∞ and k/x2 → 1 as (x → ∞). These formulas follow
directly from Theorem 21.4 in Elliott [4].

A classical theorem of Erdős and Wintner (see in [4], Chapter 5)
says. An additive function f has a limit distribution if and only if each of
the next three series are convergent:

∑

|f(p)|>1

1/p,
∑

|f(p)|≤1

f(p)
p

,
∑

|f(p)|≤1

f2(p)
p

. (1.13)

Assume that δx ↓ 0, and that k = k(x) is such a sequence of integers
for which ∣∣∣∣

k

x2
− 1

∣∣∣∣ < δx. (1.14)

We shall prove the following assertions.

Theorem 4. Assume that for f ∈ A the series’ in (1.13) are conver-

gent and that (1.14) holds.

Then

lim
x→∞

1∏
k(x)

# {n ≤ x, n ∈ Vk, f(n) < y} = F (y),

where F is a distribution function.

Theorem 5. Let g ∈M and assume that

∑
p

1− g(p)
p

is convergent. Then

1∏
k(x)

∑

n≤x
n∈Vk

g(n) = (1 + ox(1))M(g) (x →∞)

uniformly as x →∞ and (1.14) is satisfied.

Here

M(g) =
∏
p

ep, ep =
(

1− 1
p

)(
1 +

g(p)
p

+
g(p2)
p2

+ . . .

)
.
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Remark 1. The Theorems 4 and 5 remain valid if we change Vk to Uk,
and

∏
k to πk. The proofs became somewhat more complicated.

2. Theorem 1 can be interpreted as a result on the joint distribution
of the functions f , β1, . . . , βq−1. Theorem 3 can be stated as a joint distri-
bution law of the functions f and α. A similar formulation can be made
for Theorem 4.

3. The referee of the paper suggested us to mention the possibility of
the reformulation of our theorems written above. We appreciate his or her
kind remarks.

2. Proof of Theorem 1

Let ∑
1

:=
∑

n∈SN (r)

f(n),
∑

2
=

∑

n∈SN (r)

f2(n).

Then

∑
1

=
q−1∑

b=1

N−1∑

j=0

f(bqj) ·M (N − 1 | rb − 1, . . . )

and the components in M(N−1 | . . . ) are r1, . . . , rb−1; rb−1, rb+1, . . . , rq−1.
Thus

M(N − 1 | . . . , rb − 1, . . . )
M(N | . . . , rb, . . . )

=
rb

N
,

consequently

1
M(N | r1, . . . , rq−1)

∑
1

=
q−1∑

b=1

rb

N

N−1∑

j=0

f(bqj).

Similarly, for
∑

2, we have

1
M(N | r1, . . . , rq−1)

∑
2

=
∑

b1 6=b2

rb1rb2

N(N − 1)

∑

j1 6=j2

∑
f(b1q

j1)f(b2q
j2)

+
∑

b

rb(rb − 1)
N(N − 1)

∑

j1 6=j2

f(bqj1)f(bqj2)
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+
q−1∑

b=1

rb

N

∑

j

f2(bqj).

Let

EN :=
q−1∑

b=1

rb

N

N−1∑

j=0

f(bqj)

and consider the sum

∆N =
1

M(N | r1, . . . , rb)

∑

n∈SN (r)

(f(n)− EN )2 .

Then
∆N =

1
M(N | r1, . . . , rb)

∑
2
−E2

N ,

which by the notation

A(b) =
N−1∑

j=0

f(bqj), D(b) =
N−1∑

j=0

f2(bqj)

C(b1, b2) =
N−1∑

j=0

f(b1q
j)f(b2q

j)

can be written as

∆N =
1

(N − 1)

(∑

b

rb

N
A(b)

)2
−

∑

2

rb

N(N − 1)
A2(b)

−
∑

b1 6=b2

rb1rb2

N(N − 1)
C(b1, b2) +

∑

b

rb(N − rb)
N

D(b).
(2.1)

Hence we can deduce that

∆N < c
N−1∑

j=0

q−1∑

b=0

f2(bqj), (2.2)

where c is a constant which may depend on q.
Indeed,

A2(b) ≤
( ∑

j

1
) N−1∑

j=0

f2(bqj) = ND(b),
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thus the first summand on the right hand side of (2.1) is less than
c
∑

b D(b).
For the third summand we observe first that

|C(b1, b2)| ≤
√

D(b1)
√

D(b2),

whence
∣∣∣∣∣∣
∑

b1 6=b2

rb1 · rb2

N(N − 1)
C(b1, b2)

∣∣∣∣∣∣
≤ 2

(∑√
D(b)

)2
≤ 2q

∑
D(b).

Let ε > 0 be fixed, M be a suitable large integer.
The integers n < qN+M can be written as n = t + mqM , where t ∈

[0, qM − 1], m ∈ [0, qN − 1].
Let βj(t) = ηj (j = 1, . . . , q − 1).
For fixed t, there exist exactly

M(N | r1 − η1, . . . , rq−1 − ηq−1) (2.3)

integers m, for which βj(n) = rj (j = 1, . . . , q − 1) satisfy. For fixed M

and N →∞, the quantity (2.3) is

(
1
q

)M

(1 + oN (1))M(N + M | r1, . . . , rq−1). (2.4)

Let fM (u) = f(u · qM ) (∈ Aq).
Let R > 0 be a fixed number, and

κ
(R)
N (r1 − η1, . . . , rq−1 − ηq−1) = # {|fM (n)| ≥ R, n ∈ SN (r̃)}

r̃ = (r1 − η1, . . . , rq−1 − ηq−1) .

By using the convergence of (1.4), (1.5) and applying (2.2), we obtain
that

κ
(R)
N (r1 − η1, . . . , rq−1 − ηq−1)

< 2
τR(M)

qM
M (N + M | r1, . . . , rq−1) ,

(2.5)

where τR(M) → 0 as M →∞.
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Let y ∈ R be fixed. Let t(1), t(2), . . . , t(P ) be those integers in [0, qM−1]
for which f(t(j)) < y − R. For a fixed t(j), the number of those m < qM

for which n = t(j) + m · qM ∈ SN+M (r), and f(n) ≥ y, is less than

2τR(M)
qM

M (N + M | r1, . . . , rq−1) . (2.6)

Let s(1), s(2), . . . , s(π) be those integers in [0, qM−1] for which f(s(l)) <

y + R. Similarly as above, the number of those m < qN for which n =
s(l) + m · qM ∈ SN+M (r) and f(n) ≤ −y is less than (2.6). Thus the
number of those n ∈ SN+M (r) for which f(n) < y holds, is no less than

∑

tj

1
qM

(1− 2τR(M))M(N + M | r1, . . . , rq−1)

≥
(

1− 2τR(M)
qM

) (∑

t(j)

1
)
M(N + M | r1, . . . , rq−1).

Consequently

lim
N→∞

1

M
(
N | r(N)

1 , . . . , r
(N)
q−1

)

×#
{
n < qN | n ∈ SN (r), f(n) < y

} ≥ F (y − 0)

and similarly, arguing with s(ν) instead of t(µ) we deduce that

lim sup
N→∞

1

M
(
N | r(N)

1 , . . . , r
(N)
q−1

)

× {
n < qN | n ∈ SN (r), f(n) < y

} ≤ F (y + 0).

Here F is defined by (1.6).
Thus, if y is a continuity point of F , then

lim
N→∞

1

M
(
N | r(N)

1 , . . . , r
(N)
q−1

) #
{
n < qN | n ∈ SN (r), f(n) < y

}
= F (y).

The proof of Theorem 1 is completed.
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3. Proof of Theorem 2

Let g(n) ∈Mq, and assume that
∑

(1−mj) is convergent. It implies
that g(bqj) → 1 (j → ∞, b 6= 0). Let f ∈ Aq be a real valued function,
defined for bqj by g(bqj) = eif(bqj). We may assume that f(bqj) ∈ [−π, π],
furthermore, we obtain that the series

∑
f(bqj),

∑
f2(bqj)

are convergent.
Let fl(n) = f(n · ql), g(n · ql) = eifl(n). Let M be a large integer and

consider the sum,

1
M (N + M | r1, . . . , rq−1)

∑

n<qN+M

g(n). (3.1)

Since n = t + qMm implies that g(n) = g(t)eifM (m), and
∑

m<qN

m∈SN (r1−η1,...,rq−1−ηq−1)

(
1− eifM (m)

)
= o(1)M (N | r1 − η1, . . . , rq−1 − ηq−1)

due to the fact that the convergence of (1.3) implies that
∑

j

∑q−1
b=0 f(bqj)

and
∑

j

∑q−1
b=0 f2(bqj) are convergent.

Hence, by (2.1), applying for fM instead of f , and by the remark that
(2.3) is equal to (2.4), we obtain that (3.1) equals to


 1

qM

∑

t<qM

g(t)


 (1 + oM (1)) .

Hence the Theorem 2 readily follows.

4. Proof of Theorem 3

Let µr =
∫∞
−∞ xrdφ(x) be the r’th moment of the normal-law.

Let

f∗N (2j) =
f(2j)− ηN

BN
(j = 0, . . . , N − 1)
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and f∗N (n) =
∑N−1

j=0 εj(n)f∗N (2j) for n < 2N . Then f∗N (n) can be inter-
preted as a random variable ΘN which is a sum of the independent random
variables ξ0, . . . , ξN−1, such that

P (ξj = 0) = 1/2 = P

(
ξj =

f(2j)− ηN

BN

)
.

One can calculate that EΘN = 0, and that

EΘ2
N =

∑

u6=v

E(ξuξv) +
∑

Eξ2
u = 1.

Since max0≤j<N |f∗N (2j)| < C
BN

→ 0 (N → ∞), from known theorem
of probability theory we obtain easily that the moments Eηr

N converge
to µr.

Furthermore

Eηr
N =

r∑

t=1

1
2r

∑

h1,...,ht

∆N (h1, . . . , ht)

where
∆N (h1, . . . , ht) =

∑

l1,...,lt

f∗h1
N (2l1) . . . f∗ht

N (2lt),

h1, . . . , ht are positive integers such that h1 + . . . + ht = r, and l1, . . . , lt
are running over the sequences of mutually distinct numbers from the set
{0, 1, . . . , N − 1}.

Since

(
T

(r)
N,k :=

) 1(
N
k

)
∑

n<2N

α(n)=k

f∗rN (n) =
r∑

t=1

(
N−t
k−t

)
(
N
k

)
∑

h1,...,ht

∆N (h1, . . . , ht),

and (
N − t

k − t

)
=

1
2t

(1 + on(1))
(

N

k

)
,

furthermore that ∆N (h1, . . . , ht) are bounded in N , we obtain that T
(r)
N,k →

µr, if N →∞, and k = kN satisfies the condition stated in the theorem.
Now by the Frechet–Shohat theorem we get immediately the assertion.



178 I. Kátai and M. V. Subbarao

5. Two lemmas

Let
∏

k(x | A) be the number of those integers n ≤ x, for which n ∈ Vk

and (n,A) = 1. Let

F (s, z) =
∑ zΩ(n)

ns
=

∏

P

1
1− z/ps

,

FA(s, z) =
∑

(n,A)=1

zΩ(n)

ns
=

∏

p|A

(
1− z

ps

)
· F (s, z).

Hence we obtain that
∏

k
(x | A) =

∑

δ|A
µ(δ)

∏
k−ω(δ)

(x

δ

)
. (5.1)

Let η := k
x2

.
If A ≤ x2, then ω(δ) ≤ ω(A) ≤ c log A

log log ≤ cx3
x4

whenever δ | A. We have

log(log x− log δ) = log log x + log
(

1− log δ

log x

)

(
x2 + O (ε(x))

)k−1 = xk−1
2 exp

(
ε(x)

k

x2

)
.

From (1.12) we have that

∏
k−ω(δ)

(x

δ

)
=

1
δ

∏
k−w(δ)

(x)
(

1 + O

(
1√
x2

))
.

Furthermore

∏
k−ω(δ)

(x) =
∏

k
(x)

w(δ)−1∏

j=0

k − j

x2 − j

(
1 + O

(
1√
x2

))ω(δ)

,

and
ω(δ)−1∏

j=0

k − j

x2 − j
= ηω(δ)

(
1 + O

(
1√
x2

))
.
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Thus, by (5.1) we deduce that

∏
k(x,A)∏

k(x)
=


∑

δ|A

µ(δ)
δ

ηω(δ)


 + O


∑

δ|A

ηω(δ)

δ

(
e
c

ω(δ)√
x2 − 1

)
 . (5.2)

Let ψη(A) :=
∏

p|A(1− η
P ).

The error term is less than

¿ 1√
x2

∑

δ|A

ηω(δ)ω(δ)
δ

=
η√
x2


∑

p|A

1
p


∏

p|A
(1 + η/p) .

We proved.

Lemma 6. If A ≤ x2, then

∏
k(x | A)∏

k(x)
= ψη(A) + O


 1√

x2


∑

p|A
1/p


∏

p|A

(
1 +

η

p

)
 .

Lemma 7. Let r ≥ 1 be fixed, ε(x) → 0, p1 < p2 < . . . < pr

(
< xε(x)

)

be primes, η = k
x2
→ 1 as x →∞. Then

lim
∏

k(x | p1 . . . pr)∏
k(x)

=
r∏

j=1

(
1− 1

pj

)
.

Proof. It is enough to observe that

log x = (1 + o(1)) log x
δ (log log x/δ)k−1 =

(
x2 + log

(
1− log δ

log x

))k−1
=

(x2 + O (ε(x)))k−1 = xk−1
2 exp(ε(x)η) = (1 + ox(1))xk−1

2 . ¤

6. Proof of Theorem 4

Let Y be a large constant, PY be the product of primes up to Y . Let
EY be the set of integers m, for which P (m) ≤ Y and TY be those integers
ν for which (ν, PY ) = 1. Let cY be a constant depending on Y , such that
cY →∞ as Y →∞. Let E(n) =

∏
pα‖n
p≤Y

pα, and

F (n) :=
n

E(n)
.
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It is known that

lim sup
x→∞

1
x

# {n < x | E(n) > Y cY } ≤ ∆(cY ), (6.1)

where ∆(cY ) → 0 as Y →∞.
From the convergence of the series’ under (1.13), there exists a se-

quence εp ↓ 0 such that
∑
|f(p)|>εp

1/p < ∞. Let P∗ = {p | |f(p)| > εp}.
The density of the integers n ≤ x for which p2 | n for at least one

prime p > Y is less than c/Y . By using Turán’s method we obtain that

∑

ν≤X
(ν,PY )=1

( ∑

p|ν
p6∈P∗

f(p)−Ax,y

)2

≤ cX
∏

p≤Y

(
1− 1

p

) ∑

p6∈P∗
Y <p≤X

f2(p)
P

,

where
Ax,Y =

∑

p 6∈P∗
Y <p≤x

f(p)
p

.

Let ∆ > 0.
From the convergence of (1.13) we deduce that

1
x

#{ν < x, (ν, PY ) = 1
∣∣ |f(ν)| > ∆} ≤ c(∆, Y )

∏

p<Y

(
1− 1

p

)
, (6.2)

where c(∆, Y ) → 0 as Y →∞.
Let

Gx(ξ) =
1
x

# {n ≤ x | f(n) < ξ} .

Let J (λ) be the set of those m ∈ EY for which f(m) < λ, and m ≤ Y cY .
From (6.2) we obtain that

GX(ξ) ≤ ϕ(PY )
PY

( ∑

m≤Y cY

m∈Jξ+∆

1
m

)
+ c(∆, Y ) + O(∆(cY )) (6.3)

and
GX(ξ) ≥ ϕ(PY )

PY

∑

m≤Y cY

m∈Jξ−∆

1
m
− c(∆, Y ) + O(∆(cY )). (6.4)
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Let

Tk,m =
{

ν ≤ x

m

∣∣∣ (ν, PY ) = 1, Ω(ν) = k − Ω(m)
}

.

By using Lemma 5.2 in Prachar [3], according to

#{n ≤ x | P (n) ≤ Y } < exp
(
− log log log Y

log Y
x1 + 2 log log Y

)

for Y > Y0, we deduce that

lim sup
x→∞

1∏
k(x)

∑

m>Y cY

# {Tk,m} ≤ ∆1(cY ),

where ∆1(cY ) → 0 as Y →∞, uniformly for k under the condition (1.14).
Observe furthermore that the number of those integers n ∈ Vk for

which there exists a prime p > Y such that p2 | n is at most oY (1)
∏

k(x).
From Lemma 1,

∏
k(x | PY )∏

k(x)
= ψη(PY ) + O

(
log log Y√

x2
· (log Y )c

)
, (6.5)

furthermore

∏
k
(x | pPY ) =

∏
k
(x | PY )−

∏
k

(
x

p

∣∣∣ PY

)
if p > PY . (6.6)

It is clear that
∏

k(x | pPY ) =
∏

k(x | PY ) if p ≤ Y .
Let Sx be the set of those integers n ≤ x, n ∈ Vk, for which there

exists at least one prime divisor p ∈ P∗, p > Y . Then

#Sx ≤
∑

p∈P∗
p>Y

∏
k−1

(
x

p

)
=

∑
1
+

∑
2

where in
∑

1 we sum over the primes p < x1−ρ(Y ) and in
∑

2 for the others.
We have

∑
2
≤

∑

m<xρ(x)

Ω(m)=k−1

∑

p< x
m

1 ≤ cx

x1
· xk−1

2

(k − 1)!

(
1 +

log ρ(Y )
x2

)k−1
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i.e.
1∏
k(x)

∑
2

< c

(
1 +

log ρ(Y )
x2

)k−1

.

Let now ρ(Y ) be defined so that

ρ2(Y ) =
∑

Y <p<∞
p∈P∗

1/p.

Then
lim sup

x→∞
1∏
k(x)

#Sx ≤ cρ(Y )1/2. (6.7)

Let fx ∈ A be defined for prime powers pα as follows:

fx(pα) =





0 if α ≥ 2, p > Y,

0 if α = 1, p ∈ P∗, p > Y,

f(pα) otherwise.

Let h(n) = f(n)− fx(n). Then, for each fixed ∆ > 0,

lim sup
x→∞

1∏
k(x)

# {n ≤ x | n ∈ Vk, | h(n)| > ∆} ≤ c(∆, Y ), (6.8)

where c(∆, Y ) → 0 as Y →∞, for every fixed ∆ > 0.
This assertion is obvious from (6.7).
Let X ∈ [

√
x, x], k1 = k + O(x3),

∑
1
(X, k1) =

∑

ν≤X
(ν,PY )=1
Ω(ν)=k1

fx(ν), (6.9)

∑
2
(X, k1) =

∑

ν≤X
(ν,PY )=1
Ω(ν)=k1

f2
x(ν). (6.10)

We have
∑

1
(X, k1) =

∑
pα<xε

fx(pα)
∏

k1−α

(
x

pα

∣∣∣ pPY

)
, (6.11)
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∑
2
(X, k1) =

∑
pα<xε

f2
x(pα)

∏
k1−α

(
x

pα

∣∣∣ pPY

)

+
∑

pαqβ≤x
pα, qβ≤xε

p6=q

fx(pα)fx(qβ)
∏

k1−α−β

(
x

pαqβ

∣∣∣ pqPY

)
. (6.12)

From (6.1), (6.2) we obtain that

1∏
k1

(X)

∑
1
(X, k1) =

∑

Y≤p<Xε

fx(p)
p

(
ψη(PY ) + O

(
(log Y )C

√
x2

))

+ O

( ∑

pα<xε

p>Y, α≥2

1
pα

)

= ψη(PY )Ex + O

(
1

Y log Y

)
,

Ex =
∑

Y≤p<xε

fx(p)
P

.

Furthermore,

1∏
k1

(X)

∑
2

= ψη(PY )
∑ f2

x(p)
p

+ O

(
1

Y log Y

)

+ ψη(PY )
∑

p6=q

fx(p)fx(q)
pq

= ψη(PY )
(

E2
x +

∑ f2
x(p)
p

)
+ O

(
1

Y log Y

)
.

Hence we obtain that

1∏
k1

(X)

∑

ν≤X
(ν,PY )=1
Ω(ν)=k1

(
fx(ν)− E2

x

) ≤ cψη(PY )
∑

Y <p<xε

f2
x(p)
p

+ O

(
1

Y log Y

)
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and so
1∏

k1
(X | PY )

∑

ν≤x
(ν,PY )=1
Ω(ν)=k1

(fx(ν)−Ex)2

≤ c1

∑

Y <p<xε

f2
x(p)
p

+ O

(
log Y

Y

)
.

(6.13)

Let ∆ > 0 be a small constant as above. Then, by a suitable large Y ,
from (6.13) we obtain that

1∏
k1

(X | PY )
# {ν ≤ X, ν ∈ Vk1 , (ν, PY ) = |fx(ν)| ≥ ∆} < ∆ (6.14)

for each k1, and for every large x.
Let

F (k)
x (ξ) :=

1∏
k(x)

# {fx(n) < ξ, n ∈ Vk, n < x} .

Let J (λ) as earlier be the collection of elements from EY for which
f(m) < λ, m < Y cY .

Let λ = ξ − ∆, m ∈ J (ξ−∆). Then, from (6.14) with X = x
m , k1 =

k−Ω(m), we have that for all but ∆
∏

k1
( x

m | PY ) of integers ν, fx(mν) < ξ.
Hence we obtain that

F (k)
x (ξ) ≥ (1−∆)

∑

m∈J(ξ−∆)

∏
k−Ω(m)

(
x
m | PY

)
∏

k(x)
+ ox(1) (6.15)

and similarly,

F (k)
x (ξ) ≤ (1 + ∆)

∑

m∈J(ξ+∆)

∏
k+Ω(m)

(
x
m | PY

)
∏

k(x)
+ ox(1). (6.16)

Since ∏
k−Ω(m)

(
x
m | PY

)
∏

k(x)
=

ηΩ(m)

m
ψη(PY ) (+ox(1))

therefore

F (k)
x (ξ) ≥ (1−∆)

∑

m∈J(ξ−∆)

ηΩ(m)

m
ψη(PY ) + ox(1), (6.17)
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F (k)
x (ξ) ≤ (1 + ∆)

∑

m∈J(ξ+∆)

ηΩ(m)

m
ψη(PY ) + ox(1). (6.18)

From the Erdős–Wintner theorem we know that

lim
x→∞Gx(ξ) = G(ξ)

exists for each continuity point ξ of G.
From (6.17), (6.18) we obtain that

lim inf F (k)
x (ξ) ≥ (1−∆)

( ∑

m∈J(ξ−∆)

1/m

)
ϕ(PY )

PY
, (6.19)

lim supF (k)
x (ξ) ≤ (1 + ∆)

( ∑

m∈J(ξ+∆)

1/m

)
ϕ(PY )

PY
. (6.20)

Comparing with (6.3) we deduce that

lim inf F (k)
x (ξ) ≥ (1−∆)2 lim supGx(ξ − 2∆)

+ O(c(∆, Y )) + O(∆(cy)) + O(∆)
(6.21)

and similarly that

lim supF (k)
x (ξ) ≤ (1+∆)2 lim supGx(ξ+2∆)+O(c(∆, Y ))+O(∆). (6.22)

Hence, by Y →∞, then ∆ → 0 we obtain that

lim
x→∞F (k)

x (ξ) = G(ξ) (= F (ξ))

holds.

Thus Theorem 4 is true.

7. Proof of Theorem 5

The proof is very similar to that of Theorem 4. Let Y be a large
constant, CY →∞, as Y →∞. Then

1∏
k(x)

∑

n≤x
n∈Vk

g(n) =
1∏
k(x)

∑

m∈EY
m≤Y cY

g(m)
∑

ν< x
m

(ν,PY )=1
Ω(ν)=k−(Ω)(m)

g(ν) + O(∆(cY )), (7.1)



186 I. Kátai and M. V. Subbarao

where ∆(cY ) → 0 as Y →∞.
Let f(pα) = arg g(pα) for prime power pα, and let the domain of f be

extended to n ∈ FY . The convergence of

∑
p

1− g(p)
p

implies the convergence of the series

∑

|f(p)|≥1

1
p
,

∑

|f(p)|<1

f(p)
p

,
∑

|f(p)|<1

f2(p)
p

. (7.2)

Let us observe that

∑

ν< x
m

(ν,PY )=1
Ω(ν)=k−Ω(m)

(g(ν)− 1) = i
∑

ν< x
m

(ν,PY )=1
Ω(ν)=k−Ω(m)

f(ν) + O

( ∑

ν< x
m

(ν,PY )=1
Ω(ν)=k−Ω(m)

f2(ν)

)
. (7.3)

Arguing as earlier, we can prove that the right hand side of (7.3) is
less than c(Y )

∏
k−Ω(m)

(
x
m | PY

)
, where c(Y ) → 0 as Y →∞.

Thus, from (7.1),

1∏
k(x)

∑

n≤x
n∈Vk

g(n) = (1 + ox(1))
∑

m∈EY
m≤Y cY

g(m)
m

ηΩ(m)
∏

p<Y

(
1− 1

p

)
+ O(c(Y )),

whence

lim sup
x→∞

∣∣∣∣∣
1∏
k(x)

∑

n≤x
n∈Vk

g(n)− T (Y )

∣∣∣∣∣ ≤ O(c(Y ))

where

T (Y ) =

( ∑

m∈EY
m≤Y c4

g(m)
m

) ∏

p<Y

(1− 1/p) .

Furthermore,

T (Y ) =
∏

p≤Y

(
1− 1

p

)(
1 +

g(p)
p

+
g(p2)
p2

+ . . .

)
+ oY (1)



Distribution of additive and q-additive functions. . . 187

and so

lim
Y→∞

T (Y ) =
∏
p

(
1− 1

p

)(
1 +

g(p)
p

+
g(p2)
p2

+ . . .

)

consequently Theorem 5 it follows immediately.
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