Publ. Math. Debrecen 43 / 1-2 (1993), 1-8

Weak automorphisms of the permutation groups S_n

By MAREK ZABKA (Gliwice)

0. The notion of weak automorphisms was studied in [3] and [6]. Let G be a group and let us denote by $A^{(n)}$ the class of all *n*-ary words in G, i.e. the set of all functions $f: G^n \to G$ of the form

(1)
$$f(x_1, x_2, \dots, x_n) = x_{i_1}^{m_1} \cdot x_{i_2}^{m_2} \cdot \dots \cdot x_{i_l}^{m_l},$$

where $m_1, m_2, \ldots, m_l \in Z$ (= integers), $i_1, i_2, \ldots, i_l \in \{1, 2, \ldots, n\}$, and $n = 1, 2, \ldots$. We call a permutation τ of the set G a weak automorphism of the group G if the mapping $\tau^* : A^{(n)} \to A^{(n)}$ defined by the formula:

(2)
$$(\tau^* f)(x_1, x_2, \dots, x_n) = \tau f(\tau^{-1}(x_1), \tau^{-1}(x_2), \dots, \tau^{-1}(x_n))$$

is a bijection, where n = 1, 2, ..., n. We denote the set of all weak automorphisms by Aut^{*}G. (cf. [1], [2])

Observe that e is the unique element of $A^{(0)}$ and therefore we have $\tau(e) = e$ for all $\tau \in \operatorname{Aut}^* G$ (cf. [2]).

The purpose of the paper is to prove the following Theorem

Theorem 0. Each weak automorphism τ of the permutation group S_n is of the form $\tau(x) = \alpha(x)^m$, where α is an automorphism of the group S_n and m is a positive integer $\langle \exp S_n, \operatorname{coprime to } n!$, and the representation is unique.

1. In [1] the following proposition is shown:

Proposition 1.1. For any group G, the group $\operatorname{Aut} G$ is a normal subgroup of Aut^*G .

Let us start with the simple consequence of the Proposition 1.1.

Lemma 1.1. Let G be a group, $x, y \in G$ and $\tau \in Aut^*G$. The following conditions are equivalent:

- a) there exists an automorphism φ of G such that $\varphi(x) = y$;
- b) there exists an automorphism ψ of G such that $\psi(\tau(x)) = \tau(y)$.

Marek Zabka

Lemma 1.2. Let *H* be a set of generators of a group *G*. If $\tau \in \operatorname{Aut}^*G$, $\beta \in \operatorname{Aut} G$ and $\tau(x) = x$ and $\beta(x) \in H$ for all $x \in H$, then $\tau \circ \beta = \beta \circ \tau$.

PROOF. By proposition 1.1 $\tau^{-1} \circ \beta^{-1} \circ \tau \circ \beta \in \operatorname{Aut} G$, and it is the identity on the generating set H, so it is the identity automorphism. \Box

For any word f of the form (1) we denote by $S^{i}(f)$ the sum of exponents of x_{i} .

Lemma 1.3. If τ is an weak automorphism of a group G and f is a word of the form $f(x_1, \ldots, x_n) = x_1 \ldots x_n$, then $x = x^{S^i(\tau^* f)}$ for any element $x \in G$ and $i = 1, 2, \ldots, n$.

PROOF. $x = \tau f(e, \dots, e, \tau^{-1}(x), e, \dots, e) = x^{S^{i}(\tau^{*}f)}.$

Theorem 1.1. If τ is a weak automorphism of a group G then $\tau(x^n) = \tau(x)^n$ for all $n \in \mathbb{Z}$.

PROOF. For n = 0 Theorem 1.1 means that $\tau(e) = e$.

Now we prove Theorem 1.1 for $n \ge 1$. Let $f(x_1, x_2, \ldots, x_n) = x_1 \cdot x_2 \cdot \ldots \cdot x_n$. From Lemma 1.3, we have:

$$\tau(x^n) = \tau^*(f(\tau(x), \dots, \tau(x))) = \tau(x)^{S^1(\tau^*f)} \dots \tau(x)^{S^n(\tau^*f)} = \tau(x)^n.$$

Applying Lemma 1.3 in the case n = 2 for the weak automorphism τ^{-1} we get:

$$x = x^{S^1((\tau^{-1})^*f)} = x^{S^2((\tau^{-1})^*f)}.$$

Hence

$$\tau(x) \cdot \tau(x^{-1}) = f(\tau(x), \tau(x^{-1})) = \tau(((\tau^{-1})^* f)(x, x^{-1})) = \tau(xx^{-1}) = e$$

and Theorem 1.1 follows. \Box

Corollary 1.1. Each weak automorphism of any group preserves the order of its element.

The following Lemma 1.4 is a generalization of Lemma 1.3.

Lemma 1.4. If τ is a weak automorphism of a group G and f is of the form (1), then

$$x^{S^i f} = x^{S^i (\tau^* f)}$$

for $i = 1, 2, \ldots, n$ and $x \in G$.

PROOF. It follows from Theorem 1.1. \Box

Lemma 1.5. Let S be a subset of a group G with the property $x \in S$ implies $x^n \in S$ for all integers n. If $x, y \in S$ and $a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k$ are integers such that:

$$x^{a_1 + a_2 + \dots + a_k} = y^{b_1 + b_2 + \dots + b_k} = e_1$$

where k = 1, 2, ..., then:

$$x^{a_1}y^{b_1}\dots x^{a_k}y^{b_k} \in [S,S] = gp \{s_1^{-1}s_2^{-1}s_1s_2 : s_1, s_2 \in S\}.$$

PROOF. This is obvious for k = 1.

Let us suppose that we have proved Lemma 1.5 for $k \leq t$. To complete the proof it is enough to notice that we have:

$$x^{a_1} \cdot y^{b_1} \dots x^{a_{t+1}} \cdot y^{b_{t+1}} =$$

= $x^{a_1} y^{b_1} \dots x^{a_{t-1}} y^{b_{t-1}} x^{a_t + a_{t+1}} y^{b_t + b_{t+1}} \left[y^{b_t + b_{t+1}}, x^{a_{t+1}} \right] \left[x^{a_{t+1}}, y^{b_{t+1}} \right]. \square$

Theorem 1.2. Let S be a subset of a group G with the property $x \in S$ implies $x^n \in S$ for all n = 1, 2, ... Then $\tau([S, S]) = [\tau(S), \tau(S)]$ for every weak automorphism τ of the group G.

PROOF. At first we prove that $\tau([S,S]) \subset [\tau(S),\tau(S)]$. Let τ be a weak automorphism of a group G and $f(x_1,x_2) = [x_1,x_2]$. We know from Theorem 1.1 that $x \in \tau(S)$ implies $x^n \in \tau(S)$. Since τ is a weak automorphism, $(\tau^*f)(u,v) = u^{a_1}v^{b_1} \dots u^{a_k}v^{b_k}$ for some integers a_1, \dots, a_k , b_1, \dots, b_k . Hence, applying Lemma 1.4 and Lemma 1.5, we get $\tau([x,y]) = \tau f(x,y) = (\tau^*f)(\tau(x),\tau(y)) \in [\tau(S),\tau(S)]$.

To complete the proof of Theorem 1.2 it is enough to consider τ^{-1} instead of τ and $\tau(S)$ instead of S. \Box

Corollary 1.2. We have [x, y] = e if and only if $[\tau(x), \tau(y)] = e$ for any weak automorphism τ of a group G, and $x, y \in G$.

Theorem 1.3. Suppose that τ is a weak automorphism of a group G and x, y are elements of G such that [x, y] = e. Then we have $[\tau(x), \tau(y)] = e$ and $\tau(xy) = \tau(x)\tau(y)$.

PROOF. Let [x, y] = e and $f(x, y) = x \cdot y$. By Corollary 1.2, $[\tau(x), \tau(y)] = e$. Moreover, $\tau(xy) = \tau^* f(\tau(x), \tau(y)) = \tau(x)^{S^1(\tau^*f)} \cdot \tau(y)^{S^2(\tau^*f)} = \tau(x)\tau(y)$ according to Lemma 1.3, which completes the proof. \Box

Corollary 1.3. Every weak automorphism of an abelian group is in fact an automorphism.

Marek Zabka

2. Theorem 2.1. Let G be a group of finite exponent n.

- a) The mapping $x \to x^k$ is a bijection iff (k, n) = 1.
- b) The inverse of $x \to x^k$ is $x \to x^m$, where $k \cdot m \equiv 1 \mod n$.
- c) If (k, n) = 1 then $x \to x^k$ is a weak automorphism of G.

PROOF. a) and b): If $x \to x^k$ is a bijection then for every $x \in G$ we have (|x|, k) = 1. So, (k, n) = 1. Conversely, if (k, n) = 1 then there exists m such that $k \cdot m \equiv 1 \mod n$. Therefore, the mapping $x \to x^k$ is a bijection, where $x \to x^m$ is the inverse mapping.

c) Let $\tau(x) = x^k$, where (k, n) = 1, and let f be a n-ary word of the form

$$f(x_1, x_2, \dots, x_n) = x_{i_1}^{m_1} \cdot x_{i_2}^{m_2} \cdot \dots \cdot x_{i_l}^{m_l}.$$

Then $\tau^{-1}(x) = x^m$ and so:

$$(\tau^* f)(x_1, x_2, \dots, x_n) = \tau f(\tau^{-1}(x_1), \tau^{-1}(x_2), \dots, \tau^{-1}(x_n)) = = (x_{i_1}^{mm_1} \cdot x_{i_2}^{mm_2} \cdot \dots \cdot x_{i_l}^{mm_l})^k.$$

Hence τ^* is a mapping $A^{(n)}$ into $A^{(n)}$. But $(\tau^{-1})^*$ is also a mapping $A^{(n)}$ into $A^{(n)}$ and $(\tau^{-1})^* \circ \tau^* = \mathrm{id}|_{A^{(n)}}$. Hence τ^* is a bijection of $A^{(n)}$ and therefore τ is weak automorphism of G. \Box

Theorem 2.2. For any group of exponent n the set of all weak automorphisms of the form $x \to x^k$ is a subgroup of the center of Aut^{*}G isomorphic to the multiplicative group Z_n^* of the ring Z_n .

PROOF. It follows from Theorem 1.1 and Theorem 2.1. \Box

Theorem 2.3. For any group G of exponent n the set of all weak automorphisms of the form $x \to \alpha(x)^k$, where $\alpha \in \operatorname{Aut} G$, is a normal subgroup of $\operatorname{Aut}^* G$.

PROOF. It is a simple consequence of Proposition 1.1, Theorem 2.1 and Theorem 2.2. $\hfill\square$

The following Example shows that the set of all weak automorphisms of the form $x \to \alpha(x)^k$, where $\alpha \in \operatorname{Aut} G$, could be a proper normal subgroup of $\operatorname{Aut}^* G$.

Example 2.1. Let G be a group of the form:

 $G = \langle a, b \mid [[a, b], a] = [[a, b], b] = [a, b]^4 = 1 \rangle.$

Each element $g \in G$ is of the form

$$g = a^p b^q [a, b]^r,$$

where r = 0, 1, 2, 3, and this form is unique. The exponent of the group G is infinite, so, if a weak automorphism τ is of the form $\tau = \alpha(x)^n$, then

n = 1 or n = -1. Hence, each weak automorphism of the form $\tau = \alpha(x)^n$ satisfies one of the two equations:

$$\tau(x \cdot y) = \tau(x) \cdot \tau(y)$$
 or $\tau(x \cdot y) = \tau(y) \cdot \tau(x)$.

Let τ be defined by

$$\tau(a^p b^q [a, b]^r) = a^p b^q [a, b]^{pq+3r}.$$

It is easy to check that:

a) $\tau \circ \tau = \mathrm{id}$,

- b) $\tau(x \cdot y) = \tau(x)\tau(y)[\tau(x),\tau(y)],$
- c) $\tau(x \cdot y) \neq \tau(x) \cdot \tau(y)$ and $\tau(x \cdot y) \neq \tau(y) \cdot \tau(x)$.

Hence, the function τ is a weak automorphism and it is not of the form $\alpha(x)^n$. \Box

3. Now we show that any weak automorphism of the group S_n of all permutations on n letters is of the form $x \to \alpha(x)^k$, where $\alpha \in \operatorname{Aut} S_n$, $(k, |S_n|) = 1$.

Let $B_{k,n}$, $1 \le k \le n/2$, denote the set of all compositions of k disjoint transpositions in the group S_n .

Lemma 3.1. Let τ be a weak automorphism of a group S_n , which satisfies the condition $\tau(B_{1,n}) = B_{1,n}$. If $\tau((i,j)) = (p,q)$ and $\tau((i,k)) = (p,r)$ then $\tau((j,k)) = (q,r)$.

PROOF. Let us put $f(x, y) = x \cdot y \cdot x$. For x = (i, j) and y = (i, k) we have $\tau((j, k)) = \tau(x \cdot y \cdot x) = (\tau^* f)(\tau(x), \tau(y)) = (\tau^* f)((p, r), (p, q))$, which is a permutation on three letters p, q, r. It follows from our hypothesis that $\tau((j, k))$ is a transposition. But τ is a bijection and so $\tau((j, k)) = (p, q)$.

Lemma 3.2. If τ is a weak automorphism of the permutation group S_n , which satisfies the condition $\tau(B_{1,n}) = B_{1,n}$, then there exists an inner automorphism α of S_n such that $\tau(x) = \alpha(x)$ for each transposition x.

PROOF. Theorem 1.3 gives $[\tau((1,2)), \tau((2,3))] \neq e$. Therefore there exists $\sigma(1), \sigma(2), \sigma(3)$ such that $\tau((1,2)) = (\sigma(1), \sigma(2))$ and $\tau((2,3)) = (\sigma(2), \sigma(3))$. The equality $\tau((1,3)) = (\sigma(1), \sigma(2))$ follows from Lemma 3.1.

Let us suppose that σ is a function: $\{1, \ldots, k\} \to \{1, \ldots, n\}$ such that $\tau((i, j)) = (\sigma(i), \sigma(j))$, where $i, j = 1, 2, \ldots, k, k \geq 3$. Since τ is a bijection and $\tau((1, 2)) = (\sigma(1), \sigma(2))$ and $\tau((1, 3)) = (\sigma(1), \sigma(3))$, so $\tau((1, k + 1)) = (\sigma(1), d)$, where d is not equal to $\sigma(1), \sigma(2), \ldots, \sigma(k)$. Let us put $\sigma(k+1) = d$. The inductive conclusion follows from Lemma 3.1. So we have constructed a permutation $\sigma \in S_n$ such that $\tau((i, j)) = (\sigma(i), \sigma(j))$ for $i, j = 1, 2, \ldots, n$. Hence we have $\tau|_{B_{1,n}} = \alpha|_{B_{1,n}}$, where $\alpha(x) = \sigma x \sigma^{-1}$ and Lemma 3.2 follows. \Box

Marek Zabka

Lemma 3.3. For every weak automorphism τ of S_n there exists an automorphism α of S_n such that $\alpha(x) = \tau(x)$ for all $x \in B_{1,n}$.

PROOF. Let $n \neq 6$. Then it follows from Lemma 1.1 that for any weak automorphism τ of S_n there exists k such that $\tau(B_{1,n}) = B_{k,n}$. From [4] we know that $|B_{1,n}| \neq |B_{k,n}|$ for $n \neq 6$ and $k \neq 1$. Hence $\tau(B_{1,n}) = B_{1,n}$ and the conclusion follows from Lemma 3.2.

Now let n = 6. As we know from [5] for each automorphism β of $S_6 \ \beta(B_{2,6}) = B_{2,6}$. We have $|B_{1,6} \cup B_{3,6}| = 30$ and $|B_{2,6}| = 45$ so from Lemma 1.1 we obtain that $\tau(B_{2,6}) = B_{2,6}$.

Moreover, we shall show that $\tau(B_{1,6}) = B_{1,6}$ or $\tau(B_{1,6}) = B_{3,6}$. Indeed, if $\tau(B_{1,6}) \neq B_{1,6}$ and $\tau(B_{1,6}) \neq B_{3,6}$ then let us consider transpositions (i, j) and (j, k) such that $\tau((i, j)) \in B_{1,6}$ and $\tau((j, k)) \in B_{3,6}$. From Theorem 1.3 we know that $[\tau((i, j)), \tau((j, k))] \neq e$ so $\tau((i, j))$ and $\tau((j, k))$ are of the form $\tau((i, j)) = (p, q)$ and $\tau((j, k)) = (p, s)(q, t)(u, w)$. Then $\tau((i, j, k)) = \tau((i, j)(j, k)) = (\tau^* f)(\tau((i, j)), \tau((j, k))) = (\tau^* f)((p, q), (p, s)(q, t)$ (q, t)(u, w)), where $f(x, y) = x \cdot y$. We know that $(\tau^* f)((p, q), (p, s)(q, t)$ (u, w)) is of the form $\mu \circ (u, w)$, where the permutation μ fixes u and w. Therefore its order is not equal to the order of (i, j, k), which contradicts Corollary 1.1.

From [5] we also know that there exists an automorphism β of S_6 such that $\beta(B_{3,6}) = B_{1,6}$. Let β be an automorphism of S_6 such that $\beta(B_{3,6}) = B_{1,6}$ if $\tau(B_{1,6}) = B_{3,6}$ and $\beta = \text{id}$ if not. Then the conclusion follows from Lemma 3.2 after applying it for $\beta \circ \tau$. \Box

In the proof of Lemma 3.5 we use the following obvious numbertheoretical Lemma 3.4:

Lemma 3.4. If m_1, m_2, \ldots, m_n are positive integers such that $m_{rt} \equiv m_r \mod r$ for all $r \cdot t \leq n$, then there exists m such that $m \equiv m_k \mod k$ for all $k \leq n$.

Lemma 3.5. If τ is a weak automorphism of S_n such that $\tau(x) = x$ for each transposition x, then there exists a positive integer m such that $\tau(y) = y^m$ for all $y \in S_n$.

PROOF. First, we prove that if x is a permutation on some letters i_1, i_2, \ldots, i_k then $\tau(x)$ is a permutation on the same letters. Indeed, there exists transpositions x_1, x_2, \ldots, x_m on letters i_1, i_2, \ldots, i_k such that $x = x_1 \cdot x_2 \cdot \ldots \cdot x_m$. Let us put $f(x_1, x_2, \ldots, x_m) = x_1 \cdot x_2 \cdot \ldots \cdot x_m$. Since $\tau(x_i) = x_i$ for each transposition x_i , so we have $\tau(x) = \tau f(x_1, x_2, \ldots, x_m) = \tau^*(f)(\tau(x_1), \tau(x_2), \ldots, \tau(x_m)) = \tau^*(f)(x_1, x_2, \ldots, x_m)$.

Now we prove that if x is a cycle of the form $x = (i_1, i_2, \ldots, i_k)$, then $\tau(x)$ is also a cycle on the same letters. Indeed, suppose that $\tau(x)$ is not a cycle. Then $\tau(x) = y_1 \cdot y_2$ for some independent permutations. From Theorem 1.3 we know that $x = \tau^{-1}(y_1 \cdot y_2) = \tau^{-1}(y_1) \cdot \tau^{-1}(y_2)$ and of course $\tau^{-1}(y_1)$ and $\tau^{-1}(y_2)$ are independent, which contradicts the assumption that x is a cycle.

Now we prove that for each cycle x we have $\tau(x) = x^m$ for some m (dependent on x) not greater than length of x. Indeed, applying Lemma 1.2 for the set H of all transpositions of S_n , for $\beta(y) = xyx^{-1}$ and for y = x we get $\tau(x)x = x\tau(xxx^{-1}) = x\tau(x)$. So $\tau(x) = x^m$, where m is a positive integer.

Further, let us consider two cycles x, y of length k. We have $\tau(x) = x^m$ and $\tau(y) = y^w$. There exists an inner automorphism β of S_n such that $\beta(x) = y$, therefore, using Lemma 1.2, we get $y^w = \tau\beta(x) = \beta\tau(x) =$ $\beta(x)^m = y^m$; hence m = w. So, there exists positive integers $m_2, m_3, \ldots,$ m_n such that $\tau(x) = x^{m_k}$ for each cycle x of length k. Moreover, if x is a composition of some disjoint cycles of length k then also $\tau(x) = x^{m_k}$, because of Theorem 1.3.

Now let r, t be positive integers such that $r, r \cdot t \leq n$ and let x be a cycle of length $r \cdot t$. Then x^t is a composition of disjoint cycles of length r. So, using Theorem 1.1, we have $x^{m_r t} = \tau(x^t)\tau(x)^t = x^{m_t t}$. Hence $m_{tr} \equiv m_r \mod r$. Using Lemma 3.4 we get a positive integer m such that $m \equiv m_k \mod k$. Hence $\tau(x) = x^m$ for each cycle x of S_n .

If x is a composition of disjoint cycles of S_n then using Theorem 1.3 we conclude that also $\tau(x) = x^m$. So Lemma 3.5 is proved. \Box

Now we will PROVE THEOREM 0 from the introduction, which is the main result of the paper.

PROOF. Let τ be a weak automorphism of the group S_n . As we know from Lemma 3.3, there exists an automorphism α of S_n such that $\alpha^{-1}\tau(x) = x$ for each transposition x of S_n . It follows from Lemma 3.5 that there exists a positive integer m such that $\alpha^{-1}\tau(x) = x^m$. Hence $\tau(x) = \alpha(x)^m$. Theorem 2.1 implies that m is coprime to n!. Since an automorphism β of S_n can not be of the form $\beta(x) = x^k$ for $k \neq 1$, therefore the representation $\tau(x) = \alpha(x)^m$, with $0 < m < \exp(S_n)$, is unique and the result follows. \Box

Corollary 3.1. The group $\operatorname{Aut}^* S_n$ is the direct product of the group $\operatorname{Aut} S_n$ and the group H of weak automorphisms of the form $x \to x^k$, where k is coprime to n!, and H is isomorphic to the multiplication group Z_m^* of the ring Z_m , where $m = \exp S_n$.

References

- J. DUDEK and E. PLONKA, Weak automorphisms of linear spaces and of some other abstract algebras, Coll. Math. XXII (1971), 201–208.
- [2] A. GOETZ, On weak isomorphisms and weak automorphisms of abstract algebras, Coll. Math. XIV (1966), 163–167.
- [3] A. HULANICKI and ŚWIERCZKOWSKI, On group operations other than xy or yx, *Publ. Math.* Debrecen **9** (1962), 142–148.

Marek Zabka : Weak automorphisms of the permutation groups S_n

- [4] M. KARGAPAŁOW and JU. MERZLIAKOW, Osnowy tieori grupp, Moskwa, Nauka, 1982.
- [5] D.W. MILLER, On a Theorem of Hölder, Amer. Math. Monthly 65, nr. 4 (1958), 252-254.
 [6] A.D. STRETT, Schwarzen between initial functions and the Math. 12
- [6] A.P. STREET, Subgroup determining functions on groups, Illinois J. Math. 12 (1968), 99–120.

INSTITUTE OF MATHEMATICS OF SILESIAN TECHNICAL UNIVERSITY UL. ZWYCIĘSTWA 42 44–100 GLIWICE POLAND

(Received May 30, 1989; revised March 24, 1992)

8