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On stability of the Cauchy equation in normed spaces over
fields with valuation

By ZOLTÁN KAISER (Debrecen)

Abstract. S. M. Ulam’s problem was to give conditions for the existence of a
linear mapping near an approximately linear mapping. D. H. Hyers, Th. M. Ras-
sias and Z. Gajda have considered this problem in real Banach spaces. The
purpose of this paper is to generalize their approach.

1. Introduction

In connection with a problem posed by Ulam, Th. M. Rassias [7]
proved the following theorem on stability of linear mappings in Banach
spaces.

Theorem 1. Let E1 and E2 be two (real) Banach spaces and let f :
E1 → E2 be a mapping such that for each fixed x ∈ E1 the transformation

t 7→ f(tx) is continuous on R. Moreover, assume that there exists ε ∈
[0,∞) and α ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖α + ‖y‖α) (1)
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for all x, y ∈ E1. Then there exist a unique linear mapping T : E1 → E2

such that

‖f(x)− T (x)‖ ≤ δ‖x‖α (2)

for all x ∈ E1, where δ = 2ε
2−2α .

As it was mentioned by Rassias, the proof presented in [7] works for
every α from the intervall (−∞, 1). Note that Theorem 1 involves the
classical Hyers–Ulam stability of linear mappings when α = 0, asymptotic
stabililty in infinity when α < 0, and local stability at the origin when
α > 0. Omitting the assumption that all the transformations t → f(tx)
are continuous, one obtains the existence of a unique additive mapping
T : E1 → E2 with (2). Concerning the remaining cases, Z. Gajda [4]
showed that the statement holds when α > 1 with δ = 2ε

2α−2 , but it is
not valid for α = 1. Motivated by a problem of Z. Boros [2], we will
prove a generalization of these results for mappings in Banach spaces over
fields with arbitrary valuations. A particular case, when α = 0 and E2 is a
Banach space over a p-adic field Qp, has been considered by W. A. Beyer

[1] and J. Schwaiger [8] and some other cases follow from a theorem of
G. L. Forti [3]. Our main result is established in Theorem 2.

2. Preliminaries

Let F be a field. We say that F is a field with the valuation v if
v : F → R is a positive definite, multiplicative and subadditive function
with v(0) = 0. Moreover, if v(x + y) ≤ max{v(x), v(y)} for all x, y ∈ F ,
then we say that v is a non-archimedean valuation, otherwise we say that
v is an archimedean valuation. We say that (X, ‖ ‖) is a normed space
over a field F with the valuation | |F , if X is a linear space over F and
the mapping ‖ ‖ : X → R is positive definite, subadditive, and we have
‖λx‖ = |λ|F ‖x‖ for all λ ∈ F, x ∈ X. A normed space is called non-
archimedean if

‖x + y‖ ≤ max{‖x‖ , ‖y‖} for all x, y ∈ X.

If a (non-archimedean) normed space is complete with respect to the metric
generated by the norm, it is called a (non-archimedean) Banach space.
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If a field has zero characteristic, then it contains the rational numbers.
If we have a valuation on a field of characteristic zero, then it involves a
valuation on Q. As it was proved by A. Ostrowski [6], if we have a
valuation | |Q on Q, then one of the following statements holds:

1. There exists a β ∈ (0, 1] such that | |Q = | |β, where | | is the standard
absolute value.

2. |0|Q = 0 and there exist a prime number p and % ∈ (0, 1] such that if
x ∈ Q\{0} and x = pk n

m (p - n, p - m), then |x|Q = %k.

In the first case | |Q is an archimedean valuation on Q.
In the second case, it is easy to prove, that |x+y|Q ≤ max{|x|Q , |y|Q},

so | |Q is a non-archimedean valuation on Q. In case % = 1 we have the
trivial valuation. In case % = 1/p we say that | |Q is the p-adic valuation
and we denote it by | |p. It is obvious that every % ∈ (0, 1] can be produced
as a non-negative power of 1/p, so 2 goes to this form:

2. There exists a prime number p and β ≥ 0 such that | |Q = | |βp .

3. Results

At first we need some lemmas to prove our theorem.

Lemma 1. Let (X, ‖ ‖1) be a normed space over a field F of char-

acteristic zero with a valuation | |F , (Y, ‖ ‖2) be a normed space over an

arbitrary field, f : X → Y and α be a real number. If there exists a

non-negative real number L such that

‖f(x+y)−f(x)−f(y)‖2 ≤ Lmax{‖x‖α
1 , ‖y‖α

1 } for every x, y ∈ X, (3)

then

‖f(nx)− nf(x)‖2 ≤ Lσ(n, α)‖x‖α
1

for all n ∈ N, where

σ(n, α) = (n− 1) +
(|n− 1|αF + · · ·+ |2|αF + |1|αF

)
. (4)

(In this paper 0α = 0 for α 6= 0 and 00 = 1.)
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Proof. We prove the lemma by induction on n. For n=1 the state-
ment is trivial. Let us suppose, that n> 1 and ‖f[

(n−1)x
]−(n−1)f(x)‖2≤

Lσ(n− 1, α)‖x‖α
1 . Then

‖f(nx)− nf(x)‖2

= ‖f(nx)− f
[
(n− 1)x

]− f(x) + f
[
(n− 1)x

]− (n− 1)f(x)‖2

≤ ‖f(nx)− f
[
(n− 1)x

]− f(x)‖2 + ‖f[
(n− 1)x

]− (n− 1)f(x)‖2

≤ Lmax
{‖(n− 1)x‖α

1 , ‖x‖α
1

}
+ Lσ(n− 1, α)‖x‖α

1

≤ L
(|n− 1|αF + 1 + σ(n− 1, α)

)‖x‖α
1 = Lσ(n, α)‖x‖α

1 . ¤

Lemma 2. Let (X, ‖ ‖1) be a normed space over a field F of char-

acteristic zero with a valuation | |F , (Y, ‖ ‖2) be a normed space over a

field K of characteristic zero with a valuation | |K , f : X → Y , α be a

real number and s be a positive integer. Let us consider the functions

fn : X → Y ,

fn(x) =
1
sn

f(snx) (x ∈ X, n ∈ N). (5)

If the function f satisfies (3) and |s|αF < |s|K , then

‖f(x)− fn(x)‖2 ≤ Lσ(s, α)
|s|K − |s|αF

‖x‖α
1

for all x ∈ X and n ∈ N.

Proof. Applying Lemma 1 we have:

‖f(x)− fn(x)‖2 =

∥∥∥∥∥
n−1∑

k=0

(
1
sk

f(skx)− 1
sk+1

f(sk+1x)
)∥∥∥∥∥

2

≤
n−1∑

k=0

1
|s|k+1

K

∥∥∥sf(skx)− f(sk+1x)
∥∥∥

2
≤ Lσ(s, α)

|s|K
n−1∑

k=0

( |s|αF
|s|K

)k

‖x‖α
1

≤ Lσ(s, α)
|s|K

∞∑

k=0

( |s|αF
|s|K

)k

‖x‖α
1 =

Lσ(s, α)
|s|K − |s|αF

‖x‖α
1

for every x ∈ X and n ∈ N, which is our statement. ¤
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Lemma 3. Let (X, ‖ ‖1) be a normed space over a field F of char-

acteristic zero with a valuation | |F , (Y, ‖ ‖2) be a normed space over a

field K of characteristic zero with a valuation | |K , f : X → Y , α be a

real number and s be a positive integer. Let us consider the functions

gn : X → Y ,

gn(x) = snf

(
1
sn

x

)
(x ∈ X, n ∈ N). (6)

If the function f satisfies (3) and |s|αF > |s|K , then

‖f(x)− gn(x)‖2 ≤ Lσ(s, α)
|s|αF − |s|K

‖x‖α
1

for all x ∈ X and n ∈ N.

Proof. Using Lemma 1 with n = s and x/s in place of x, we get that
∥∥∥∥f(x)− sf

(
1
s
x

)∥∥∥∥
2

≤ Lσ(s, α)
|s|αF

‖x‖α
1 .

Therefore, for every m ∈ N and x ∈ X:

‖f(x)− gn(x)‖2 =

∥∥∥∥∥
n−1∑

k=0

(
skf

(
1
sk

x

)
− sk+1f

(
1

sk+1
x

))∥∥∥∥∥
2

≤
n−1∑

k=0

|s|kK
∥∥∥∥f

(
1
sk

x

)
− sf

(
1

sk+1
x

)∥∥∥∥
2

≤ Lσ(s, α)
|s|αF

n−1∑

k=0

( |s|K
|s|αF

)k

‖x‖α
1

≤ Lσ(s, α)
|s|αF

∞∑

k=0

( |s|K
|s|αF

)k

‖x‖α
1 =

Lσ(s, α)
|s|αF − |s|K

‖x‖α
1 . ¤

Lemma 4. Let (X, ‖ ‖1) be a normed space over a field F of char-

acteristic zero with a valuation | |F , (Y, ‖ ‖2) be a normed space over a

field K of characteristic zero with a valuation | |K , f : X → Y and α be a

real number. If f : X → Y is additive, ‖f(x)‖2 ≤ M‖x‖α
1 for some fixed

M ∈ R and for all x ∈ X, and there exists a positive integer s such that

|s|αF 6= |s|K , then f(x) = 0 for all x ∈ X.

Proof. Since f is additive, it is Q-linear. Thus the existence of some
s ∈ N with |s|αF 6= |s|K implies that there is some rational number r
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(
r ∈ {s, 1

s}
)

such that |r|αF < |r|K . But then we have for any x ∈ X,
x 6= 0, and any n ∈ N that

|r|nK‖f(x)‖2 = ‖f(rnx)‖2 ≤ M |r|nα
F ‖x‖α

1

therefore with q := |r|αF /|r|K(∈ ]0, 1[) we have

‖f(x)‖2 ≤ Mqn‖x‖α
1 ,

which for n →∞ gives ‖f(x)‖2 = 0. ¤

Now we can formulate our main theorem.

Theorem 2. Let (X, ‖ ‖1) be a normed space over a field F of char-

acteristic zero with a valuation | |F , (Y, ‖ ‖2) be a Banach space over a

field K of characteristic zero with a valuation | |K , f : X → Y and α be

a real number. If the function f satisfies (3) and there exists a positive

integer s such that |s|αF 6= |s|K , then there exists a unique additive function

g : X → Y for which

‖f(x)− g(x)‖2 ≤ C‖x‖α
1 (x ∈ X) (7)

with some C ∈ R. Moreover g satisfies (7) with C = Lσ(s,α)∣∣|s|K−|s|αF
∣∣ .

Proof. I. At first we prove the existence part of the theorem. We
consider two cases.

1. |s|αF < |s|K . Let us consider the functions f1, f2, f3, . . . defined by (5).
We prove that (fn(x)) is a Cauchy sequence for each fixed x ∈ X. Let
m,n ∈ N such that n > m. Using Lemma 2, from

‖fm(x)− fn(x)‖2 =
∥∥∥∥

1
sm

f (smx)− 1
sn

f (snx)
∥∥∥∥

2

=
∣∣∣∣

1
sm

∣∣∣∣
K

∥∥∥∥f (smx)− 1
sn−m

f
(
sn−msmx

)∥∥∥∥
2

=
1
|s|mK

‖f (smx)− fn−m (smx)‖2

≤ 1
|s|mK

Lσ(s, α)
|s|K − |s|αF

‖smx‖α
1 =

( |s|αF
|s|K

)m Lσ(s, α)
|s|K − |s|αF

‖x‖α
1
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we conclude that (fn(x)) is a Cauchy sequence for each x ∈ X. Since
Y is complete, the definition g(x) = lim

n→∞ fn(x) (x ∈ X) is correct.
Furthermore, for every x, y ∈ X

0 ≤ ‖g(x + y)− g(x)− g(y)‖2 = lim
n→∞ ‖fn(x + y)− fn(x)− fn(y)‖2

= lim
n→∞

∥∥∥∥
1
sn

f (snx + sny)− 1
sn

f (snx)− 1
sn

f (sny)
∥∥∥∥

2

= lim
n→∞

1
|s|nK

‖f (snx + sny)− f (snx)− f (sny)‖2

≤ lim
n→∞

( |s|αF
|s|K

)n

Lmax{‖x‖α
1 , |y|α1 } = 0,

thus, g is an additive function. Finally, by Lemma 2 we have

‖f(x)− g(x)‖2 = lim
n→∞ ‖f(x)− fn(x)‖2 ≤ Lσ(s, α)

|s|K − |s|αF
‖x‖α

1 . (8)

2. |s|αF > |s|K . Let us consider the functions g1, g2, g3, . . . defined by (6).
We prove that (gn(x)) is a Cauchy sequence for each fixed x ∈ X. Let
m,n ∈ N such that n > m. Using Lemma 3, from

‖gm(x)− gn(x)‖2 =
∥∥∥∥smf

(
1

sm
x

)
− snf

(
1
sn

x

)∥∥∥∥
2

= |sm|K
∥∥∥∥f

(
1

sm
x

)
− sn−mf

(
1

sn−m

1
sm

x

)∥∥∥∥
2

= |s|mK
∥∥∥∥f

(
1

sm
x

)
− gn−m

(
1

sm
x

)∥∥∥∥
2

≤ |s|mK
Lσ(s, α)
|s|αF − |s|K

∥∥∥∥
1

sm
x

∥∥∥∥
α

1

=
( |s|K
|s|αF

)m Lσ(s, α)
|s|αF − |s|K

‖x‖α
1

we conclude that (gn(x)) is a Cauchy sequence for each x ∈ X. Since
Y is complete, the definition g(x) = lim

n→∞ gn(x) (x ∈ X) is correct.
Furthermore, for every x, y ∈ X

0 ≤ ‖g(x + y)− g(x)− g(y)‖2 = lim
n→∞ ‖gn(x + y)− gn(x)− gn(y)‖2

= lim
n→∞

∥∥∥∥snf

(
1
sn

x +
1
sn

y

)
− snf

(
1
sn

x

)
− snf

(
1
sn

y

)∥∥∥∥
2
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= lim
n→∞ |s|

n
K

∥∥∥∥f

(
1
sn

x +
1
sn

y

)
− f

(
1
sn

x

)
− f

(
1
sn

y

)∥∥∥∥
2

≤ lim
n→∞

( |s|K
|s|αF

)n

Lmax{‖x‖α
1 , |y|α1 } = 0,

thus, g is an additive function. Finally, by Lemma 3 we have

‖f(x)− g(x)‖2 = lim
n→∞ ‖f(x)− gn(x)‖2 ≤ Lσ(s, α)

|s|αF − |s|K
‖x‖α

1 . (9)

Now, applying (8) and (9) we get (7) with C = Lσ(s,α)∣∣|s|K−|s|αF
∣∣ .

II. To prove the uniqueness of g we suppose that g1, g2 : X → Y are
additive functions such that

‖f(x)− g1(x)‖2 ≤ LC1‖x‖α
1

and
‖f(x)− g2(x)‖2 ≤ LC2‖x‖α

1

for all x ∈ X and some C1, C2 ∈ R. Then

‖g1(x)− g2(x)‖2 ≤ ‖f(x)− g1(x)‖2 + ‖f(x)− g2(x)‖2

≤ L(C1 + C2)‖x‖α
1 (x ∈ X).

Clearly, g1−g2 is additive. Applying Lemma 4, we obtain that g1−g2 = 0,
so g1 = g2. ¤

Now we are going to investigate the linearity of the additive approxi-
mating function.

Definition. Let F be a field with a valuation | |F , t0 ∈ F and 0 < δ ∈ R.
The open ball of radius δ and center t0 is the set

Bδ(t0) = {t ∈ F : |t− t0|F < δ}.

Lemma 5. Let F be a field of characteristic zero with some non-trivial

valuation | |F such that Q is dense in F with respect to this valuation. Let

Y be a normed space over F . Moreover assume that g : F → Y is additive.

If g is bounded on some open ball then g is of the form g(t) = ct.
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Proof. If g is bounded on some open ball then by the additivity,
g is also bounded on some neighborhood Bδ(0) of 0 : ‖g(t)‖ ≤ M for
all t ∈ Bδ(0). Let q ∈ Q \ {0} such that |q|F 6= 1. Since

∣∣1
q

∣∣
F

= 1
|q|F ,

we may assume that |q|F > 1. Let k ∈ N such that |q|F ≤ k. Let
t 6= 0 be arbitrary. There is some m ∈ Z such that δ/k ≤ |q−mt|F < δ,
implying that |qm|F ≤ (k/δ)|t|F . Thus |q−m|F ‖g(t)‖ = ‖g(q−mt)‖ ≤ M

which implies ‖g(t)‖ ≤ M |qm|F ≤ kM
δ |t|F = M ′|t|F . Consequently g

is continuous. Choose a sequence sn of rationals converging to t. Then
g(sn) = sng(1) tends to g(t). Thus g(t) = tg(1). ¤

Theorem 3. Let us suppose that F and Y satisfy the assumptions

of Lemma 5, (X, ‖ ‖1) is a normed space over F , f : X → Y and α is a

real number. Moreover let (Y, ‖ ‖2) be a Banach space. If the function

f satisfies (3), for every x ∈ X the mapping fx : t 7→ f(tx) (t ∈ F ) is

bounded on an open ball Bδx(tx) of non-zero center tx ∈ F and radius

δx > 0, and there exists a positive integer s such that |s|αF 6= |s|K , then

there exists a unique linear function g : X → Y for which

‖f(x)− g(x)‖2 ≤ C‖x‖α
1 (x ∈ X) (10)

with some C ∈ R. Moreover g satisfies (10) with C = Lσ(s,α)∣∣|s|K−|s|αF
∣∣ .

Proof. The existence and the uniqueness of g is proved in Theorem 2.
Let us consider an arbitrary x ∈ X and the function gx : F → Y ,

gx(t) = g(tx). Then

‖gx(t)‖2 ≤ ‖f(tx)− g(tx)‖2 + ‖fx(t)‖2 ≤ M ′|t|αF + ‖fx(t)‖2,

for all t ∈ Bδ(tx) with tx 6= 0, where M ′ = C‖x‖α
1 is a constant. We

may choose δ′x = min
{

1
2 |tx|F , δx

}
implying that for t ∈ Bδ′x(tx) we have

0 < 1
2 |tx|F ≤ |t|F ≤ 3

2 |tx|F . Thus |t|αF ≤ M = max{(1
2)α, (3

2)α}|tx|αF for
all t ∈ Bδ′x(tx). Therefore the additive function gx is bounded on Bδ′x(tx).
Consequently, by Lemma 5, gx is linear, so g(tx) = gx(t) = tgx(1) = tg(x)
for all t ∈ F . ¤
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4. Concluding remarks

Let us notice, that

max
{‖x‖α

1 , ‖y‖α
1

} ≤ ‖x‖α
1 + ‖y‖α

1 ≤ 2max
{‖x‖α

1 , ‖y‖α
1

}
,

so using 2L instead of L in Theorem 2 we can write the following:

Theorem 4. Let (X, ‖ ‖1) be a normed space over a field F of char-

acteristic zero with a valuation | |F , (Y, ‖ ‖2) be a Banach space over a

field K of characteristic zero with a valuation | |K , f : X → Y and α be a

real number. If there exists a positive integer s such that |s|αF 6= |s|K and

the function f : X → Y satisfies the inequality

‖f(x + y)− f(x)− f(y)‖2 ≤ L(‖x‖α
1 + ‖y‖α

1 ) for every x, y ∈ X, (11)

then there exists a unique additive function g : X → Y for which

‖f(x)− g(x)‖2 ≤ 2Lσ(s, α)∣∣|s|K − |s|αF
∣∣‖x‖

α
1 (12)

for all x ∈ X.

This theorem gives the theorem of Rassias (see [7]) and the theorem
of Gajda (see [4]) if the valuations on F and K are usual absolute values
and s = 2. It is to be noted that the bound in their result is half as much
as here, but if we prove Lemma 1 distinguishing four cases according to
the valuation on the field F and the sign of α, we get the same bound.

If |2|αF < |2|K , then Theorem 2 follows from G. L. Forti’s stability
theorem [3] for a class of functional equations

g[F (x, y)] = H[g(x), g(y)].

Now let us consider the exeptional case when |s|αF = |s|K for every
s ∈ N. Then |r|αF = |r|K for all r ∈ Q, therefore it is sufficient to verify
the valuations on Q. There are three cases.

1. α = 0 and | |K is the trivial valuation on Q.

2. α 6= 0, | |F = | |β1 and | |K = | |β2 for some β1, β2 ∈ (0, 1], where
αβ1 = β2.
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3. α 6= 0 and there exists a prime number p such that | |F = | |β1
p and

| |K = | |β2
p for some β1, β2 ≥ 0, where αβ1 = β2.

Gajda [4] has constructed a counterexample for the case when α = 1
and the restriction of | |F and | |K to Q is the usual absolute value. Similar
example can be given for case 2 in the general setting. However, this
example does not work for the remaining cases. Therefore, it is not yet
decided whether the Cauchy-equation is stabil in order α in Cases 1 and 3.

If we have an additive function g : X → Y , α ≥ 0 and the function
φ : X → Y satisfies the inequality ‖φ(x)‖2 ≤ C‖x‖α

1 for some C ∈ R, then
the function f : X → Y , f(x) = g(x)+φ(x) satisfies (3) with L = (2α+2)C,
since

‖f(x + y)− f(x)− f(y)‖2 = ‖φ(x + y)− φ(x)− φ(y)‖2

≤ ‖φ(x + y)‖2 + ‖φ(x)‖2 + ‖φ(y)‖2 ≤ C‖x + y‖α
1 + C‖x‖α

1 + C‖x‖α
1

≤ C(‖x‖1 + ‖y‖1)α + C‖x‖α
1 + C‖x‖α

1

≤ 2αC max{‖x‖α
1 , ‖y‖α

1 }+ C‖x‖α
1 + C‖x‖α

1

≤ (2α + 2)C max{‖x‖α
1 , ‖y‖α

1 }.

Now let us see some examples for the function φ with different domains
and ranges.

Example. Let p be a prime, Qp denote the p-adic field that is the
completion for the p-adic valuation of Q, (Y, ‖ ‖2) be a real normed space,
α ≥ 0 and y ∈ Y . Let φ : Qp → Y , φ(x) = |x|αp y for all x ∈ Qp. Then
‖φ(x)‖2 = |x|αp ‖y‖2 = ‖y‖2‖x‖α

1 .

Example. Let p be a prime, (Y, ‖ ‖2) be a normed space over Qp, α ≥ 0
and y ∈ Y . Then let φ : R → Y , φ(0) = 0 and φ(x) = 1

Θp(|x|)α y for all
x ∈ R \ {0}, where Θp(x) denotes the biggest power of p which is not
greater than x (x ∈ R+). We can use that

∣∣ 1
Θp(|x|)α

∣∣
p

= Θp(|x|)α ≤ |x|α
(x 6= 0), so the function φ is an appropriate function.
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