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A theorem on Besov–Nikol’skǐı class

By L. LEINDLER (Szeged)

Dedicated to Professor Lajos Tamássy on his 80th birthday

Abstract. Very recently S. Yu. Tikhonov proved a theorem which gives a
necessary and sufficient condition in order that a function f(x) ∈ Lp having quasi-
monotone decreasing Fourier coefficients should belong to the Besov–Nikol’skǐı
class. In the present paper the analogue of his result is proved with function
having Fourier coefficients of rest bounded variation.

1. Introduction

It is well known that there are a great number of theorems having con-
ditions with monotone decreasing coefficients. It is also known that these
theorems, or a part of them, have been generalized to quasi-monotonic, al-
most monotonic, quasi-positive or δ-quasi-monotonic sequences. Namely
these sequences share many of the properties of decreasing sequences. See
e.g. the paper of R. P. Boas, Jr. [2].

Recently in [5] we also defined a new class of sequences sharing also
many good properties of decreasing sequences, and called it “sequences
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of rest bounded variation”, briefly denoted by RBVS. We say that a null-
sequence c := {cn} is of rest bounded variation, or c ∈ RBVS, if cn → 0
and for any m ∈ N

∞∑
n=m

|cn − cn+1| ≤ K(c)cm (1.1)

holds, where K(c) is a constant depending only on c. The definition (1.1)
clearly yields that if c ∈ RBVS, then it is also almost monotonic, that is,
for all n ≥ m

cn ≤ K(c)cm (1.2)

stays. If a sequence c suffices (1.2), we denote by c ∈ AMS. This notion
is due to S. N. Bernstein. If (1.2) is required only for m ≤ n ≤ 2m,
then we say that the sequence c is locally almost monotonic, and denote
by c ∈ LAMS. Unfortunately I do not know who investigated first these
sequences. The following embedding relations are obvious

MS ⊂ RBVS ⊂ AMS ⊂ LAMS, (1.3)

where MS denotes the monotone decreasing null-sequences. If we denote
by QMDS the quasi-monotone decreasing sequences, defined by

cn+1 ≤ cn

(
1 +

α

n

)
, α > 0, n ≥ n0(α),

or equivalently if
n−βcn ↓ 0 for some β;

then clearly only
MS ⊂ QMDS ⊂ LAMS (1.4)

maintains.
The embedding relations (1.3) and (1.4) foreshadow that

RBVS ⊂ QMDS. (1.5)

But this is not the case, (1.5) is not true, namely in [6] we showed that
the classes QMDS and RBVS are not comparable. Thus it is a natural task
to prove the analogues of the theorems having conditions of QMDS-type.

In this paper we shall prove such a result being the analogue of a
theorem due to S. YU. Tikhonov [9] concerning the Besov–Nikol’skǐı
class.
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To recall Tikhonov’s theorem we need some notions and notations.
Let Lp (1 < p < ∞) be the space of 2π-periodic, integrable functions

f(x) with the norm

‖f‖p :=
(∫ 2π

0
|f(x)|pdx

)1/p

,

and let

ωβ(f, t)p := sup
|h|≤t

∥∥∥∥∥
∞∑

ν=0

(−1)ν

(
β

ν

)
f(x + (β − ν)h)

∥∥∥∥∥
p

the modulus of smoothness of order β (β > 0) of f ∈ Lp.
A non-negative function α(t) satisfies σ-condition if

∫ 1
0 α(t)tσdt < ∞.

We shall use the following notations: L ¿ R is there exists a pos-
itive constant K such that L ≤ KR; and if L ¿ R and R ¿ L hold
simultaneously, then we write L ³ R.

A function f ∈ Lp (1 < p < ∞) belongs to the Besov–Nikol’skǐı class
BN(α, β, ψ, p, θ, k) if

(∫ δ

0
α(t)ωθ

k+β(f, t)pdt + δβθ

∫ 1

δ
α(t)t−βθωθ

k+β(f, t)pdt

) 1
θ

¿ ψ(δ)

holds, where β, k, θ > 0, α(t) satisfies σ-condition with σ = kθ, and ψ(δ)
is non-negative continuous function with the properties ψ(δ1) ¿ ψ(δ2),
0 ≤ δ1 ≤ δ2 ≤ 1; ψ(2δ) ¿ ψ(δ), 0 ≤ δ ≤ 1/2.

For the sake of simplicity, we shall recall the theorem of Tikhonov in
the case if f(x) is an even function; and later on we also consider only
even functions, namely the proof for even and odd functions is the same,
and the general case can be proved by using the identity

f(x) =
f(x) + f(−x)

2
+

f(x)− f(−x)
2

.

Tikhonov’s theorem reads as follows.

Theorem A. Let β, k and θ be positive numbers, let the function

α(t) satisfy σ-condition with σ = kθ, and denote λν :=
∫ 1/ν
1/ν+1 α(t)dt.
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If the Fourier coefficients an of f ∈ Lp (1 < p < ∞) belong to QMDS
and

n−1∑

ν=1

λν ³ nλn ³ nkθ

∫ 1/n

0
α(t)tkθdt (1.6)

maintains, then f ∈ BN(α, β, ψ, p, θ, k) if and only if

(
n−βθ

n∑

ν=1

aθ
νλνν

θ(β+1)− θ
p +

∞∑

ν=n+1

aθ
νλνν

θ
�
1− 1

p

�) 1
θ

¿ ψ

(
1
n

)
(1.7)

holds for all n ∈ N.

2. Result

We prove the following analogue of Theorem A.

Theorem. The assertions of Theorem A also hold with the assump-

tion {an} ∈ RBVS in place of {an} ∈ QMDS.

3. Lemmas

In order to verify our theorem we need three lemmas, two of them are
the analogues of the lemmas used by Tikhonov [9].

Lemma 1 ([3]). Let an ≥ 0, λn ≥ 0 and p ≥ 1. Let ν1 < · · · < νn <

. . . denote the indices for which λνn > 0. Let N denote the number of the

positive terms of the sequence {λn}, provided this number is finite; in the

contrary case set N = ∞. Set ν0 = 0, and if N < ∞ then νN+1 = ∞.

Using the notations

Am,n :=
n∑

i=m

ai and Λm,n :=
n∑

i=m

λi,

we have the following inequalities:

∞∑

n=1

λnAp
1,n ¿

N∑

n=1

λ1−p
νn

Λp
νn,∞Ap

νn−1+1,νn
, (3.1)
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∞∑

n=1

λnAp
n,∞ ¿

N∑

n=1

λ1−p
νn

Λp
1,νn

Ap
νn,νn+1−1. (3.2)

If 0 < p ≤ 1 then the converse inequalities hold.

Lemma 2 ([7]). If f ∈ Lp, 1 < p < ∞, and the Fourier coefficients

{an} of f belongs to RBVS, then

ωβ

(
f,

1
n

)

p

³ n−β

{
n∑

ν=1

ap
νν

p(β+1)−2

}1/p

+

{ ∞∑

ν=n+1

ap
νν

p−2

}1/p

. (3.3)

We note that this lemma in [7] as the generalization of a theorem
(there denoted by Theorem B) was proved but only for positive integers
β = k. However the same proof can be used with any positive β in place
of k, therefore we omit the details.

Lemma 3. Let β, k and θ be positive numbers, let the function α(t)
satisfy σ-condition with σ = kθ. If δ ∈ (

1
n+1 , 1

]
, n ∈ N, and f ∈ Lp (1 <

p < ∞) possesses Fourier coefficients {an} ∈ RBVS, then the inequalities

n−βθ

[
n∑

ν=1

ap
ν λ

p
θ
ν ν(β+1+ 1

θ )p−2

] θ
p

+

[ ∞∑

ν=n+1

ap
ν λ

p
θ
ν νp(1+ 1

θ )−2

] θ
p

¿
∫ δ

0
t−kθ−1

∫ t

0
α(u) ukθ du ωθ

k+β(f, t)dt

+ δβθ

∫ 1

δ
t−βθ−1

∫ 1

t
α(u)duωθ

k+β(f, t)pdt

¿ n−βθ
n∑

ν=1

aθ
ν λθ

ν ν
θ(β+1)− θ

p +
∞∑

ν=n+1

aθ
ν λθ

ν ν
θ− θ

p

hold for any θ ∈ (0, p], and their opposities hold if θ ∈ [p,∞).

In this form Lemma 3 is new, we do not prove it after all, namely
Tikhonov proved it in [9] for {an} ∈ QMDS. Carefully analyzing his
proof we see that the condition {an} ∈ QMDS is employed only by the in-
equality (3.3); which originally in [8] for monotonic coefficients was proved,
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and Tikhonov extended it to {an} ∈ QMDS; furthermore at some calcu-
lations is used merely the locally almost monotonic property of the quasi-
monotone decreasing sequences, however this property maintains if the
sequence in question belongs to RBVS. Thus since in [7] we verified the
inequality (3.3) for any {an} ∈ RBVS, to repeat Tikhonov’s proof seems
to be superfluous.

4. Proof of theorem

Our proof mainly follows the lines that of Theorem A using the mod-
ified lemmas; and at some places it is simplified.

Making use of the conditions (1.6) and 1
n+1 < δ ≤ 1

n it is easy to see
that

Iδ :=
∫ δ

0
α(t) ωθ

k+β(f, t)pdt + δβθ

∫ 1

δ
α(t)t−βθ ωθ

k+β(f, t)pdt

¿
∫ 1/n

0
t−kθ−1

∫ t

0
α(u) ukθduωθ

k+β(f, t)pdt

+ n−βθ

∫ 1

1/n
t−βθ−1

∫ 1

t
α(u)duωθ

k+β(f, t)pdt.

Hence, if θ ∈ (0, p], by Lemma 3 (with δ = 1
n) and utilizing again the

assumptions (1.6) we obtain that

Iδ ¿ n−βθ
n∑

ν=1

aθ
ν λν ν

βθ+θ− θ
p +

∞∑

ν=n+1

aθ
ν λν ν

θ− θ
p . (4.1)

If θ ∈ [p,∞) then on the basis of the properties of ωk+β(f, t) it is clear
that

Iδ ³
∞∑

ν=n+1

λν ωθ
k+β

(
f,

1
ν

)

p

+ n−βθ
n∑

ν=1

λν νβθ ωθ
k+β

(
f,

1
ν

)

p

=: I1 + I2.

To estimate I1 we use (3.3). Thus

I1 ³
∞∑

ν=n+1

λν ν−(k+β)θ

[
n∑

`=1

ap
` `(k+β+1)p−2

] θ
p
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+
∞∑

ν=n+1

λν ν−(k+β)θ

[
ν∑

`=n+1

ap
` `(k+β+1)p−2

] θ
p

+
∞∑

ν=n+1

λν

[ ∞∑

`=ν+1

ap
` `p−2

] θ
p

=: I11 + I12 + I13.

In order to estimate I1 from above we make some auxiliary estimations.
Using the assumptions given in (1.6) elementary consideration leads to

∞∑
ν=n

λν ν−kθ ¿ λn n1−kθ ¿ λn n−kθ
n∑

`=n/2

1

¿ n−kθ
n∑

`=n/2

λ` ¿
n∑

`=n/2

λ`

`kθ
.

(4.2)

To estimate the sum
n∑

`=1

ap
` `(k+β+1)p−2

we make blocks
∑n

`=1 =
∑n/4

`=1 +
∑n/2

`=n/4+1 +
∑n

`=n/2+1 and use the condi-
tion {an} ∈ LAMS. It is easy to see that the second block multiplied by a
constant is greater than the third one, consequently

n∑

`=1

ap
` `(k+β+1)p−2 ¿

n/2∑

`=1

ap
` `(k+β+1)p−2.

Utilizing this inequality and (4.2) we obtain that

I11 ¿ n−βθ

[
n/2∑

`=1

ap
` `(k+β+1)p−2

] θ
p n∑

`=n/2

λ`

`kθ

¿ n−βθ
n∑

`=1

λ`

`kθ

[∑̀

ν=1

ap
ν ν(k+β+1)p−2

] θ
p

.

Now, by (3.1), regarding θ ≥ p, (4.2) and (1.6), we get that

I11 ¿ n−βθ
n∑

`=1

(
λ`

`kθ

)1− θ
p

[ ∞∑

m=`

λm

mkθ

] θ
p

aθ
` `

(k+β+1)θ− 2θ
p
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¿ n−nθ
n∑

`=1

aθ
` λ` `

βθ+θ− θ
p .

A similar arguing yields that

I12 ¿
∞∑

ν=n+1

aθ
ν λν ν

θ− θ
p .

To estimate I13 we apply (3.2) and (1.6), thus

I13 ¿
∞∑

ν=n+1

λ
1− θ

p
ν

[
ν∑

m=1

λm

] θ
p

aθ
ν ν

θ− 2θ
p ¿

∞∑

ν=n+1

aθ
ν λν λ

θ− θ
p .

To estimate I2 we use again (3.3), whence

I2 ³ n−βθ
n∑

ν=1

λν ν−kθ

[
ν∑

m=1

ap
m m(k+β+1)p−2

] θ
p

+ n−βθ
n∑

ν=1

λν νβθ

[
n∑

m=ν+1

ap
m mp−2

] θ
p

+ n−βθ
n∑

ν=1

λν νβθ

[ ∞∑

m=n+1

ap
m mp−2

] θ
p

=: I21 + I22 + I23.

Fortunately we can use the same discussing as in estimating I11, thus we
have

I21 ¿ n−βθ
n∑

m=1

aθ
m λm m

βθ+θ− θ
p .

In the proof of the estimation I22 we employ (3.2), thus

I22 ¿ n−βθ
n∑

ν=1

(λν νβθ)1−
θ
p

[
ν∑

m=1

λm mβθ

] θ
p

aθ
ν ν

θ− 2θ
p

¿ n−βθ
n∑

ν=1

aθ
ν λν ν

βθ+θ− θ
p .
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Clearly

I23 ¿
n∑

ν=1

λν

[ ∞∑

m=n+1

ap
m mp−2

] θ
p

and hence by (1.6)

I23 ¿ n λn

[ ∞∑

m=n+1

ap
m mp−2

] θ
p

.

An elementary consideration yields that if

n∑

ν=1

λν ¿ n λn

then there exists a positive ε such that for any m ≥ n

n1−ελn ¿ m1−ελm (4.3)

holds. To be correct this is a special case of a more general result of Bari

and Stečkin [1], see also the Lemma in [4] . Let us fix such an ε > 0
having the property (4.3) and denote γ := ε

θ .
An application of the Hölder inequality gives

∞∑

m=n+1

ap
m mp−2 ¿

( ∞∑

m=n+1

{
ap

m mp−1+γp− p
θ

} θ
p

) p
θ

×
( ∞∑

m=n+1

{
m−γp+ p

θ
−1

} θ
θ−p

) θ−p
θ

.

Here the second factor is less than equal to K n−
ε p
θ . Consequently, by (4.3),

I23 ¿ n1−ελn

∞∑

m=n+1

aθ
m m

θ−1+ε− θ
p ¿

∞∑

m=n+1

aθ
m λm m

θ− θ
p .

Collecting our partial results we get that the estimation (4.1) is true
for θ ∈ [p,∞) as well.
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Herewith it is verified that the condition (1.7) suffices to
f ∈ BN(α, β, ψ, p, θ, k).

To prove that the condition (1.7) is also necessary; in the case θ ∈
[p,∞), it is enough to consider Lemma 3; and if θ ∈ (0, p] we use that
I1 + I2 À I11 + I12 + I21 and estimate these sums from below one by one.
It is clear that

I11 À
2n∑

ν=n+1

λν ν−(k+β)θ




n∑

m=n/2

ap
m m(k+β+1)p−2




θ
p

.

Since {an} ∈ LAMS

n∑

n=n/2

ap
m m(k+β+1)p−2 À ap

n n(k+β+1)p−1,

consequently,

I11 À
2n∑

ν=n+1

λν ν−(k+β)θaθ
n n

(k+β+1)θ− θ
p ,

again relying on {an} ∈ LAMS we have that

I11 À
2n∑

ν=n+1

aθ
ν λν ν

θ
�
1− 1

p

�
.

Similarly, regarding {an} ∈ LAMS,

I12 À
∞∑

ν=2n+1

λν ν−(k+β)θ

[
ν∑

m=n+1

ap
m m(k+β+1)p−2

] θ
p

À
∞∑

ν=2n+1

λν ν−(k+β)θ




ν∑

m=ν/2

ap
m m(k+β+1)p−2




θ
p

À
∞∑

ν=2n+1

aθ
ν λν ν

θ
�
1− 1

p

�
.
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Next we use the reverse of (3.1) and the second assertion of (1.6). Thus

I21 À n−βθ
n∑

ν=1

λν ν−kθ

[
ν∑

m=1

ap
m m(k+β+1)p−2

] θ
p

À n−βθ
n∑

ν=1

(λν ν−kθ)1−
θ
p (ap

ν ν(k+β+1)p−2)
θ
p

( ∞∑
n=ν

λn n−kθ

) θ
p

À n−βθ
n∑

ν=1

aθ
ν λν ν

(β+1)θ− θ
p .

Summing up we get that

I1 + I2 À n−βθ
n∑

ν=1

aθ
ν λν ν

(β+1)θ− θ
p +

∞∑

ν=n+1

aθ
ν λν ν

θ
�
1− 1

p

�
,

and this proves the necessity of (1.7) for 0 < θ ≤ p.
Herewith the proof is complete.
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