Publ. Math. Debrecen
64/3-4 (2004), 253-259

Some non-commutative products of distributions

By BRIAN FISHER (Leicester)

$$
\begin{aligned}
& \text { Abstract. Let } g \text { be a distribution and let } g_{n}=\left(g * \delta_{n}\right)(x) \text {, where } \delta_{n}(x) \text { is a } \\
& \text { certain sequence converging to the Dirac delta-function. The product } f \cdot g \text { of two } \\
& \text { distributions } f \text { and } g \text { is defined to be the limit of the sequence }\left\{f g_{n}\right\} \text {, provided } \\
& \text { its limit } h \text { exists in the sense that } \\
& \qquad \lim _{n \rightarrow \infty}\left\langle f(x) g_{n}(x), \varphi(x)\right\rangle=\langle h(x), \varphi(x)\rangle \\
& \text { for all functions } \varphi \text { in } \mathcal{D} \text {. It is proved that } \\
& \qquad\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x|, \\
& \qquad\left(|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x| \\
& \text { for }-2<\lambda+\mu \leq-1 \text { and } p, q=0,1,2, \ldots
\end{aligned}
$$

In the following, we let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}^{\prime} be the space of distributions defined on \mathcal{D}. Now let $\rho(x)$ be a function in \mathcal{D} having the following properties:
(i) $\rho(x)=0$ for $|x| \geq 1$,
(ii) $\rho(x) \geq 0$,
(iii) $\rho(x)=\rho(-x)$,
(iv) $\int_{-1}^{1} \rho(x) d x=1$.

Key words and phrases: distribution, delta-function, product of distributions.

Putting $\delta_{n}(x)=n \rho(n x)$ for $n=1,2, \ldots$, it follows that $\left\{\delta_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac deltafunction $\delta(x)$.

If now f is an arbitrary distribution in \mathcal{D}^{\prime}, we define

$$
f_{n}(x)=\left(f * \delta_{n}\right)(x)=\left\langle f(t), \delta_{n}(x-t)\right\rangle
$$

for $n=1,2, \ldots$ It follows that $\left\{f_{n}(x)\right\}$ is a regular sequence of infinitely differentiable functions converging to the distribution $f(x)$.

A first extension of the product of a distribution and an infinitely differentiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in \mathcal{D}^{\prime} for which on the interval $(a, b), f$ is the k-th derivative of a locally summable function F in $L^{p}(a, b)$ and $g^{(k)}$ is a locally summable function in $L^{q}(a, b)$ with $1 / p+$ $1 / q=1$. Then the product $f g=g f$ of f and g is defined on the interval (a, b) by

$$
f g=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i}\left[F g^{(i)}\right]^{(k-i)}
$$

It follows easily that the products $\left(|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)$ and exist by Definition 1 and

$$
\begin{align*}
& \left(|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)=|x|^{\lambda+\mu} \ln ^{p+q}|x|, \tag{1}\\
& \left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x|, \tag{2}\\
& \left(|x|^{\lambda} \ln ^{p}|x|\right)\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x|, \tag{3}\\
& \left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)=|x|^{\lambda+\mu} \ln ^{p+q}|x| \tag{4}
\end{align*}
$$

for $\lambda+\mu>-1$ and $p, q=0,1,2, \ldots$
The following definition for the non-commutative product of two distributions was given in [3] and generalizes Definition 1.

Definition 2. Let f and g be distributions in \mathcal{D}^{\prime} and let $g_{n}(x)=$ $\left(g * \delta_{n}\right)(x)$. We say that the product $f . g$ of f and g exists and is equal to the distribution h on the interval (a, b) if

$$
\lim _{n \rightarrow \infty}\left\langle f(x) g_{n}(x), \varphi(x)\right\rangle=\langle h(x), \varphi(x)\rangle
$$

for all functions φ in \mathcal{D} with support contained in the interval (a, b).
It was proved that if the product $f g$ exists by Definition 1, then it exists by Definition 2 and $f g=f . g$.

The following theorem is easily proved.
Theorem 1. Let f and g be distributions in \mathcal{D}^{\prime} and suppose that the products $f . g$ and $f . g^{\prime}$ (or $f^{\prime} . g$) exists. Then the product $f^{\prime} . g$ (or $f . g^{\prime}$) exists and

$$
\begin{equation*}
(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime} \tag{5}
\end{equation*}
$$

The next theorem was proved in [4].
Theorem 2. The product $\left(x^{r} \ln ^{p}|x|\right) \cdot\left(x^{-r-1} \ln ^{q}|x|\right)$ exists and

$$
\begin{equation*}
\left(x^{r} \ln ^{p}|x|\right) \cdot\left(x^{-r-1} \ln ^{q}|x|\right)=x^{-1} \ln ^{p+q}|x| \tag{6}
\end{equation*}
$$

for $r=0, \pm 1, \pm 2, \ldots$ and $p, q=0,1,2, \ldots$
We now prove the following theorem which generalizes equations (2), (3) and (6).

Theorem 3. The products $\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right)$ and $\left(|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)$ exist and

$$
\begin{aligned}
& \left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right) .\left(|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x|, \\
& \left(|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x| \\
& \text { for }-2<\lambda+\mu \leq-1 \text { and } p, q=0,1,2, \ldots
\end{aligned}
$$

Proof. We first of all prove equation (7) when $\lambda>-1$. Putting

$$
\left(|x|^{\mu} \ln ^{q}|x|\right)_{n}=\left(|x|^{\mu} \ln ^{q}|x|\right) * \delta_{n}(x),
$$

we have

$$
\begin{equation*}
\int_{-a}^{a}\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)_{n} d x=0 \tag{9}
\end{equation*}
$$

since the integrand is odd.
Further, if ψ is an arbitrary continuous function, we have

$$
\int_{-a}^{a}\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)_{n} x \psi(x) d x
$$

$$
=\int_{-a}^{a}|x|^{\lambda+1} \ln ^{p}|x|\left(|x|^{\mu} \ln ^{q}|x|\right)_{n} \psi(x) d x
$$

and it follows that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \int_{-a}^{a}\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)_{n} x \psi(x) d x \\
& \quad=\int_{-a}^{a}|x|^{\lambda+\mu+1} \ln ^{p+q}|x| \psi(x) d x \tag{10}\\
& \quad=\int_{-a}^{a} \operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x| x \psi(x) d x,
\end{align*}
$$

since on using equation (1), the sequence $\left\{|x|^{\lambda+1} \ln ^{p}|x|\left(|x|^{\mu} \ln ^{q}|x|\right)_{n}\right\}$ converges in the distributional sense to the locally summable function $|x|^{\lambda+\mu+1} \ln ^{p+q}|x|$.

Now let φ be an arbitrary function in \mathcal{D} and choose a so that $\operatorname{supp} \varphi \subset$ $[-a, a]$. By the mean value theorem, we have

$$
\varphi(x)=\varphi(0)+x \varphi^{\prime}(\xi x),
$$

where $0<\xi<1$. Then

$$
\begin{aligned}
&\left\langle\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)_{n}, \varphi(x)\right\rangle \\
&= \int_{-\infty}^{\infty} \operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\left(|x|^{\mu} \ln ^{q}|x|\right)_{n} \varphi(x) d x \\
&= \varphi(0) \int_{-a}^{a} \operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\left(|x|^{\mu} \ln ^{q}|x|\right)_{n} d x \\
& \quad+\int_{-a}^{a} \operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\left(|x|^{\mu} \ln ^{q}|x|\right)_{n} x \varphi^{\prime}(\xi x) d x .
\end{aligned}
$$

Using equations (9) and (10), it follows that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\langle\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\right. & \left.\left(|x|^{\mu} \ln ^{q}|x|\right)_{n}, \varphi(x)\right\rangle \\
& =\int_{-a}^{a} \operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x| x \varphi^{\prime}(x) d x \\
& =\int_{-\infty}^{\infty} \operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x|[\varphi(x)-\varphi(0)] d x \\
& \left.=\left.\langle\operatorname{sgn} x| x\right|^{\lambda+\mu} \ln ^{p+q}|x|, \varphi(x)\right\rangle
\end{aligned}
$$

for arbitrary φ in \mathcal{D}, proving equation (7) for $\lambda>-1,-2<\lambda+\mu \leq-1$ and $p, q=0,1,2, \ldots$

Equation (8) follows similarly for $\lambda>-1,-2<\lambda+\mu \leq-1$ and $p, q=0,1,2, \ldots$

When $-2<\lambda, \lambda+\mu \leq-1$, we have from equation (1)

$$
\begin{equation*}
|x|^{\lambda+1}\left(|x|^{\mu} \ln ^{q}|x|\right)=|x|^{\lambda+\mu+1} \ln ^{q}|x| \tag{11}
\end{equation*}
$$

for $q=0,1,2 \ldots$ Differentiating equation (11) we get

$$
\begin{align*}
(\lambda+ & 1)\left(\operatorname{sgn} x|x|^{\lambda}\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right) \\
& +\mu|x|^{\lambda+1} \cdot\left(\operatorname{sgn} x|x|^{\mu-1} \ln ^{q}|x|\right)+q|x|^{\lambda+1} \cdot\left(\operatorname{sgn} x|x|^{\mu-1} \ln ^{q-1}|x|\right) \tag{12}\\
= & (\lambda+\mu+1) \operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{q}|x|+q \operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{q-1}|x|
\end{align*}
$$

Using Theorem 1 and equation (7), which has been proved for $\lambda>-1$, it follows that

$$
\begin{equation*}
\left(\operatorname{sgn} x|x|^{\lambda}\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{q}|x| \tag{13}
\end{equation*}
$$

Equation (7) therefore holds for $-2<\lambda, \lambda+\mu \leq-1, p=0$ and $q=0,1,2, \ldots$

It follows similarly that

$$
\begin{equation*}
|x|^{\lambda} \cdot\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{q}|x| \tag{14}
\end{equation*}
$$

Equation (8) therefore holds for $-2<\lambda, \lambda+\mu \leq-1, p=0$ and $q=0,1,2, \ldots$

Now suppose that equations (7) and (8) hold for some k with $-k<\lambda$, $-2<\lambda+\mu \leq-1$ and $p, q=0,1,2, \ldots$ This is certainly true when $k=1$. Also suppose that equations (7) and (8) hold for some p with $-k-1 \leq \lambda$, $-2<\lambda+\mu \leq-1$ and $q=0,1,2, \ldots$ This is also true when $k=1$ and $p=0$. Then with $-k-1<\lambda$ and $-2 \leq \lambda+\mu<-1$, it follows from equation (1) that

$$
\begin{equation*}
\left(|x|^{\lambda+1} \ln ^{p+1}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)=|x|^{\lambda+\mu+1} \ln ^{p+q+1}|x| \tag{15}
\end{equation*}
$$

Differentiating equation (15), we get

$$
\begin{aligned}
(\lambda+ & 1)\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p+1}|x|\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right) \\
& +(p+1)\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right) \\
& +\mu\left(|x|^{\lambda+1} \ln ^{p+1}|x|\right) \cdot\left(\operatorname{sgn} x|x|^{\mu-1} \ln ^{q}|x|\right) \\
& +q\left(|x|^{\lambda+1} \ln ^{p+1}|x|\right) \cdot\left(\operatorname{sgn} x|x|^{\mu-1} \ln ^{q-1}|x|\right) \\
= & (\lambda+\mu+1) \operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q+1}|x|+(p+q+1) \operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x| .
\end{aligned}
$$

Using our assumptions and Theorem 1, it follows that

$$
\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p+1}|x|\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x|
$$

giving equation (7) for $p+1$ and $-k-1<\lambda$.
Similarly, differentiation of the equation

$$
\left(\operatorname{sgn} x|x|^{\lambda+1} \ln ^{p+1}|x|\right)\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)=|x|^{\lambda+\mu+1} \ln ^{p+q+1}|x|
$$

using our assumptions and Theorem 1, it follows that

$$
\left(|x|^{\lambda} \ln ^{p+1}|x|\right) \cdot\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)=\operatorname{sgn} x|x|^{\lambda+\mu} \ln ^{p+q}|x|
$$

giving equation (8) for $p+1$ and $-k-1<\lambda$.
Equations (7) and (8) now follow by induction for all λ, μ, with $-2<$ $\lambda+\mu \leq 1$ and $p, q=0,1,2, \ldots$, completing the proof of the theorem.

We finally consider what happens if $\lambda+\mu \leq 2$. With $\lambda>-1$, the sequence $\left\{\left(|x|^{\mu} \ln ^{q}|x|\right)_{n}\right\}$ will converge to the distribution $|x|^{\mu} \ln ^{q}|x|$ and the integral

$$
\int_{-n}^{n} \operatorname{sgn} x|x|^{\lambda+\mu} \ln |x|^{p+q} x \psi(x) d x
$$

in equation (10) will in general be divergent. This means that

$$
\lim _{n \rightarrow \infty}\left\langle\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right)\left(|x|^{\mu} \ln ^{q}|x|\right)_{n}, \varphi(x)\right\rangle
$$

cannot exist for all functions φ. The product $\left(\operatorname{sgn} x|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(|x|^{\mu} \ln ^{q}|x|\right)$ will therefore not exist in this case.

Similarly, the product $\left(|x|^{\lambda} \ln ^{p}|x|\right) \cdot\left(\operatorname{sgn} x|x|^{\mu} \ln ^{q}|x|\right)$ will not exist if $\lambda+\mu<-2$.

Acknowledgement. The author would like to thank the referee for his suggestion in the improvement of this paper.

References

[1] J. G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398.
[2] B. Fisher, The product of distributions, Quart. J. Math. Oxford (2), 22 (1971), 291-298.
[3] B. Fisher, On defining the product of distributions, Math. Nachr. 99 (1980), 230-240.
[4] B. Fisher and S. Yakubovich, Results on the non-commutative neutrix product of distributions, Radovi Mat. 11(1) (2001), 85-93.
[5] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.

BRIAN FISHER
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LEICESTER
LEICESTER, LE1 7RH
ENGLAND
E-mail: fbr@le.ac.uk
(Received March 14, 2002; revised July 30, 2003)

