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Some non-commutative products of distributions

By BRIAN FISHER (Leicester)

Abstract. Let g be a distribution and let gn = (g ∗ δn)(x), where δn(x) is a
certain sequence converging to the Dirac delta-function. The product f.g of two
distributions f and g is defined to be the limit of the sequence {fgn}, provided
its limit h exists in the sense that

lim
n→∞

〈f(x)gn(x), ϕ(x)〉 = 〈h(x), ϕ(x)〉

for all functions ϕ in D. It is proved that

(sgnx|x|λ lnp |x|).(|x|µ lnq |x|) = sgn x|x|λ+µ lnp+q |x|,

(|x|λ lnp |x|).(sgn x|x|µ lnq |x|) = sgn x|x|λ+µ lnp+q |x|

for −2 < λ + µ ≤ −1 and p, q = 0, 1, 2, . . .

In the following, we let D be the space of infinitely differentiable func-
tions with compact support and let D′ be the space of distributions defined
on D. Now let ρ(x) be a function in D having the following properties:

(i) ρ(x) = 0 for |x| ≥ 1,

(ii) ρ(x) ≥ 0,

(iii) ρ(x) = ρ(−x),

(iv)
∫ 1
−1 ρ(x) dx = 1.
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Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-
function δ(x).

If now f is an arbitrary distribution in D′, we define

fn(x) = (f ∗ δn)(x) = 〈f(t), δn(x− t)〉
for n = 1, 2, . . . It follows that {fn(x)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(x).

A first extension of the product of a distribution and an infinitely
differentiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in D′ for which on the
interval (a, b), f is the k-th derivative of a locally summable function F

in Lp(a, b) and g(k) is a locally summable function in Lq(a, b) with 1/p+
1/q = 1. Then the product fg = gf of f and g is defined on the interval
(a, b) by

fg =
k∑

i=0

(
k

i

)
(−1)i[Fg(i)](k−i).

It follows easily that the products (|x|λ lnp |x|)(|x|µ lnq |x|) and exist
by Definition 1 and

(|x|λ lnp |x|)(|x|µ lnq |x|) = |x|λ+µ lnp+q |x|, (1)

(sgn x|x|λ lnp |x|)(|x|µ lnq |x|) = sgnx|x|λ+µ lnp+q |x|, (2)

(|x|λ lnp |x|)(sgnx|x|µ lnq |x|) = sgnx|x|λ+µ lnp+q |x|, (3)

(sgn x|x|λ lnp |x|)(sgnx|x|µ lnq |x|) = |x|λ+µ lnp+q |x| (4)

for λ + µ > −1 and p, q = 0, 1, 2, . . .

The following definition for the non-commutative product of two dis-
tributions was given in [3] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D′ and let gn(x) =
(g ∗ δn)(x). We say that the product f.g of f and g exists and is equal to
the distribution h on the interval (a, b) if

lim
n→∞〈f(x)gn(x), ϕ(x)〉 = 〈h(x), ϕ(x)〉
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for all functions ϕ in D with support contained in the interval (a, b).

It was proved that if the product fg exists by Definition 1, then it
exists by Definition 2 and fg = f.g.

The following theorem is easily proved.

Theorem 1. Let f and g be distributions in D′ and suppose that

the products f.g and f.g′ (or f ′.g) exists. Then the product f ′.g (or f.g′)
exists and

(f.g)′ = f ′.g + f.g′. (5)

The next theorem was proved in [4].

Theorem 2. The product (xr lnp |x|).(x−r−1 lnq |x|) exists and

(xr lnp |x|).(x−r−1 lnq |x|) = x−1 lnp+q |x| (6)

for r = 0,±1,±2, . . . and p, q = 0, 1, 2, . . .

We now prove the following theorem which generalizes equations (2),
(3) and (6).

Theorem 3. The products (sgnx|x|λ lnp |x|).(|x|µ lnq |x|) and

(|x|λ lnp |x|).(sgnx|x|µ lnq |x|) exist and

(sgnx|x|λ lnp |x|).(|x|µ lnq |x|) = sgn x|x|λ+µ lnp+q |x|, (7)

(|x|λ lnp |x|).(sgn x|x|µ lnq |x|) = sgn x|x|λ+µ lnp+q |x| (8)

for −2 < λ + µ ≤ −1 and p, q = 0, 1, 2, . . .

Proof. We first of all prove equation (7) when λ > −1. Putting

(|x|µ lnq |x|)n = (|x|µ lnq |x|) ∗ δn(x),

we have ∫ a

−a
(sgn x|x|λ lnp |x|)(|x|µ lnq |x|)n dx = 0, (9)

since the integrand is odd.
Further, if ψ is an arbitrary continuous function, we have

∫ a

−a
(sgn x|x|λ lnp |x|)(|x|µ lnq |x|)nxψ(x) dx
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=
∫ a

−a
|x|λ+1 lnp |x|(|x|µ lnq |x|)nψ(x) dx

and it follows that

lim
n→∞

∫ a

−a
(sgnx|x|λ lnp |x|)(|x|µ lnq |x|)nxψ(x) dx

=
∫ a

−a
|x|λ+µ+1 lnp+q |x|ψ(x) dx

=
∫ a

−a
sgnx|x|λ+µ lnp+q |x|xψ(x) dx,

(10)

since on using equation (1), the sequence {|x|λ+1 lnp |x|(|x|µ lnq |x|)n} con-
verges in the distributional sense to the locally summable function
|x|λ+µ+1 lnp+q |x|.

Now let ϕ be an arbitrary function in D and choose a so that suppϕ ⊂
[−a, a]. By the mean value theorem, we have

ϕ(x) = ϕ(0) + xϕ′(ξx),

where 0 < ξ < 1. Then

〈(sgnx|x|λ lnp |x|)(|x|µ lnq |x|)n, ϕ(x)〉

=
∫ ∞

−∞
sgn x|x|λ lnp |x|(|x|µ lnq |x|)nϕ(x) dx

= ϕ(0)
∫ a

−a
sgnx|x|λ lnp |x|(|x|µ lnq |x|)n dx

+
∫ a

−a
sgnx|x|λ lnp |x|(|x|µ lnq |x|)nxϕ′(ξx) dx.

Using equations (9) and (10), it follows that

lim
n→∞〈(sgnx|x|λ lnp |x|)(|x|µ lnq |x|)n, ϕ(x)〉

=
∫ a

−a
sgn x|x|λ+µ lnp+q |x|xϕ′(x) dx

=
∫ ∞

−∞
sgnx|x|λ+µ lnp+q |x|[ϕ(x)− ϕ(0)] dx

= 〈sgnx|x|λ+µ lnp+q |x|, ϕ(x)〉
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for arbitrary ϕ in D, proving equation (7) for λ > −1, −2 < λ + µ ≤ −1
and p, q = 0, 1, 2, . . .

Equation (8) follows similarly for λ > −1, −2 < λ + µ ≤ −1 and
p, q = 0, 1, 2, . . .

When −2 < λ, λ + µ ≤ −1, we have from equation (1)

|x|λ+1(|x|µ lnq |x|) = |x|λ+µ+1 lnq |x| (11)

for q = 0, 1, 2 . . . Differentiating equation (11) we get

(λ + 1)(sgnx|x|λ).(|x|µ lnq |x|)
+ µ|x|λ+1.(sgnx|x|µ−1 lnq |x|) + q|x|λ+1.(sgnx|x|µ−1 lnq−1 |x|)

= (λ + µ + 1) sgnx|x|λ+µ lnq |x|+ q sgnx|x|λ+µ lnq−1 |x|.
(12)

Using Theorem 1 and equation (7), which has been proved for λ > −1, it
follows that

(sgnx|x|λ).(|x|µ lnq |x|) = sgnx|x|λ+µ lnq |x|. (13)

Equation (7) therefore holds for −2 < λ, λ + µ ≤ −1, p = 0 and
q = 0, 1, 2, . . .

It follows similarly that

|x|λ.(sgnx|x|µ lnq |x|) = sgnx|x|λ+µ lnq |x|. (14)

Equation (8) therefore holds for −2 < λ, λ + µ ≤ −1, p = 0 and
q = 0, 1, 2, . . .

Now suppose that equations (7) and (8) hold for some k with −k < λ,
−2 < λ + µ ≤ −1 and p, q = 0, 1, 2, . . . This is certainly true when k = 1.
Also suppose that equations (7) and (8) hold for some p with −k− 1 ≤ λ,
−2 < λ + µ ≤ −1 and q = 0, 1, 2, . . . This is also true when k = 1 and
p = 0. Then with −k − 1 < λ and −2 ≤ λ + µ < −1, it follows from
equation (1) that

(|x|λ+1 lnp+1 |x|)(|x|µ lnq |x|) = |x|λ+µ+1 lnp+q+1 |x|. (15)
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Differentiating equation (15), we get

(λ + 1)(sgnx|x|λ lnp+1 |x|).(|x|µ lnq |x|)
+ (p + 1)(sgnx|x|λ lnp |x|).(|x|µ lnq |x|)
+ µ(|x|λ+1 lnp+1 |x|).(sgnx|x|µ−1 lnq |x|)
+ q(|x|λ+1 lnp+1 |x|).(sgnx|x|µ−1 lnq−1 |x|)

= (λ + µ + 1) sgnx|x|λ+µ lnp+q+1 |x|+ (p + q + 1) sgnx|x|λ+µ lnp+q |x|.

Using our assumptions and Theorem 1, it follows that

(sgn x|x|λ lnp+1 |x|).(|x|µ lnq |x|) = sgnx|x|λ+µ lnp+q |x|

giving equation (7) for p + 1 and −k − 1 < λ.
Similarly, differentiation of the equation

(sgnx|x|λ+1 lnp+1 |x|)(sgnx|x|µ lnq |x|) = |x|λ+µ+1 lnp+q+1 |x|,

using our assumptions and Theorem 1, it follows that

(|x|λ lnp+1 |x|).(sgnx|x|µ lnq |x|) = sgnx|x|λ+µ lnp+q |x|

giving equation (8) for p + 1 and −k − 1 < λ.
Equations (7) and (8) now follow by induction for all λ, µ, with −2 <

λ + µ ≤ 1 and p, q = 0, 1, 2, . . . , completing the proof of the theorem. ¤

We finally consider what happens if λ + µ ≤ 2. With λ > −1, the
sequence {(|x|µ lnq |x|)n} will converge to the distribution |x|µ lnq |x| and
the integral ∫ n

−n
sgnx|x|λ+µ ln |x|p+qxψ(x) dx

in equation (10) will in general be divergent. This means that

lim
n→∞〈(sgnx|x|λ lnp |x|)(|x|µ lnq |x|)n, ϕ(x)〉

cannot exist for all functions ϕ. The product (sgnx|x|λ lnp |x|).(|x|µ lnq |x|)
will therefore not exist in this case.

Similarly, the product (|x|λ lnp |x|).(sgnx|x|µ lnq |x|) will not exist if
λ + µ < −2.



Some non-commutative products of distributions 259

Acknowledgement. The author would like to thank the referee for
his suggestion in the improvement of this paper.

References

[1] J. G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math. 7
(1959–60), 291–398.

[2] B. Fisher, The product of distributions, Quart. J. Math. Oxford (2), 22 (1971),
291–298.

[3] B. Fisher, On defining the product of distributions, Math. Nachr. 99 (1980),
230–240.

[4] B. Fisher and S. Yakubovich, Results on the non-commutative neutrix product
of distributions, Radovi Mat. 11(1) (2001), 85–93.

[5] I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press,
1964.

BRIAN FISHER

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF LEICESTER

LEICESTER, LE1 7RH

ENGLAND

E-mail: fbr@le.ac.uk

(Received March 14, 2002; revised July 30, 2003)


