Publ. Math. Debrecen 64/3-4 (2004), 253–259

Some non-commutative products of distributions

By BRIAN FISHER (Leicester)

Abstract. Let g be a distribution and let $g_n = (g * \delta_n)(x)$, where $\delta_n(x)$ is a certain sequence converging to the Dirac delta-function. The product f.g of two distributions f and g is defined to be the limit of the sequence $\{fg_n\}$, provided its limit h exists in the sense that

$$\lim_{n \to \infty} \langle f(x)g_n(x), \varphi(x) \rangle = \langle h(x), \varphi(x) \rangle$$

for all functions φ in \mathcal{D} . It is proved that

$$(\operatorname{sgn} x|x|^{\lambda} \ln^{p} |x|) \cdot (|x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x|x|^{\lambda+\mu} \ln^{p+q} |x|,$$
$$(|x|^{\lambda} \ln^{p} |x|) \cdot (\operatorname{sgn} x|x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x|x|^{\lambda+\mu} \ln^{p+q} |x|$$

for $-2 < \lambda + \mu \le -1$ and p, q = 0, 1, 2, ...

In the following, we let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}' be the space of distributions defined on \mathcal{D} . Now let $\rho(x)$ be a function in \mathcal{D} having the following properties:

- (i) $\rho(x) = 0$ for $|x| \ge 1$,
- (ii) $\rho(x) \ge 0$,
- (iii) $\rho(x) = \rho(-x),$
- (iv) $\int_{-1}^{1} \rho(x) \, dx = 1.$

Mathematics Subject Classification: 46F10.

Key words and phrases: distribution, delta-function, product of distributions.

Brian Fisher

Putting $\delta_n(x) = n\rho(nx)$ for n = 1, 2, ..., it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

If now f is an arbitrary distribution in \mathcal{D}' , we define

$$f_n(x) = (f * \delta_n)(x) = \langle f(t), \delta_n(x-t) \rangle$$

for n = 1, 2, ... It follows that $\{f_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution f(x).

A first extension of the product of a distribution and an infinitely differentiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in \mathcal{D}' for which on the interval (a, b), f is the k-th derivative of a locally summable function F in $L^p(a, b)$ and $g^{(k)}$ is a locally summable function in $L^q(a, b)$ with 1/p+1/q=1. Then the product fg = gf of f and g is defined on the interval (a, b) by

$$fg = \sum_{i=0}^{k} \binom{k}{i} (-1)^{i} [Fg^{(i)}]^{(k-i)}$$

It follows easily that the products $(|x|^{\lambda} \ln^p |x|)(|x|^{\mu} \ln^q |x|)$ and exist by Definition 1 and

$$(|x|^{\lambda} \ln^{p} |x|)(|x|^{\mu} \ln^{q} |x|) = |x|^{\lambda+\mu} \ln^{p+q} |x|,$$
(1)

 $(\operatorname{sgn} x|x|^{\lambda} \ln^{p} |x|)(|x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x|x|^{\lambda+\mu} \ln^{p+q} |x|,$ (2)

$$(|x|^{\lambda} \ln^{p} |x|)(\operatorname{sgn} x |x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x |x|^{\lambda+\mu} \ln^{p+q} |x|,$$
(3)

$$(\operatorname{sgn} x|x|^{\lambda} \ln^{p} |x|)(\operatorname{sgn} x|x|^{\mu} \ln^{q} |x|) = |x|^{\lambda+\mu} \ln^{p+q} |x|$$
(4)

for $\lambda + \mu > -1$ and p, q = 0, 1, 2, ...

The following definition for the non-commutative product of two distributions was given in [3] and generalizes Definition 1.

Definition 2. Let f and g be distributions in \mathcal{D}' and let $g_n(x) = (g * \delta_n)(x)$. We say that the product $f \cdot g$ of f and g exists and is equal to the distribution h on the interval (a, b) if

$$\lim_{n \to \infty} \langle f(x) g_n(x), \varphi(x) \rangle = \langle h(x), \varphi(x) \rangle$$

254

for all functions φ in \mathcal{D} with support contained in the interval (a, b).

It was proved that if the product fg exists by Definition 1, then it exists by Definition 2 and fg = f.g.

The following theorem is easily proved.

Theorem 1. Let f and g be distributions in \mathcal{D}' and suppose that the products f.g and f.g' (or f'.g) exists. Then the product f'.g (or f.g') exists and

$$(f.g)' = f'.g + f.g'.$$
 (5)

The next theorem was proved in [4].

Theorem 2. The product $(x^r \ln^p |x|) \cdot (x^{-r-1} \ln^q |x|)$ exists and

$$(x^{r}\ln^{p}|x|).(x^{-r-1}\ln^{q}|x|) = x^{-1}\ln^{p+q}|x|$$
(6)

for $r = 0, \pm 1, \pm 2, \dots$ and $p, q = 0, 1, 2, \dots$

We now prove the following theorem which generalizes equations (2), (3) and (6).

Theorem 3. The products $(\operatorname{sgn} x | x|^{\lambda} \ln^{p} |x|).(|x|^{\mu} \ln^{q} |x|)$ and $(|x|^{\lambda} \ln^{p} |x|).(\operatorname{sgn} x | x|^{\mu} \ln^{q} |x|)$ exist and

$$(\operatorname{sgn} x|x|^{\lambda} \ln^{p} |x|).(|x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x|x|^{\lambda+\mu} \ln^{p+q} |x|,$$
(7)

$$(|x|^{\lambda} \ln^{p} |x|).(\operatorname{sgn} x |x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x |x|^{\lambda+\mu} \ln^{p+q} |x|$$
(8)

for $-2 < \lambda + \mu \leq -1$ and $p, q = 0, 1, 2, \dots$

PROOF. We first of all prove equation (7) when $\lambda > -1$. Putting

$$(|x|^{\mu} \ln^{q} |x|)_{n} = (|x|^{\mu} \ln^{q} |x|) * \delta_{n}(x),$$

we have

$$\int_{-a}^{a} (\operatorname{sgn} x |x|^{\lambda} \ln^{p} |x|) (|x|^{\mu} \ln^{q} |x|)_{n} \, dx = 0, \tag{9}$$

since the integrand is odd.

Further, if ψ is an arbitrary continuous function, we have

$$\int_{-a}^{a} (\operatorname{sgn} x |x|^{\lambda} \ln^{p} |x|) (|x|^{\mu} \ln^{q} |x|)_{n} x \psi(x) \, dx$$

Brian Fisher

$$= \int_{-a}^{a} |x|^{\lambda+1} \ln^{p} |x| (|x|^{\mu} \ln^{q} |x|)_{n} \psi(x) \, dx$$

and it follows that

$$\lim_{n \to \infty} \int_{-a}^{a} (\operatorname{sgn} x |x|^{\lambda} \ln^{p} |x|) (|x|^{\mu} \ln^{q} |x|)_{n} x \psi(x) \, dx$$
$$= \int_{-a}^{a} |x|^{\lambda + \mu + 1} \ln^{p+q} |x| \psi(x) \, dx \qquad (10)$$
$$= \int_{-a}^{a} \operatorname{sgn} x |x|^{\lambda + \mu} \ln^{p+q} |x| x \psi(x) \, dx,$$

since on using equation (1), the sequence $\{|x|^{\lambda+1} \ln^p |x| (|x|^{\mu} \ln^q |x|)_n\}$ converges in the distributional sense to the locally summable function $|x|^{\lambda+\mu+1} \ln^{p+q} |x|$.

Now let φ be an arbitrary function in \mathcal{D} and choose a so that supp $\varphi \subset [-a, a]$. By the mean value theorem, we have

$$\varphi(x) = \varphi(0) + x\varphi'(\xi x),$$

where $0 < \xi < 1$. Then

$$\begin{aligned} \langle (\operatorname{sgn} x | x|^{\lambda} \operatorname{ln}^{p} | x |) (|x|^{\mu} \operatorname{ln}^{q} | x |)_{n}, \varphi(x) \rangle \\ &= \int_{-\infty}^{\infty} \operatorname{sgn} x | x|^{\lambda} \operatorname{ln}^{p} | x | (|x|^{\mu} \operatorname{ln}^{q} | x |)_{n} \varphi(x) \, dx \\ &= \varphi(0) \int_{-a}^{a} \operatorname{sgn} x | x|^{\lambda} \operatorname{ln}^{p} | x | (|x|^{\mu} \operatorname{ln}^{q} | x |)_{n} \, dx \\ &+ \int_{-a}^{a} \operatorname{sgn} x | x|^{\lambda} \operatorname{ln}^{p} | x | (|x|^{\mu} \operatorname{ln}^{q} | x |)_{n} x \varphi'(\xi x) \, dx \end{aligned}$$

Using equations (9) and (10), it follows that

$$\begin{split} \lim_{n \to \infty} \langle (\operatorname{sgn} x | x|^{\lambda} \ln^{p} | x |) (|x|^{\mu} \ln^{q} | x |)_{n}, \varphi(x) \rangle \\ &= \int_{-a}^{a} \operatorname{sgn} x | x|^{\lambda+\mu} \ln^{p+q} | x | x \varphi'(x) \, dx \\ &= \int_{-\infty}^{\infty} \operatorname{sgn} x | x|^{\lambda+\mu} \ln^{p+q} | x | [\varphi(x) - \varphi(0)] \, dx \\ &= \langle \operatorname{sgn} x | x|^{\lambda+\mu} \ln^{p+q} | x |, \varphi(x) \rangle \end{split}$$

256

for arbitrary φ in \mathcal{D} , proving equation (7) for $\lambda > -1, -2 < \lambda + \mu \leq -1$ and p, q = 0, 1, 2, ...

Equation (8) follows similarly for $\lambda > -1, -2 < \lambda + \mu \leq -1$ and $p, q = 0, 1, 2, \ldots$

When $-2 < \lambda, \lambda + \mu \leq -1$, we have from equation (1)

$$|x|^{\lambda+1}(|x|^{\mu}\ln^{q}|x|) = |x|^{\lambda+\mu+1}\ln^{q}|x|$$
(11)

for q = 0, 1, 2... Differentiating equation (11) we get

$$\begin{aligned} &(\lambda+1)(\operatorname{sgn} x|x|^{\lambda}).(|x|^{\mu} \ln^{q} |x|) \\ &+ \mu|x|^{\lambda+1}.(\operatorname{sgn} x|x|^{\mu-1} \ln^{q} |x|) + q|x|^{\lambda+1}.(\operatorname{sgn} x|x|^{\mu-1} \ln^{q-1} |x|) \\ &= (\lambda+\mu+1)\operatorname{sgn} x|x|^{\lambda+\mu} \ln^{q} |x| + q\operatorname{sgn} x|x|^{\lambda+\mu} \ln^{q-1} |x|. \end{aligned}$$
(12)

Using Theorem 1 and equation (7), which has been proved for $\lambda > -1$, it follows that

$$(\operatorname{sgn} x|x|^{\lambda}).(|x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x|x|^{\lambda+\mu} \ln^{q} |x|.$$
(13)

Equation (7) therefore holds for $-2 < \lambda$, $\lambda + \mu \leq -1$, p = 0 and q = 0, 1, 2, ...

It follows similarly that

$$|x|^{\lambda} (\operatorname{sgn} x |x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x |x|^{\lambda + \mu} \ln^{q} |x|.$$
(14)

Equation (8) therefore holds for $-2 < \lambda$, $\lambda + \mu \leq -1$, p = 0 and q = 0, 1, 2, ...

Now suppose that equations (7) and (8) hold for some k with $-k < \lambda$, $-2 < \lambda + \mu \leq -1$ and p, q = 0, 1, 2, ... This is certainly true when k = 1. Also suppose that equations (7) and (8) hold for some p with $-k - 1 \leq \lambda$, $-2 < \lambda + \mu \leq -1$ and q = 0, 1, 2, ... This is also true when k = 1 and p = 0. Then with $-k - 1 < \lambda$ and $-2 \leq \lambda + \mu < -1$, it follows from equation (1) that

$$(|x|^{\lambda+1}\ln^{p+1}|x|)(|x|^{\mu}\ln^{q}|x|) = |x|^{\lambda+\mu+1}\ln^{p+q+1}|x|.$$
(15)

Brian Fisher

Differentiating equation (15), we get

$$\begin{split} &(\lambda+1)(\operatorname{sgn} x|x|^{\lambda} \ln^{p+1} |x|).(|x|^{\mu} \ln^{q} |x|) \\ &+ (p+1)(\operatorname{sgn} x|x|^{\lambda} \ln^{p} |x|).(|x|^{\mu} \ln^{q} |x|) \\ &+ \mu(|x|^{\lambda+1} \ln^{p+1} |x|).(\operatorname{sgn} x|x|^{\mu-1} \ln^{q} |x|) \\ &+ q(|x|^{\lambda+1} \ln^{p+1} |x|).(\operatorname{sgn} x|x|^{\mu-1} \ln^{q-1} |x|) \\ &= (\lambda+\mu+1)\operatorname{sgn} x|x|^{\lambda+\mu} \ln^{p+q+1} |x| + (p+q+1)\operatorname{sgn} x|x|^{\lambda+\mu} \ln^{p+q} |x|. \end{split}$$

Using our assumptions and Theorem 1, it follows that

$$(\operatorname{sgn} x|x|^{\lambda} \ln^{p+1} |x|) \cdot (|x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x|x|^{\lambda+\mu} \ln^{p+q} |x|$$

giving equation (7) for p+1 and $-k-1 < \lambda$.

Similarly, differentiation of the equation

$$(\operatorname{sgn} x|x|^{\lambda+1} \ln^{p+1} |x|)(\operatorname{sgn} x|x|^{\mu} \ln^{q} |x|) = |x|^{\lambda+\mu+1} \ln^{p+q+1} |x|,$$

using our assumptions and Theorem 1, it follows that

$$(|x|^{\lambda} \ln^{p+1} |x|).(\operatorname{sgn} x |x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x |x|^{\lambda+\mu} \ln^{p+q} |x|$$

giving equation (8) for p+1 and $-k-1 < \lambda$.

Equations (7) and (8) now follow by induction for all λ , μ , with $-2 < \lambda + \mu \leq 1$ and $p, q = 0, 1, 2, \ldots$, completing the proof of the theorem. \Box

We finally consider what happens if $\lambda + \mu \leq 2$. With $\lambda > -1$, the sequence $\{(|x|^{\mu} \ln^{q} |x|)_{n}\}$ will converge to the distribution $|x|^{\mu} \ln^{q} |x|$ and the integral

$$\int_{-n}^{n} \operatorname{sgn} x |x|^{\lambda+\mu} \ln |x|^{p+q} x \psi(x) \, dx$$

in equation (10) will in general be divergent. This means that

$$\lim_{n \to \infty} \langle (\operatorname{sgn} x | x|^{\lambda} \ln^p |x|) (|x|^{\mu} \ln^q |x|)_n, \varphi(x) \rangle$$

cannot exist for all functions φ . The product $(\operatorname{sgn} x|x|^{\lambda} \ln^{p} |x|) \cdot (|x|^{\mu} \ln^{q} |x|)$ will therefore not exist in this case.

Similarly, the product $(|x|^{\lambda} \ln^p |x|).(\operatorname{sgn} x |x|^{\mu} \ln^q |x|)$ will not exist if $\lambda + \mu < -2$.

258

ACKNOWLEDGEMENT. The author would like to thank the referee for his suggestion in the improvement of this paper.

References

- J. G. VAN DER CORPUT, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959–60), 291–398.
- [2] B. FISHER, The product of distributions, *Quart. J. Math. Oxford* (2), **22** (1971), 291–298.
- [3] B. FISHER, On defining the product of distributions, Math. Nachr. 99 (1980), 230-240.
- [4] B. FISHER and S. YAKUBOVICH, Results on the non-commutative neutrix product of distributions, *Radovi Mat.* 11(1) (2001), 85–93.
- [5] I. M. GEL'FAND and G. E. SHILOV, Generalized Functions, Vol. I, Academic Press, 1964.

BRIAN FISHER DEPARTMENT OF MATHEMATICS UNIVERSITY OF LEICESTER LEICESTER, LE1 7RH ENGLAND

E-mail: fbr@le.ac.uk

(Received March 14, 2002; revised July 30, 2003)