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A small hierarchy of languages consisting
of non-primitive words

By PÁL DÖMÖSI (Debrecen), GÉZA HORVÁTH (Debrecen)
and MASAMI ITO (Kyoto)

In memory of our late good friend, Professor Dr. Jürgen Duske

Abstract. Context-free languages consisting of non-primitive words have
been characterized by M. Ito and M. Katsura in 1988. In this paper we show
that the same type of characterization can be given for linear, respectively, reg-
ular languages consisting of non-primitive words. The observation completes our
knowledge on the structure of different languages of non-primitive words.

1. Introduction

A word is said to be primitive if it is not a repetition of another
word. In other words, a word p is primitive if for any word w and i ≥ 1,
p = wi implies i = 1. Otherwise we speak about a non-primitive word.
Thus, a word is called non-primitive if it is a repetition of another word.
The study of relationships between the free semigroup X+ generated by
an alphabet X and the language of all primitive words Q over X has
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received special interest in theoretical computer science. In this paper
we investigate properties of languages consisting of non-primitive words
in relation with the Chomsky-hierarchy. First we establish that L ∩ Q,
L∩Q(i), i > 1, L∩ (∪i>1Q

(i)) are context-sensitive languages whenever L

is context-sensitive. Thus a characterization of context-sensitive languages
consisting of non-primitive words has no special interest. Context-free
languages consisting of non-primitive words are characterized by M. Ito

and M. Katsura [1]. In this paper we also characterize regular and linear
languages consisting of non-primitive words.

2. Preliminaries

Our notions and notation concerning formal languages are standard
(see, e.g., [3], [4]). Let X be a finite alphabet with more that one letter and
let X∗ be the free monoid generated by X. By λ we denote the identity
of X∗. λ is often called empty word. We put X+ = X∗ \ {λ}. Thus X+

denotes the free semigroup generated by X. An element u ∈ X∗ is called
a word over X and u is also called a non-empty word if u ∈ X+. The
length of a word u is denoted by |u|. Thus |λ| = 0. Any subset L of X∗ is
called a language L over X. If there is no danger of confusion then we do
not distinguish the element of a singleton set from the singleton set itself.
Therefore, for instance, {a}{b}∗{c} can be expressed as ab∗c and we write
L\λ for L\{λ}. A word u over X is said to be primitive if u = vn, v ∈ X∗

implies n = 1. Thus the empty word is non-primitive. Throughout this
paper, the set of all primitive words over X is denoted by Q. In addition,
we put Q(i) = {qi | q ∈ Q} for every i ≥ 0. Then Q(0) = λ by definition.
Note that any word u ∈ X+ can be uniquely expressed as u = pn, p ∈ Q

and n ≥ 1. (See Lyndon, R. C. and Schützenberger, M. P. [2].)
Hence X∗ = ∪i≥0Q

(i) is a disjoint union.
In this paper we shall use the following results.

Lemma 1 (Shyr, H. J. and Thierrin, G. [5]). Let i ≥ 1 and

uv ∈ {pi | p ∈ Q}. Then vu ∈ {pi | p ∈ Q}, too. In other words, the sets

{pi | p ∈ Q} (i ≥ 1) are closed under cyclic permutations of words.
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Lemma 2 (Lyndon, R. C. and Schützenberger, M. P. [2]).
Let f, g ∈ Q, f 6= g. Then fmgn ∈ Q for all m ≥ 2, n ≥ 2.

Lemma 3 (see, e.g., Hopcroft, J. E. and Ullman, J. D [3], p. 56,
Lemma 3.1.). Let L be a regular language. Then there is a constant n such

that if z is any word in L and |z| ≥ n, then we may write z = uvw in such

a way that |uv| ≤ n, |v| ≥ 1, and for all i ≥ 0, uviw is in L. Furthermore,

n is not greater than the number of states of the smallest finite automaton

accepting L.

Lemma 4 (see, e.g., Hopcroft, J. E. and Ullman, J. D [3], p.
143, Exercise 6.11.). If L is a linear language then there is a constant n

such that if z in L is of length n or greater, then we may write z = uvwxy,

so that |uvxy| ≤ n, |vx| ≥ 1, and for all i ≥ 0, uviwxiy is in L.

3. Languages consisting of non-primitive words

It is easy to show that using an appropriate (deterministic) linear
bounded automaton it can be decided whether a word is primitive. It
is also easy to prove that for every positive integer i > 1 it can be de-
cided by a (deterministic) linear bounded automaton whether a word is
in Q(i). Similarly, by a (deterministic) linear bounded automaton it can be
decided whether a word is in

⋃
i>1 Q(i). Thus these languages are context-

sensitive. On the other side, it is well-known that the class of context-
sensitive languages is closed under intersection. Thus for every context-
sensitive language L, the languages L∩Q, L∩Q(i), i > 1, L∩ ( ⋃

i>1 Q(i)
)

are also context-sensitive. By this simple observation we obtain that all
context-sensitive languages consisting of non-primitive words have the form
L = L′ ∩ ( ⋃

i>1 Q(i)
)
, where L′ is context-sensitive. Conversely, for every

context-sensitive language L′, the language L = L′ ∩ ( ⋃
i>1 Q(i)

)
is also

context-sensitive. Thus one can obtain a rather simple characterization of
context-sensitive (or more complex) languages consisting of non-primitive
words.

For the context-free case the following characterization is proved.

Theorem 1 (Ito, M. and Katsura, M. [1]). Let L be a context-free

language such that L ⊆ X+ \ Q. Then L1 = L ∩ Q(2) is a context-free
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language and L2 = L ∩ ( ⋃
i≥3 Q(i)

)
is a regular language. More exactly,

L1 = F1 ∪

 ⋃

1≤i≤r

{(an
i bia

m
i )2 | n,m ≥ 1}


 ∪


 ⋃

1≤j≤s

{(fjg
n
j hj)2 | n ≥ 1}




where F1 is a finite subset of Q(2) and a2
i bi ∈ Q, 1 ≤ i ≤ r, fjgjhj ∈ Q,

1 ≤ j ≤ s,

L2 = F2 ∪

 ⋃

1≤i≤r

fmi
i (fki

i )∗




where F2 is a finite subset of
⋃

i≥3 Q(i) and fi ∈ Q, mi ≥ 3, ki ≥ 1,

1 ≤ i ≤ r.

We now show the following

Theorem 2. Let L be a linear language such that L ⊆ X+ \Q. Then

L1 = L ∩ Q(2) is a linear language and L2 = L ∩ (⋃
i≥3 Q(i)

)
is a regular

language. More exactly,

L1 = F1 ∪

 ⋃

1≤j≤s

{(fjg
n
j hj)2 | n ≥ 1}




where F1 is a finite subset of Q(2), fjgjhj ∈ Q, 1 ≤ j ≤ s, and L2 has the

same structure as in Theorem 1.

Proof. It is well-known that for every linear language L, the language
L∩R is also linear whenever R is regular. On the other hand, by Theorem 1
L2 = L ∩ (⋃

i≥3 Q(i)
)

is regular for every context-free language L. Thus
L2 is also regular if L is linear. Therefore, L1 = L ∩ Q(2) is linear if L is
linear. It remains to prove that L1 = F1 ∪

( ⋃
1≤j≤s{(fjg

n
j hj)2 | n ≥ 1})

where F1 is a finite set and fjgjhj ∈ Q, 1 ≤ j ≤ s. Observe that a
language {(fgnh)2 | n ≥ 1} can be generated by the linear rules S → fTh,
T → gTg, T → hf . Thus L1 can be generated by a linear grammar. For
any a, b ∈ X+, {ajbaj+kbak | j < n, k ≥ n}, {ajbaj+kbak | j ≥ n, k < n}
have the form {(fgnh)2 | n ≥ 1} by f = ajb, g = a, h = λ and f = λ,
g = a, h = bak, in order. Moreover, {ajbaj+kbak | j, k < n} is finite. The
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complement of the union of these languages is {ajbaj+kbak | j, k ≥ n}. By
Theorem 1, it is now enough to show that for every linear language L there
exists an n ≥ 1 such that L does not contain elements of {ajbaj+kbak |
j, k ≥ n}.

Assume the contrary, and let L be a linear language with a positive
integer n as in Lemma 4. Using again that the intersection of a linear and
a regular language is also linear, we may consider L∩a+ba+ba+ as a linear
language. Then L ∩ {ajbaj+kbak | j, k ≥ 1} ⊆ Q(2) is also linear.

Consider an element z = asbas+tbat of the language L∩ {ajbaj+kbak |
j, k ≥ 1} such that s, t ≥ n. Then, by Lemma 4, there exists a decompo-
sition z = uvwxy, |uvxy| ≤ n, |vx| ≥ 1 such that for all i ≥ 0, uviwxiy is
in L. On the other hand, linear languages are closed under homomorphism
and inverse homomorphism. Thus we can suppose that u, v, x, y ∈ a∗. In-
deed, we can take a homomorphism ψ : {c, d} → X∗ with ψ(c) = a,
ψ(d) = b and a decomposition u′v′w′x′y′ of the word z′ = csdcs+tdct

with |u′v′x′y′| ≤ n′, |v′x′| ≥ 1, u′v′iw′x′iy′ ∈ {cjdcj+kdck | j, k ≥ 1},
i ≥ 0, where n′ is an appropriate positive integer. Obviously, we now have
ψ(u′) = u, ψ(v′) = v, ψ(w′) = w, ψ(x′) = x, ψ(y′) = y leading to
u, v, x, y ∈ a∗ if s and t are big enough.

At the same time, z = asbas+tbat ∈ Q(2) is supposed. Therefore,
asb ∈ Q. Put f = asb and g = h with h ∈ Q,hk = a. By Lemma 2,
fmgn ∈ Q, m,n ≥ 2.

Thus we obtain wxiyuvi ∈ Q, i > 1. But, by Lemma 1, uviwxiy ∈ Q,
i > 1 contradicting uviwxiy ∈ Q(2), i ≥ 0. ¤

Next we prove

Theorem 3. Let L be a regular language such that L ⊆ X+ \ Q.

Then L1 = L ∩Q(2) is a finite language and L2 = L ∩ ( ⋃
i≥3 Q(i)

)
has the

same structure as in Theorem 1.

Proof. By Theorem 2 it is enough to prove that for any a, b, c ∈ X+,
L ∩Q(2) does not contain infinitely-many elements of {(abmc)2 | m ≥ 1}.
Suppose the contrary. Then, by Lemma 3, there exists a positive integer
n such that m > n implies a decomposition z = uvw of (abmc)2 such that
|uv| ≤ n, |v| ≥ 1 and uviw ∈ L, i ≥ 0. Regular languages are also closed
under homomorphism and inverse homomorphism. Hence, similarly to the
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proof of the previous theorem, we may assume:

1. v = a or

2. v ∈ b+ or

3. v ∈ ab+.

1. First suppose v = a. Then aibmcabmc ∈ L, i ≥ 0 by Lemma 3.
Using Lemma 2, by f = abmc and g = d, d ∈ Q, dk = a it holds that
abmcabmcai ∈ Q, i ≥ 2. Applying Lemma 1 we obtain aibmcabmc ∈ Q,
i ≥ 3 contradicting aibmcabmc ∈ Q(2), i ≥ 0.

2. Suppose v ∈ b+. Then there exists k > 0 such that abm+i∗kcabmc∈L,
i ≥ 0 by Lemma 3. Using Lemma 2, by f = cabm and g = d, d ∈ Q, dj = b

it holds that cabmcabm+i ∈ Q, i ≥ 2. Applying Lemma 1 we obtain
abm+icabmc ∈ Q, i ≥ 2 contradicting abm+i∗kcabmc ∈ Q(2), i ≥ 0.

3. Finally suppose v ∈ ab+. Then there exists k > 0 such that
(abk)ibm−kcabmc∈L, i≥ 0 by Lemma 3. Using Lemma 2, by f = bm−kcabk

and g = d, d ∈ Q, dj = abk it holds that bm−kcabmcabk(abk)i ∈ Q, i ≥ 2.
Applying Lemma 1 we obtain (abk)i+1bm−kcabmc ∈ Q, i ≥ 2 contradicting
(abk)ibm−kcabmc ∈ Q(2), i ≥ 0. ¤

4. Summary

We can summarize our results in the following.

Corollary 1. Let L0, L1, L2, L3 be classes of languages such that L0 is

the class of all finite languages in X+\Q, L1 is the class of languages having

the form
⋃

1≤i≤r fmi
i (fki

i )∗, fi ∈ Q, mi ≥ 3, ki ≥ 1, 1≤ i ≤ r, L2 is the class

of languages of the form
⋃

1≤j≤s{(fjg
n
j hj)2 | n ≥ 1}, fjgjhj ∈ Q, 1 ≤ j ≤ s,

and L3 is the class of languages with the structure
⋃

1≤i≤r{(an
i bia

m
i )2 |

n,m ≥ 1} where a2
i bi ∈ Q, 1 ≤ i ≤ r. Then the following statements hold:

(a) L is a context-free language consisting of non-primitive words if and

only if L = L0 ∪ L1 ∪ L2 ∪ L3, Li ∈ Li, i = 0, 1, 2, 3.

(b) L is a linear language consisting of non-primitive words if and only if

L = L0 ∪ L1 ∪ L2, Li ∈ Li, i = 0, 1, 2.

(c) L is a regular language consisting of non-primitive words if and only

if L = L0 ∪ L1, Li ∈ Li, i = 0, 1.
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(d) L is a finite language consisting of non-primitive words if and only if

L = L0, L0 ∈ L0.

Of course, the statement (a) is the same as Theorem 1 [1] and the
statement (d) is trivial.
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PÁL DÖMÖSI
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